Temat: Zmienna losowa. Rozkład skokowy. Rozkład ciągły. Kody kolorów: Ŝółty nowe pojęcie pomarańczowy uwaga. Anna Rajfura, Matematyka

Save this PDF as:
 WORD  PNG  TXT  JPG

Wielkość: px
Rozpocząć pokaz od strony:

Download "Temat: Zmienna losowa. Rozkład skokowy. Rozkład ciągły. Kody kolorów: Ŝółty nowe pojęcie pomarańczowy uwaga. Anna Rajfura, Matematyka"

Transkrypt

1 Temat: Zmienna losowa. Rozkład skokowy. Rozkład ciągły Kody kolorów: Ŝółty nowe pojęcie pomarańczowy uwaga 1

2 Zagadnienia 1. Przypomnienie wybranych pojęć rachunku prawdopodobieństwa. Zmienna losowa. Rozkład zmiennej losowej 3. Rozkłady skokowe: dwupunktowy, dwumianowy 4. Rozkłady ciągłe: normalny 5. Parametry rozkładu

3 Doświadczenie losowe Przykłady: rzut kostką do gry rzut monetą losowanie kuli z urny losowanie karty z talii kart strzał do celu Mogą być powtarzane wielokrotnie. Doświadczenie losowe to takie doświadczenie, w którym wiadomo z góry, jakie wyniki mogą się pojawić, ale wynik konkretnego doświadczenia poznajemy dopiero po jego przeprowadzeniu. Pojedynczy wynik doświadczenia losowego nazywa się zdarzeniem elementarnym. 3

4 Opis matematyczny dośw. los. Przykład 1. Doświadczenie losowe D - rzut monetą Wszystkie moŝliwe wyniki (zdarzenia elementarne): orzeł, reszka Zbiór wszystkich moŝliwych wyników: { O, R } Zbiór wszystkich moŝliwych wyników doświadczenia losowego (zdarzeń elementarnych) nazywamy przestrzenią zdarzeń elementarnych, ozn. Ω. 4

5 Zdarzenie losowe Przykład. Doświadczenie losowe D - rzut kostką do gry Ω = { 1,, 3, 4, 5, 6 } Przyjmujemy, Ŝe kostka jest rzetelna, symetryczna (wszystkie wyniki są jednakowo prawdopodobne). A zdarzenie losowe polegające na tym, Ŝe wypadły dokładnie dwa oczka A = { } W nawiasach podajemy zdarzenia elementarne sprzyjające zdarzeniu losowemu A. 5

6 Przykład cd. B zdarzenie losowe polegające na tym, Ŝe wypadły co najmniej cztery oczka B = { 4, 5, 6 } 6

7 Moc zbioru Oznaczenie Y moc zbioru Y Moc zbioru Y to liczba elementów tego zbioru. W przykładzie : { 1,, 3, 4, 5, 6 } Ω = Ω = 6 { } A = A = 1 { 4, 5, 6 } B = B = 3 7

8 Oznaczenie Prawdopodobieństwo Wzór Laplace'a (181) klasyczna definicja p-stwa P(A) - p-stwo zdarzenia losowego A ( A) P = A Ω Komentarz o definicji i warunkach stosowania wzoru. 8

9 P P 1 6 Przykład cd. ( A) = 0,167 = 16,7 % = A Ω 3 ( B) = = 0,5 = 50 % = B Ω 6 Inne przykłady. 9

10 Definicja aksjomatyczna p-stwa Kołmogorowa (1933) P-stwo zdarzenia losowego A, dla A Ω, ma spełniać następujące warunki (aksjomaty): P P P ( A) 0, ( Ω) = 1, ( A A K ) = P( A ) + P( A ) + L 1 gdzie A 1, A,... - zdarzenia losowe wykluczające się (zbiory rozłączne). 1 10

11 Pojęcie zmiennej losowej 11

12 Przykład Przykład. W pewnej grze gracz rzuca kostką. JeŜeli wypadnie więcej niŝ 4 oczka, to gracz dostaje 10 zł, w przeciwnym razie płaci 1 zł. Jak najpełniej opisać wygraną gracza? 1

13 Przykład cd. D wyniki dośw. D: wygrana gracza: wygrana x i : p-stwo p i : 4/6 = /3 /6 = 1/3 13

14 Przykład cd. Dośw. los. D - rzut kostką do gry Ω = { 1,, 3, 4, 5, 6 } A 1 - zdarzenie losowe polegające na tym, Ŝe gracz dostaje 10 zł: A 1 = { 5, 6 } A - zdarzenie losowe polegające na tym, Ŝe gracz płaci 1 zł: A = { 1,, 3, 4 } P ( A ) = P( A ) 1 = 4 6 = = 3 14

15 Przykład cd. D Zmienna losowa wyniki dośw. D: wygrana gracza: wygrana x i : p-stwo p i : 4/6 = /3 /6 = 1/3 15

16 Zmienna losowa - definicja Zmienna losowa to funkcja, która wynikom doświadczenia losowego przyporządkowuje wartości liczbowe. Ozn.: X, Y, Z,..., X 1, X, X 3,... X : wynik liczba 16

17 Rozkład zmiennej losowej Przykład cd. Zmienna losowa X wygrana gracza Tabelka: wartości x i : p-stwo p i : /3 1/3 przedstawia rozkład zmiennej losowej X. 17

18 Rozkład zmiennej losowej Przykład cd. Funkcja rozkładu p-stwa*: f (x i )=p i *w skrócie frp 18

19 Rozkład zmiennej losowej Przykład cd. Funkcja rozkładu p-stwa*: f (x i )=p i p-stwo p i /3 Frp (takŝe jej wykres) przedstawia rozkład zmiennej losowej X. 1/ wartości x i 19

20 Dystrybuanta - definicja Dystrybuanta zmiennej losowej X: F X def ( t) = P( X t), t R 0

21 Wykres dystrybuanty przykład F X (t) 1 / t 1

22 Komentarz RóŜnie określone zmienne losowe X, Y, nawet z róŝnych doświadczeń losowych D X, D Y i przestrzeni Ω X, Ω Y, mogą mieć jednakowe rozkłady (przykład na tablicy). Dlatego moŝna badać własności samych rozkładów, pomijając słowny opis zmiennej losowej.

23 Typy rozkładów Rozkład skokowy (dyskretny) ciągły 3

24 Przykłady rozkładów skokowych dwupunktowy (0-1) równomierny dwumianowy Poissona (czyt.: płasona) 4

25 Rozkład dwupunktowy Inne nazwy: zero-jedynkowy, 0-1. wartości x i 0 1 p-stwo p i 1 - p p p i = 1 Wykres funkcji rozkładu p-stwa pstwo 0,8 0,6 0,4 0, 0 0 0,5 1 1,5 wartości zm. los.x 5

26 Przykłady rozkładów dwupunktowych Rozkład 0-1 p=0,5 Rozkład 0-1 p=0,8 pstwo 1 pstwo 1 0,5 0, ,5 1 1,5 wartości zm. los. X 0 0 0,5 1 1,5 wartości zm. los. X Zadanie* Narysuj wykres dystrybuanty dla przedstawionych przykładów. 6

27 * Rozkład równomierny wartości x i x 1 x... x n p-stwo p i p p... p p = 1 zatem p = 1/n Wykres funkcji rozkładu p-stwa pstwo 0, 0,1 0, wartości zm. los. X 7

28 * Rozkład dwumianowy B(n, p) Wartości k: 0, 1,,..., n P-stwo: P n ( X n! = k) = p k 1! k! ( n k) ( ) n k p n, p parametry rozkładu * Interpretacja parametrów W schemacie n doświadczeń niezaleŝnych Bernoulliego: n liczba prób p p-stwo sukcesu w pojedynczej próbie 8

29 * Wykres funkcji rozkładu B(n, p) Wykres funkcji rozkładu p-stwa dla n = 10 pstwo p = 0,5 p = 0,8 0,35 0,3 0,5 0, 0,15 0,1 0, wartości zm. los. 9

30 * Rozkład Poissona P(λ) Wartości k: 0, 1,,... P ( X = k) e λ P-stwo: k! λ parametr rozkładu, λ > 0 = λ k 30

31 Wykres funkcji rozkładu P(λ) Wykres funkcji rozkładu p-stwa 0,30 0,5 λ= λ=10 0,0 0,15 0,10 0,05 0,

32 Charakterystyki rozkładu Nazwy i oznaczenia: nazwa: średnia wariancja odchylenie standardowe ozn.: EX, µ D X, σ D X, σ 3

33 Wzory dla rozkładu skokowego X - zmienna losowa skokowa wartość x i x 1 x... x n pstwo p i p 1 p... p n def EX = x p + x p x n p n = i x i p i D = X = ( ) ( ) x EX p + x EX p ( x EX ) ( x EX ) i i def 1 p i 1 n p n = Obliczenia na tablicy. 33

34 * Wzory Charakterystyki rozkładu dwumianowego EX = np D X = np(1-p) Charakterystyki rozkładu Poissona EX = λ D X = λ 34

35 Typy rozkładów Rozkład skokowy ciągły Przykłady: dwupunktowy (0-1) równomierny dwumianowy Poissona Komentarz do idei przedstawienia rozkładu ciągłego. 35

36 Rozkład ciągły 36

37 Rozkład zmiennej losowej ciągłej Rozkład zmiennej losowej X ciągłej moŝna przedstawić za pomocą: funkcji gęstości p-stwa (fgp) y = f(x) funkcji dystrybuanty: F X def ( t ) = P( X t ) 37

38 * Funkcja gęstości p-stwa def. Funkcja gęstości p-stwa zmiennej losowej X, ozn.: y = f (x), to funkcja spełniająca warunki: 1. wykres leŝy nad lub na osi OX f( x) 0, gdy. pole obszaru ograniczonego z góry wykresem funkcji, a z dołu osią OX jest równe 1 + f ( x) dx x = 1 D f 38

39 Rozkład normalny 39

40 Rozkład normalny Wzór funkcji gęstości: f ( x) = 1 π σ e ( x µ ) σ, x R Parametry w rozkładzie normalnym: µ (czyt.: mi) σ (czyt.: sigma) µ R σ > 0 40

41 Rozkład normalny wykres fgp f(x) µ=, σ= x Własności matematyczne. krzywa Gaussa 41

42 Parametr µ f(x) µ = -4 σ = µ = σ = x 4

43 Parametr σ µ = σ = 1 µ = σ =

44 WyraŜenie: Oznaczenia zmienna losowa X ma rozkład normalny z parametrami µ oraz σ zapisujemy: X ~ N ( µ, σ ) Definicja. Mówimy, Ŝe zmienna losowa Z ma rozkład normalny standardowy, jeśli µ = 0, σ = 1. Zapisujemy: Z ~ N ( 0, 1) 44

45 Wykres fgp y = f (x) Zdarzenie losowe Zdarzenie losowe f(x) µ=, σ=1 X a ; b a b x 45

46 Zdarzenia losowe - przykłady Przykłady (przy a < b): ( a b ) X, X a, b ) X a, b X ( a, b X (, a X (, a ) ( a + ) X, X a, + ) X a, a = { a } 46

47 P-stwo zdarzenia losowego Wykres fgp y = f (x) P-stwo zdarzenia losowego - zakreskowane µ=, pole σ=1 pod f(x) krzywą a b x 47

48 P-stwo zdarzenia losowego P-stwo zdarzenia losowego: { X a b } b = f ( x) a P, dx Przypomnienie. Dystrybuanta zmiennej losowej X, ozn.: F X (t) F ( t) X def { } = L = P X t 48

49 P-stwo zdarzenia losowego P-stwo zdarzenia losowego: { X a b } b = f ( x) a P, dx Przypomnienie. Dystrybuanta zmiennej losowej X, ozn.: F X (t) F ( t) X def = P { X t } = f ( x) t dx 49

50 Dystrybuanta na wykresie fgp Wykres fgp y = f (x) zakreskowane pole = t f(x) µ=, σ=1 = f ( x) dx x t 50

51 Tablice statystyczne 51

52 Tablica dystrybuanty F Z (x ) x 0,00 0,01 0,0 0,03 0,04 0,05 0,06 0,07 0,08 0,09 0,0 0,1 0, 0,3 0,4 0,5 0, , , , , , ,539 0,5790 0, , , , , ,5517 0, ,5596 0, , ,5714 0, ,5796 0, , , , , ,6057 0,6064 0,6106 0, , ,617 0,655 0,6930 0, , , , , , ,6554 0, ,6676 0, , , ,6774 0,6808 0, , , , , , , , ,716 0, , ,740 0,6 0,7575 0,7907 0,7337 0, , ,7415 0, , , ,75490 : 3,8 3,9 0, , , , , , , , , , , , , , , , , , , ,99997 Zadania. 5

53 Wzory Wyznaczanie wartości dystrybuanty standardowego rozkładu normalnego przy uŝyciu tablic: Jeśli Z ~ N (0, 1), a > 0, to: F Z ( a) = 1 F Z (a) (1) Wzór na standaryzację zmiennej losowej: Jeśli Z~N (0, 1), X~N (µ, σ ), to: F ) 0 X ( ) x - µ ( x = F 0 Z σ () 53

54 * Prawo trzech sigm Jeśli X ~ N( µ, σ ), to: P P P { } X µ σ ;µ + σ 0, 68 { } X µ σ ;µ + σ 0, 95 { } X µ 3σ ;µ + 3σ 0, 9973 Rysunek na tablicy. 54

55 Charakterystyki rozkładu Nazwy i oznaczenia: nazwa : średnia wariancja odchylenie standardowe ozn.: EX, µ D X, σ D X, σ 55

56 Wzory dla rozkładu ciągłego X - zmienna losowa ciągła, y = f (x) funkcja gęstości + EX = x f x) dx + ( X ( x EX) D = f( x) dx Wzory dla rozkładu normalnego EX = µ D X = σ 56

57 * Rozkład chi kwadrat Jeśli zmienne losowe X 1, X,..., X n są: niezaleŝne X i ~N (0, 1), i = 1,,..., n to X 1 + X X n jest zmienną losową o rozkładzie χ z liczbą stopni swobody n. Ozn. χ czytamy: chi-kwadrat 57

58 * Rozkład chi kwadrat cd. Funkcja gęstości dla rozkładu χ : f ( x) 0, dla x 0, = n ( ) n 1 Γ 1 n x e x, dla x > 0 gdzie: Γ + ( t) = 0 u t 1 e u du, t R + 58

59 * Rozkład chi kwadrat cd. Wykres funkcji gęstości dla rozkładu χ : Chi-Square Distribution density 0,5 0, 0,15 0,1 0,05 Deg. of freedom x 59

60 * Rozkład t-studenta Jeśli zmienne losowe X 0, X 1,..., X n są: niezaleŝne X i ~N (0, 1), i = 1,,..., n to X 0 1 n ( X 1 + X + K + X n ) jest zmienną losową o rozkładzie t-studenta z liczbą stopni swobody n. 60

61 * Rozkład t-studenta cd. Wykres funkcji gęstości dla rozkładu t-studenta: Student's t Distribution 0,4 0,3 Deg. of freedom density 0, 0, x 61

62 * Rozkład F Fishera Snedecora Jeśli zmienne losowe X 1, X,..., X n oraz Y 1, Y,..., Y m są: niezaleŝne X i, Y j ~N(0, 1) to 1 n ( 1 m X ( Y X Y + + K K + + Y n m X ) ) jest zmienną losową o rozkładzie F Fishera Snedecora z liczbami stopni swobody n i m. 6

63 * Rozkład F Fishera Snedecora Wykres funkcji gęstości dla rozkładu F F (variance ratio) Distribution 1,5 1, Numerator d.f,d 10,10 50,40 density 0,9 0,6 0, x 63

Temat: BADANIE ZGODNOŚCI ROZKŁADU CECHY (EMPIRYCZNEGO) Z ROZKŁADEM TEORETYCZNYM TEST CHI-KWADRAT. Anna Rajfura 1

Temat: BADANIE ZGODNOŚCI ROZKŁADU CECHY (EMPIRYCZNEGO) Z ROZKŁADEM TEORETYCZNYM TEST CHI-KWADRAT. Anna Rajfura 1 Temat: BADANIE ZGODNOŚCI ROZKŁADU CECHY (EMPIRYCZNEGO) Z ROZKŁADEM TEORETYCZNYM TEST CHI-KWADRAT Anna Rajfura 1 Przykład wprowadzający Wiadomo, Ŝe 40% owoców ulega uszkodzeniu podczas pakowania automatycznego.

Bardziej szczegółowo

WYKŁAD 2. Zdarzenia losowe i prawdopodobieństwo Zmienna losowa i jej rozkłady

WYKŁAD 2. Zdarzenia losowe i prawdopodobieństwo Zmienna losowa i jej rozkłady WYKŁAD 2 Zdarzenia losowe i prawdopodobieństwo Zmienna losowa i jej rozkłady Metody statystyczne metody opisu metody wnioskowania statystycznego syntetyczny liczbowy opis właściwości zbioru danych ocena

Bardziej szczegółowo

Literatura. Leitner R., Zacharski J., Zarys matematyki wyŝszej dla studentów, cz. III.

Literatura. Leitner R., Zacharski J., Zarys matematyki wyŝszej dla studentów, cz. III. Literatura Krysicki W., Bartos J., Dyczka W., Królikowska K, Wasilewski M., Rachunek Prawdopodobieństwa i Statystyka Matematyczna w Zadaniach, cz. I. Leitner R., Zacharski J., Zarys matematyki wyŝszej

Bardziej szczegółowo

Elementy Rachunek prawdopodobieństwa

Elementy Rachunek prawdopodobieństwa Elementy rachunku prawdopodobieństwa Rachunek prawdopodobieństwa zajmuje się analizą praw rządzących zdarzeniami losowymi Pojęciami pierwotnymi są: zdarzenie elementarne ω oraz zbiór zdarzeń elementarnych

Bardziej szczegółowo

Przestrzeń probabilistyczna

Przestrzeń probabilistyczna Przestrzeń probabilistyczna (Ω, Σ, P) Ω pewien niepusty zbiór Σ rodzina podzbiorów tego zbioru P funkcja określona na Σ, zwana prawdopodobieństwem. Przestrzeń probabilistyczna (Ω, Σ, P) Ω pewien niepusty

Bardziej szczegółowo

Zestaw 2: Zmienne losowe. 0, x < 1, 2, 2 x, 1 1 x, 1 x, F 9 (x) =

Zestaw 2: Zmienne losowe. 0, x < 1, 2, 2 x, 1 1 x, 1 x, F 9 (x) = Zestaw : Zmienne losowe. Które z poniższych funkcji są dystrybuantami? Odpowiedź uzasadnij. Wskazówka: naszkicuj wykres. 0, x 0,, x 0, F (x) = x, F (x) = x, 0 x

Bardziej szczegółowo

STATYSTYKA MATEMATYCZNA. rachunek prawdopodobieństwa

STATYSTYKA MATEMATYCZNA. rachunek prawdopodobieństwa STATYSTYKA MATEMATYCZNA rachunek prawdopodobieństwa treść Zdarzenia losowe pojęcie prawdopodobieństwa prawo wielkich liczb zmienne losowe rozkłady teoretyczne zmiennych losowych Zanim zajmiemy się wnioskowaniem

Bardziej szczegółowo

Przykład 1 W przypadku jednokrotnego rzutu kostką przestrzeń zdarzeń elementarnych

Przykład 1 W przypadku jednokrotnego rzutu kostką przestrzeń zdarzeń elementarnych Rozdział 1 Zmienne losowe, ich rozkłady i charakterystyki 1.1 Definicja zmiennej losowej Niech Ω będzie przestrzenią zdarzeń elementarnych. Definicja 1 Rodzinę S zdarzeń losowych (zbiór S podzbiorów zbioru

Bardziej szczegółowo

II WYKŁAD STATYSTYKA. 12/03/2014 B8 sala 0.10B Godz. 15:15

II WYKŁAD STATYSTYKA. 12/03/2014 B8 sala 0.10B Godz. 15:15 II WYKŁAD STATYSTYKA 12/03/2014 B8 sala 0.10B Godz. 15:15 WYKŁAD 2 Rachunek prawdopodobieństwa zdarzenia elementarne zdarzenia losowe zmienna losowa skokowa i ciągła prawdopodobieństwo i gęstość prawdopodobieństwa

Bardziej szczegółowo

Statystyka matematyczna dla leśników

Statystyka matematyczna dla leśników Statystyka matematyczna dla leśników Wydział Leśny Kierunek leśnictwo Studia Stacjonarne I Stopnia Rok akademicki 2013/2014 Wykład 3 Zmienna losowa i jej rozkłady Zdarzenia losowe Pojęcie prawdopodobieństwa

Bardziej szczegółowo

STATYSTYKA MATEMATYCZNA dla ZPM I dr inż Krzysztof Bryś wyk lad 1,2 KLASYCZNY RACHUNEK PRAWDOPODOBIEŃSTWA

STATYSTYKA MATEMATYCZNA dla ZPM I dr inż Krzysztof Bryś wyk lad 1,2 KLASYCZNY RACHUNEK PRAWDOPODOBIEŃSTWA 1 STATYSTYKA MATEMATYCZNA dla ZPM I dr inż Krzysztof Bryś wyk lad 1,2 KLASYCZNY RACHUNEK PRAWDOPODOBIEŃSTWA 1. Pojȩcia wstȩpne. Doświadczeniem losowym nazywamy doświadczenie, którego wynik nie jest znany.

Bardziej szczegółowo

PODSTAWOWE ROZKŁADY PRAWDOPODOBIEŃSTWA. Piotr Wiącek

PODSTAWOWE ROZKŁADY PRAWDOPODOBIEŃSTWA. Piotr Wiącek PODSTAWOWE ROZKŁADY PRAWDOPODOBIEŃSTWA Piotr Wiącek ROZKŁAD PRAWDOPODOBIEŃSTWA Jest to miara probabilistyczna określona na σ-ciele podzbiorów borelowskich pewnej przestrzeni metrycznej. σ-ciało podzbiorów

Bardziej szczegółowo

4,5. Dyskretne zmienne losowe (17.03; 31.03)

4,5. Dyskretne zmienne losowe (17.03; 31.03) 4,5. Dyskretne zmienne losowe (17.03; 31.03) Definicja 1 Zmienna losowa nazywamy dyskretna (skokowa), jeśli zbiór jej wartości x 1, x 2,..., można ustawić w ciag. Zmienna losowa X, która przyjmuje wszystkie

Bardziej szczegółowo

Statystyka. Wydział Zarządzania Uniwersytetu Łódzkiego

Statystyka. Wydział Zarządzania Uniwersytetu Łódzkiego Statystyka Wydział Zarządzania Uniwersytetu Łódzkiego 2017 Podstawowe rozkłady zmiennych losowych Rozkłady zmiennych skokowych Rozkład zero-jedynkowy Rozpatrujemy doświadczenie, którego rezultatem może

Bardziej szczegółowo

Rozdział 1. Zmienne losowe, ich rozkłady i charakterystyki. 1.1 Definicja zmiennej losowej

Rozdział 1. Zmienne losowe, ich rozkłady i charakterystyki. 1.1 Definicja zmiennej losowej Rozdział 1 Zmienne losowe, ich rozkłady i charakterystyki 1.1 Definicja zmiennej losowej Zbiór możliwych wyników eksperymentu będziemy nazywać przestrzenią zdarzeń elementarnych i oznaczać Ω, natomiast

Bardziej szczegółowo

Zmienne losowe ciągłe i ich rozkłady

Zmienne losowe ciągłe i ich rozkłady Statystyka i opracowanie danych W3 Zmienne losowe ciągłe i ich rozkłady Dr Anna ADRIAN Paw B5, pok47 adan@agh.edu.pl Plan wykładu Rozkład Poissona. Zmienna losowa ciągła Dystrybuanta i funkcja gęstości

Bardziej szczegółowo

Jeśli wszystkie wartości, jakie może przyjmować zmienna można wypisać w postaci ciągu {x 1, x 2,...}, to mówimy, że jest to zmienna dyskretna.

Jeśli wszystkie wartości, jakie może przyjmować zmienna można wypisać w postaci ciągu {x 1, x 2,...}, to mówimy, że jest to zmienna dyskretna. Wykład 4 Rozkłady i ich dystrybuanty Dwa typy zmiennych losowych Jeśli wszystkie wartości, jakie może przyjmować zmienna można wypisać w postaci ciągu {x, x 2,...}, to mówimy, że jest to zmienna dyskretna.

Bardziej szczegółowo

Rachunek Prawdopodobieństwa i Statystyka

Rachunek Prawdopodobieństwa i Statystyka Rachunek Prawdopodobieństwa i Statystyka W 2. Probabilistyczne modele danych Zmienne losowe. Rozkład prawdopodobieństwa i dystrybuanta. Wartość oczekiwana i wariancja zmiennej losowej Dr Anna ADRIAN Zmienne

Bardziej szczegółowo

Rachunek prawdopodobieństwa Rozdział 4. Zmienne losowe

Rachunek prawdopodobieństwa Rozdział 4. Zmienne losowe Rachunek prawdopodobieństwa Rozdział 4. Zmienne losowe 4.1. Zmienne losowe dyskretne. Katarzyna Rybarczyk-Krzywdzińska Definicja/Rozkład Zmienne losowe dyskretne Definicja Zmienną losową, która skupiona

Bardziej szczegółowo

Rozkłady zmiennych losowych

Rozkłady zmiennych losowych Rozkłady zmiennych losowych Wprowadzenie Badamy pewną zbiorowość czyli populację pod względem występowania jakiejś cechy. Pobieramy próbę i na podstawie tej próby wyznaczamy pewne charakterystyki. Jeśli

Bardziej szczegółowo

Statystyczna analiza danych w programie STATISTICA 7.1 PL (wykład 1) Dariusz Gozdowski

Statystyczna analiza danych w programie STATISTICA 7.1 PL (wykład 1) Dariusz Gozdowski Statystyczna analiza danych w programie STATISTICA 7.1 PL (wykład 1) Dariusz Gozdowski Katedra Doświadczalnictwa i Bioinformatyki Wydział Rolnictwa i Biologii SGGW STATYSTYKA to nauka, której przedmiotem

Bardziej szczegółowo

III. ZMIENNE LOSOWE JEDNOWYMIAROWE

III. ZMIENNE LOSOWE JEDNOWYMIAROWE III. ZMIENNE LOSOWE JEDNOWYMIAROWE.. Zmienna losowa i pojęcie rozkładu prawdopodobieństwa W dotychczas rozpatrywanych przykładach każdemu zdarzeniu była przyporządkowana odpowiednia wartość liczbowa. Ta

Bardziej szczegółowo

WIELKA SGH-OWA POWTÓRKA ZE STATYSTYKI. Zmienna losowa i jej rozkład

WIELKA SGH-OWA POWTÓRKA ZE STATYSTYKI. Zmienna losowa i jej rozkład WIELKA SGH-OWA POWTÓRKA ZE STATYSTYKI Zmienna losowa i jej rozkład ZMIENNA LOSOWA Funkcja X przyporządkowująca każdemu zdarzeniu elementarnemu jedną i tylko jedną liczbę x. zmienna losowa skokowa skończona

Bardziej szczegółowo

WYKŁAD 8 TESTOWANIE HIPOTEZ STATYSTYCZNYCH

WYKŁAD 8 TESTOWANIE HIPOTEZ STATYSTYCZNYCH WYKŁAD 8 TESTOWANIE HIPOTEZ STATYSTYCZNYCH Było: Estymacja parametrów rozkładu teoretycznego punktowa przedziałowa Przykład. Cecha X masa owocu pewnej odmiany. ZałoŜenie: cecha X ma w populacji rozkład

Bardziej szczegółowo

Ćwiczenia 3 ROZKŁAD ZMIENNEJ LOSOWEJ JEDNOWYMIAROWEJ

Ćwiczenia 3 ROZKŁAD ZMIENNEJ LOSOWEJ JEDNOWYMIAROWEJ Ćwiczenia 3 ROZKŁAD ZMIENNEJ LOSOWEJ JEDNOWYMIAROWEJ Zadanie 1. Zmienna losowa przyjmuje wartości -1, 0, 1 z prawdopodobieństwami równymi odpowiednio: ¼, ½, ¼. Należy: a. Wyznaczyć rozkład prawdopodobieństwa

Bardziej szczegółowo

Wykład z analizy danych: powtórzenie zagadnień z rachunku prawdopodobieństwa

Wykład z analizy danych: powtórzenie zagadnień z rachunku prawdopodobieństwa Wykład z analizy danych: powtórzenie zagadnień z rachunku prawdopodobieństwa Marek Kubiak Instytut Informatyki Politechnika Poznańska Plan wykładu Podstawowe pojęcia rachunku prawdopodobieństwa Rozkład

Bardziej szczegółowo

Na A (n) rozważamy rozkład P (n) , który na zbiorach postaci A 1... A n określa się jako P (n) (X n, A (n), P (n)

Na A (n) rozważamy rozkład P (n) , który na zbiorach postaci A 1... A n określa się jako P (n) (X n, A (n), P (n) MODELE STATYSTYCZNE Punktem wyjścia w rozumowaniu statystycznym jest zmienna losowa (cecha) X i jej obserwacje opisujące wyniki doświadczeń bądź pomiarów. Zbiór wartości zmiennej losowej X (zbiór wartości

Bardziej szczegółowo

(C. Gauss, P. Laplace, Bernoulli, R. Fisher, J. Spława-Neyman) Wikipedia 2008

(C. Gauss, P. Laplace, Bernoulli, R. Fisher, J. Spława-Neyman) Wikipedia 2008 STATYSTYKA MATEMATYCZNA - dział matematyki stosowanej oparty na rachunku prawdopodobieństwa; zajmuje się badaniem zbiorów na podstawie analizy ich części. Nauka, której przedmiotem zainteresowania są metody

Bardziej szczegółowo

PODSTAWOWE ROZKŁADY ZMIENNYCH LOSOWYCH

PODSTAWOWE ROZKŁADY ZMIENNYCH LOSOWYCH PODSTAWOWE ROZKŁADY ZMIENNYCH LOSOWYCH Szkic wykładu 1 Podstawowe rozkłady zmiennej losowej skokowej Rozkład dwupunktowy Rozkład dwumianowy Rozkład Poissona 2 Rozkład dwupunktowy Rozkład dwumianowy Rozkład

Bardziej szczegółowo

W rachunku prawdopodobieństwa wyróżniamy dwie zasadnicze grupy rozkładów zmiennych losowych:

W rachunku prawdopodobieństwa wyróżniamy dwie zasadnicze grupy rozkładów zmiennych losowych: W rachunku prawdopodobieństwa wyróżniamy dwie zasadnicze grupy rozkładów zmiennych losowych: Zmienne losowe skokowe (dyskretne) przyjmujące co najwyżej przeliczalnie wiele wartości Zmienne losowe ciągłe

Bardziej szczegółowo

STATYSTYKA I DOŚWIADCZALNICTWO

STATYSTYKA I DOŚWIADCZALNICTWO STATYSTYKA I DOŚWIADCZALNICTWO dla studiów magisterskich kierunku ogrodnictwo Wykład 1 Dariusz Gozdowski Katedra Doświadczalnictwa i Bioinformatyki Wydział Rolnictwa i Biologii SGGW Słowo statystyka pochodzi

Bardziej szczegółowo

Statystyka. Magdalena Jakubek. kwiecień 2017

Statystyka. Magdalena Jakubek. kwiecień 2017 Statystyka Magdalena Jakubek kwiecień 2017 1 Nauka nie stara się wyjaśniać, a nawet niemal nie stara się interpretować, zajmuje się ona głównie budową modeli. Model rozumiany jest jako matematyczny twór,

Bardziej szczegółowo

P r a w d o p o d o b i eństwo Lekcja 1 Temat: Lekcja organizacyjna. Program. Kontrakt.

P r a w d o p o d o b i eństwo Lekcja 1 Temat: Lekcja organizacyjna. Program. Kontrakt. P r a w d o p o d o b i eństwo Lekcja 1 Temat: Lekcja organizacyjna. Program. Kontrakt. Lekcja 2 Temat: Podstawowe pojęcia związane z prawdopodobieństwem. Str. 10-21 1. Doświadczenie losowe jest to doświadczenie,

Bardziej szczegółowo

Rozkłady statystyk z próby

Rozkłady statystyk z próby Rozkłady statystyk z próby Rozkłady statystyk z próby Przypuśćmy, że wykonujemy serię doświadczeń polegających na 4 krotnym rzucie symetryczną kostką do gry, obserwując liczbę wyrzuconych oczek Nr kolejny

Bardziej szczegółowo

P (A B) = P (A), P (B) = P (A), skąd P (A B) = P (A) P (B). P (A)

P (A B) = P (A), P (B) = P (A), skąd P (A B) = P (A) P (B). P (A) Wykład 3 Niezależność zdarzeń, schemat Bernoulliego Kiedy dwa zdarzenia są niezależne? Gdy wiedza o tym, czy B zaszło, czy nie, NIE MA WPŁYWU na oszacowanie prawdopodobieństwa zdarzenia A: P (A B) = P

Bardziej szczegółowo

Najczęściej spotykane rozkłady dyskretne:

Najczęściej spotykane rozkłady dyskretne: I. Rozkład dwupunktowy: Najczęściej spotykane rozkłady dyskretne: Def. Zmienna X ma rozkład dwupunktowy z prawdopodobieostwem 1 przyjmuje tylko dwie wartości, tzn. P(X = x 1 ) = p i P(X = x 2 ) = 1 p =

Bardziej szczegółowo

Wykład 13. Podstawowe pojęcia rachunku prawdopodobieństwa

Wykład 13. Podstawowe pojęcia rachunku prawdopodobieństwa Wykład 13. Podstawowe pojęcia rachunku prawdopodobieństwa dr Mariusz Grzadziel Katedra Matematyki, Uniwersytet Przyrodniczy we Wrocławiu semestr zimowy, rok akademicki 2015 2016 Doświadczenie losowe Doświadczenie

Bardziej szczegółowo

Statystyka Opisowa z Demografią oraz Biostatystyka. Zmienne losowe. Aleksander Denisiuk. denisjuk@euh-e.edu.pl

Statystyka Opisowa z Demografią oraz Biostatystyka. Zmienne losowe. Aleksander Denisiuk. denisjuk@euh-e.edu.pl Statystyka Opisowa z Demografią oraz Biostatystyka Zmienne losowe Aleksander Denisiuk denisjuk@euh-e.edu.pl Elblaska Uczelnia Humanistyczno-Ekonomiczna ul. Lotnicza 2 82-300 Elblag oraz Biostatystyka p.

Bardziej szczegółowo

Laboratorium nr 7. Zmienne losowe typu skokowego.

Laboratorium nr 7. Zmienne losowe typu skokowego. Laboratorium nr 7. Zmienne losowe typu skokowego.. Zmienna losowa X ma rozkład dany tabelką: - 0 3 0, 0,3 0, 0,3 0, Naszkicować dystrybuantę zmiennej X. Obliczyć EX oraz VarX.. Zmienna losowa ma rozkład

Bardziej szczegółowo

Statystyka w analizie i planowaniu eksperymentu

Statystyka w analizie i planowaniu eksperymentu 21 marca 2011 Zmienna losowa - wst ep Przeprowadzane w praktyce badania i eksperymenty maja bardzo różnorodny charakter, niemniej jednak wiaż a sie one z rejestracja jakiś sygna lów (danych). Moga to być

Bardziej szczegółowo

Statystyka w analizie i planowaniu eksperymentu

Statystyka w analizie i planowaniu eksperymentu 10 marca 2014 Zmienna losowa - wst ep Przeprowadzane w praktyce badania i eksperymenty maja bardzo różnorodny charakter, niemniej jednak wiaż a sie one z rejestracja jakiś sygna lów (danych). Moga to być

Bardziej szczegółowo

Zmienne losowe ciągłe i ich rozkłady

Zmienne losowe ciągłe i ich rozkłady Rachunek Prawdopodobieństwa i Statystyka - W3 Zmienne losowe ciągłe i ich rozkłady Dr Anna ADRIAN Paw B5, pok47 adan@agh.edu.pl Plan wykładu Zmienna losowa ciągła Dystrybuanta i unkcja gęstości rozkładu

Bardziej szczegółowo

Zmienne losowe skokowe

Zmienne losowe skokowe Zmienne losowe skokowe 1.1 Rozkład prawdopodobieństwa i dystrybuanta Zad.1 Niech zmienna losowa X przyjmuje wartości równe liczbie wyrzuconych oczek przy pojedynczym rzucie kostką do gry, czyli =1,2,3,,6.

Bardziej szczegółowo

Prawdopodobieństwo i statystyka

Prawdopodobieństwo i statystyka Wykład II: Zmienne losowe i charakterystyki ich rozkładów 13 października 2014 Zmienne losowe Wartość oczekiwana Dystrybuanty Słowniczek teorii prawdopodobieństwa, cz. II Definicja zmiennej losowej i jej

Bardziej szczegółowo

g) wartość oczekiwaną (przeciętną) i wariancję zmiennej losowej K.

g) wartość oczekiwaną (przeciętną) i wariancję zmiennej losowej K. TEMAT 1: WYBRANE ROZKŁADY TYPU SKOKOWEGO ROZKŁAD DWUMIANOWY (BERNOULLIEGO) Zadanie 1-1 Prawdopodobieństwo nieprzekroczenia przez pewien zakład pracy dobowego limitu zużycia energii elektrycznej (bez konieczności

Bardziej szczegółowo

Wybrane rozkłady zmiennych losowych. Statystyka

Wybrane rozkłady zmiennych losowych. Statystyka Wybrane rozkłady zmiennych losowych Statystyka Rozkład dwupunktowy Zmienna losowa przyjmuje tylko dwie wartości: wartość 1 z prawdopodobieństwem p i wartość 0 z prawdopodobieństwem 1- p x i p i 0 1-p 1

Bardziej szczegółowo

MATEMATYKA Z ELEMENTAMI STATYSTYKI LABORATORIUM KOMPUTEROWE DLA II ROKU KIERUNKU ZARZĄDZANIE I INŻYNIERIA PRODUKCJI ZESTAWY ZADAŃ

MATEMATYKA Z ELEMENTAMI STATYSTYKI LABORATORIUM KOMPUTEROWE DLA II ROKU KIERUNKU ZARZĄDZANIE I INŻYNIERIA PRODUKCJI ZESTAWY ZADAŃ MATEMATYKA Z ELEMENTAMI STATYSTYKI LABORATORIUM KOMPUTEROWE DLA II ROKU KIERUNKU ZARZĄDZANIE I INŻYNIERIA PRODUKCJI ZESTAWY ZADAŃ Opracowała: Milena Suliga Wszystkie pliki pomocnicze wymienione w treści

Bardziej szczegółowo

Z poprzedniego wykładu

Z poprzedniego wykładu PODSTAWY STATYSTYKI 1. Teoria prawdopodobieństwa i elementy kombinatoryki 2. Zmienne losowe i ich rozkłady 3. Populacje i próby danych, estymacja parametrów 4. Testowanie hipotez 5. Testy parametryczne

Bardziej szczegółowo

Zmienne losowe. Rozkład zmiennej losowej

Zmienne losowe. Rozkład zmiennej losowej Zmienne losowe Rozkład zmiennej losowej Zmienna losowa to funkcja, która przyjmuje różne wartości liczbowe wyznaczone przez los (przypadek). Zmienne losowe oznaczamy symbolem: X :! R Zmienna losowa X,

Bardziej szczegółowo

Elementy rachunku prawdopodobieństwa. Statystyka matematyczna. w zastosowaniach

Elementy rachunku prawdopodobieństwa. Statystyka matematyczna. w zastosowaniach Statystyka matematyczna w zastosowaniach Elementy rachunku prawdopodobieństwa Robert Pietrzykowski STATYSTYKA: nauka poświęcona metodom badania(analizowania) zjawisk masowych; polega na systematyzowaniu

Bardziej szczegółowo

Zadania zestaw 1: Zadania zestaw 2

Zadania zestaw 1: Zadania zestaw 2 Zadania zestaw 1: Zadania zestaw 2 Zadania zestaw 3. 1 Rozkład zmiennej losowej skokowej X przedstawia tabela. x i m 0 n p i 0,4 0,3 0,3 a) Wyznacz m i n jeśli: są całkowite, m

Bardziej szczegółowo

Rozkład zajęć, statystyka matematyczna, Rok akademicki 2015/16, semestr letni, Grupy dla powtarzających (C15; C16)

Rozkład zajęć, statystyka matematyczna, Rok akademicki 2015/16, semestr letni, Grupy dla powtarzających (C15; C16) Rozkład zajęć, statystyka matematyczna, Rok akademicki 05/6, semestr letni, Grupy powtarzających (C5; C6) Lp Grupa C5 Grupa C6 Liczba godzin 0046 w godz 600-000 C03 0046 w godz 600-000 B05 4 6046 w godz

Bardziej szczegółowo

Ważne rozkłady i twierdzenia

Ważne rozkłady i twierdzenia Ważne rozkłady i twierdzenia Rozkład dwumianowy i wielomianowy Częstość. Prawo wielkich liczb Rozkład hipergeometryczny Rozkład Poissona Rozkład normalny i rozkład Gaussa Centralne twierdzenie graniczne

Bardziej szczegółowo

Matematyka i statystyka matematyczna dla rolników w SGGW WYKŁAD 9. TESTOWANIE HIPOTEZ STATYSTYCZNYCH cd.

Matematyka i statystyka matematyczna dla rolników w SGGW WYKŁAD 9. TESTOWANIE HIPOTEZ STATYSTYCZNYCH cd. WYKŁAD 9 TESTOWANIE HIPOTEZ STATYSTYCZNYCH cd. Było: Przykład 1. Badano krąŝek o wymiarach zbliŝonych do monety jednozłotowej ze stronami oznaczonymi: A, B. NaleŜy ustalić, czy krąŝek jest symetryczny?

Bardziej szczegółowo

Wybrane rozkłady zmiennych losowych i ich charakterystyki

Wybrane rozkłady zmiennych losowych i ich charakterystyki Rozdział 1 Wybrane rozłady zmiennych losowych i ich charaterystyi 1.1 Wybrane rozłady zmiennych losowych typu soowego 1.1.1 Rozład równomierny Rozpatrzmy esperyment, tóry może sończyć się jednym z n możliwych

Bardziej szczegółowo

METODY BADAŃ NA ZWIERZĘTACH ze STATYSTYKĄ wykład 3-4. Parametry i wybrane rozkłady zmiennych losowych

METODY BADAŃ NA ZWIERZĘTACH ze STATYSTYKĄ wykład 3-4. Parametry i wybrane rozkłady zmiennych losowych METODY BADAŃ NA ZWIERZĘTACH ze STATYSTYKĄ wykład - Parametry i wybrane rozkłady zmiennych losowych Parametry zmiennej losowej EX wartość oczekiwana D X wariancja DX odchylenie standardowe inne, np. kwantyle,

Bardziej szczegółowo

Prawa wielkich liczb, centralne twierdzenia graniczne

Prawa wielkich liczb, centralne twierdzenia graniczne , centralne twierdzenia graniczne Katedra matematyki i ekonomii matematycznej 17 maja 2012, centralne twierdzenia graniczne Rodzaje zbieżności ciągów zmiennych losowych, centralne twierdzenia graniczne

Bardziej szczegółowo

Statystyka i eksploracja danych

Statystyka i eksploracja danych Wykład II: i charakterystyki ich rozkładów 24 lutego 2014 Wartość oczekiwana Dystrybuanty Słowniczek teorii prawdopodobieństwa, cz. II Wartość oczekiwana Dystrybuanty Słowniczek teorii prawdopodobieństwa,

Bardziej szczegółowo

Wykład 4, 5 i 6. Elementy rachunku prawdopodobieństwa i kombinatoryki w fizyce statystycznej

Wykład 4, 5 i 6. Elementy rachunku prawdopodobieństwa i kombinatoryki w fizyce statystycznej Wykład 4, 5 i 6 Elementy rachunku prawdopodobieństwa i kombinatoryki w fizyce statystycznej dr hab. Agata Fronczak, prof. PW Wydział Fizyki, Politechnika Warszawska 1 stycznia 2017 dr hab. A. Fronczak

Bardziej szczegółowo

18. Obliczyć. 9. Obliczyć iloczyn macierzy i. 10. Transponować macierz. 11. Transponować macierz. A następnie podać wymiar powstałej macierzy.

18. Obliczyć. 9. Obliczyć iloczyn macierzy i. 10. Transponować macierz. 11. Transponować macierz. A następnie podać wymiar powstałej macierzy. 1 Czy iloczyn macierzy, które nie są kwadratowe może być macierzą kwadratową? Podaj przykład 2 Czy każde dwie macierze jednostkowe są równe? Podaj przykład 3 Czy mnożenie macierzy przez macierz jednostkową

Bardziej szczegółowo

Prawdopodobieństwo i statystyka

Prawdopodobieństwo i statystyka Wykład VII: Rozkład i jego charakterystyki 22 listopada 2016 Uprzednio wprowadzone pojęcia i ich własności Definicja zmiennej losowej Zmienna losowa na przestrzeni probabilistycznej (Ω, F, P) to funkcja

Bardziej szczegółowo

zadania z rachunku prawdopodobieństwa zapożyczone z egzaminów aktuarialnych

zadania z rachunku prawdopodobieństwa zapożyczone z egzaminów aktuarialnych zadania z rachunku prawdopodobieństwa zapożyczone z egzaminów aktuarialnych 1. [E.A 5.10.1996/zad.4] Funkcja gęstości dana jest wzorem { 3 x + 2xy + 1 y dla (x y) (0 1) (0 1) 4 4 P (X > 1 2 Y > 1 2 ) wynosi:

Bardziej szczegółowo

{( ) ( ) ( ) ( )( ) ( )( ) ( RRR)

{( ) ( ) ( ) ( )( ) ( )( ) ( RRR) .. KLASYCZNA DEFINICJA PRAWDOPODOBIEŃSTWA Klasyczna definicja prawdopodobieństwa JeŜeli jest skończonym zbiorem zdarzeń elementarnych jednakowo prawdopodobnych i A, to liczbę A nazywamy prawdopodobieństwem

Bardziej szczegółowo

zdarzenie losowe - zdarzenie którego przebiegu czy wyniku nie da się przewidzieć na pewno.

zdarzenie losowe - zdarzenie którego przebiegu czy wyniku nie da się przewidzieć na pewno. Rachunek prawdopodobieństwa Podstawowym celem rachunku prawdopodobieństwa jest określanie szans zajścia pewnych zdarzeń. Pojęcie podstawowe rachunku prawdopodobieństwa to: zdarzenie losowe - zdarzenie

Bardziej szczegółowo

AKADEMIA GÓRNICZO-HUTNICZA Wydział Matematyki Stosowanej ROZKŁAD NORMALNY ROZKŁAD GAUSSA

AKADEMIA GÓRNICZO-HUTNICZA Wydział Matematyki Stosowanej ROZKŁAD NORMALNY ROZKŁAD GAUSSA AKADEMIA GÓRNICZO-HUTNICZA Wydział Matematyki Stosowanej KATEDRA MATEMATYKI TEMAT PRACY: ROZKŁAD NORMALNY ROZKŁAD GAUSSA AUTOR: BARBARA MARDOSZ Kraków, styczeń 2008 Spis treści 1 Wprowadzenie 2 2 Definicja

Bardziej szczegółowo

Ćwiczenia 1. Klasyczna definicja prawdopodobieństwa, prawdopodobieństwo geometryczne, własności prawdopodobieństwa, wzór włączeń i wyłączeń

Ćwiczenia 1. Klasyczna definicja prawdopodobieństwa, prawdopodobieństwo geometryczne, własności prawdopodobieństwa, wzór włączeń i wyłączeń Agata Boratyńska Ćwiczenia z rachunku prawdopodobieństwa 1 Ćwiczenia 1. Klasyczna definicja prawdopodobieństwa, prawdopodobieństwo geometryczne, własności prawdopodobieństwa, wzór włączeń i wyłączeń UWAGA:

Bardziej szczegółowo

TABLICE PODSTAWOWYCH ROZKŁADÓW PRAWDOPODOBIEŃSTWA. T4. Tablica kwantyli rozkładu chi-kwadrat (I część - poziomy kwantyli 0,5)

TABLICE PODSTAWOWYCH ROZKŁADÓW PRAWDOPODOBIEŃSTWA. T4. Tablica kwantyli rozkładu chi-kwadrat (I część - poziomy kwantyli 0,5) TABLICE PODSTAWOWYCH ROZKŁADÓW PRAWDOPODOBIEŃSTWA T1. Tablica dystrybuanty standardowego normalnego rozkładu N(0,1) T2. Tablica kwantyli standardowego normalnego rozkładu N(0,1) T3. Tablica kwantyli rozkładu

Bardziej szczegółowo

ZMIENNE LOSOWE. Zmienna losowa (ZL) X( ) jest funkcją przekształcającą przestrzeń zdarzeń elementarnych w zbiór liczb rzeczywistych R 1 tzn. X: R 1.

ZMIENNE LOSOWE. Zmienna losowa (ZL) X( ) jest funkcją przekształcającą przestrzeń zdarzeń elementarnych w zbiór liczb rzeczywistych R 1 tzn. X: R 1. Opracowała: Joanna Kisielińska ZMIENNE LOSOWE Zmienna losowa (ZL) X( ) jest funkcją przekształcającą przestrzeń zdarzeń elementarnych w zbiór liczb rzeczywistych R tzn. X: R. Realizacją zmiennej losowej

Bardziej szczegółowo

Z Wikipedii, wolnej encyklopedii.

Z Wikipedii, wolnej encyklopedii. Rozkład normalny Rozkład normalny jest niezwykle ważnym rozkładem prawdopodobieństwa w wielu dziedzinach. Nazywa się go także rozkładem Gaussa, w szczególności w fizyce i inżynierii. W zasadzie jest to

Bardziej szczegółowo

b) Niech: - wśród trzech wylosowanych opakowań jest co najwyżej jedno o dawce 15 mg. Wówczas:

b) Niech: - wśród trzech wylosowanych opakowań jest co najwyżej jedno o dawce 15 mg. Wówczas: ROZWIĄZANIA I ODPOWIEDZI Zadanie A1. Można założyć, że przy losowaniu trzech kul jednocześnie kolejność ich wylosowania nie jest istotna. A więc: Ω = 20 3. a) Niech: - wśród trzech wylosowanych opakowań

Bardziej szczegółowo

STATYSTYKA MATEMATYCZNA

STATYSTYKA MATEMATYCZNA STATYSTYKA MATEMATYCZNA 1. Wykład wstępny. Teoria prawdopodobieństwa i elementy kombinatoryki 2. Zmienne losowe i ich rozkłady 3. Populacje i próby danych, estymacja parametrów 4. Testowanie hipotez 5.

Bardziej szczegółowo

Rachunek prawdopodobieństwa Rozdział 5. Rozkłady łączne

Rachunek prawdopodobieństwa Rozdział 5. Rozkłady łączne Rachunek prawdopodobieństwa Rozdział 5. Rozkłady łączne 5.3 Rozkłady warunkowe i warunkowa wartość oczekiwana Katarzyna Rybarczyk-Krzywdzińska semestr zimowy 2015/2016 Prawdopodobieństwo wyraża postawę

Bardziej szczegółowo

Prawdopodobieństwo

Prawdopodobieństwo Prawdopodobieństwo http://www.matemaks.pl/ Wstęp do rachunku prawdopodobieństwa http://www.matemaks.pl/wstep-do-rachunku-prawdopodobienstwa.html Rachunek prawdopodobieństwa pomaga obliczyć szansę zaistnienia

Bardziej szczegółowo

STATYSTYKA MATEMATYCZNA ZESTAW 0 (POWT. RACH. PRAWDOPODOBIEŃSTWA) ZADANIA

STATYSTYKA MATEMATYCZNA ZESTAW 0 (POWT. RACH. PRAWDOPODOBIEŃSTWA) ZADANIA STATYSTYKA MATEMATYCZNA ZESTAW 0 (POWT. RACH. PRAWDOPODOBIEŃSTWA) ZADANIA Zadanie 0.1 Zmienna losowa X ma rozkład określony funkcją prawdopodobieństwa: x k 0 4 p k 1/3 1/6 1/ obliczyć EX, D X. (odp. 4/3;

Bardziej szczegółowo

Statystyka matematyczna. Wykład III. Estymacja przedziałowa

Statystyka matematyczna. Wykład III. Estymacja przedziałowa Statystyka matematyczna. Wykład III. e-mail:e.kozlovski@pollub.pl Spis treści Rozkłady zmiennych losowych 1 Rozkłady zmiennych losowych Rozkład χ 2 Rozkład t-studenta Rozkład Fischera 2 Przedziały ufności

Bardziej szczegółowo

a)dane są wartości zmiennej losowej: 2, 4, 2, 1, 1, 3, 2, 1. Obliczyć wartość średnią i wariancję.

a)dane są wartości zmiennej losowej: 2, 4, 2, 1, 1, 3, 2, 1. Obliczyć wartość średnią i wariancję. Zad Rozkład zmiennej losowej dyskretnej : a)dane są wartości zmiennej losowej: 2, 4, 2,,, 3, 2,. Obliczyć wartość średnią i wariancję. b)oceny z pracy klasowej w tabeli: Ocena 2 3 4 5 6 Liczba uczniów

Bardziej szczegółowo

Zmienna losowa i jej rozkład Dystrybuanta zmiennej losowej Wartość oczekiwana zmiennej losowej

Zmienna losowa i jej rozkład Dystrybuanta zmiennej losowej Wartość oczekiwana zmiennej losowej Zmienna losowa i jej rozkład Dystrybuanta zmiennej losowej Wartość oczekiwana zmiennej losowej c Copyright by Ireneusz Krech ikrech@ap.krakow.pl Instytut Matematyki Uniwersytet Pedagogiczny im. KEN w Krakowie

Bardziej szczegółowo

Tablica Wzorów Rachunek Prawdopodobieństwa i Statystyki

Tablica Wzorów Rachunek Prawdopodobieństwa i Statystyki Tablica Wzorów Rachunek Prawdopodobieństwa i Statystyki Spis treści I. Wzory ogólne... 2 1. Średnia arytmetyczna:... 2 2. Rozstęp:... 2 3. Kwantyle:... 2 4. Wariancja:... 2 5. Odchylenie standardowe:...

Bardziej szczegółowo

Estymacja przedziałowa. Przedział ufności

Estymacja przedziałowa. Przedział ufności Estymacja przedziałowa Przedział ufności Estymacja przedziałowa jest to szacowanie wartości danego parametru populacji, ρ za pomocą tak zwanego przedziału ufności. Przedziałem ufności nazywamy taki przedział

Bardziej szczegółowo

Matematyka 2. dr inż. Rajmund Stasiewicz

Matematyka 2. dr inż. Rajmund Stasiewicz Matematyka 2 dr inż. Rajmund Stasiewicz Skala ocen Punkty Ocena 0 50 2,0 51 60 3,0 61 70 3,5 71 80 4,0 81 90 4,5 91-5,0 Zwolnienie z egzaminu Ocena z egzaminu liczba punktów z ćwiczeń - 5 Warunki zaliczenia

Bardziej szczegółowo

Diagramy Venna. Uwagi:

Diagramy Venna. Uwagi: Wykład 3: Prawdopodobieństwopodstawowe pojęcia i modele Często modelujemy zmienność używając rachunku prawdopodobieństwa. Prawdopodobieństwo opadów deszczu wynosi 80%. (zinterpretuj) Prawdopodobieństwo

Bardziej szczegółowo

Wykład 3: Prawdopodobieństwopodstawowe

Wykład 3: Prawdopodobieństwopodstawowe Wykład 3: Prawdopodobieństwopodstawowe pojęcia i modele Często modelujemy zmienność używając rachunku prawdopodobieństwa. Prawdopodobieństwo opadów deszczu wynosi 80%. (zinterpretuj) Prawdopodobieństwo

Bardziej szczegółowo

STATYSTYKA MATEMATYCZNA WYKŁAD października 2009

STATYSTYKA MATEMATYCZNA WYKŁAD października 2009 STATYSTYKA MATEMATYCZNA WYKŁAD 4 26 października 2009 Rozkład N(µ, σ). Estymacja σ σ 2 = 1 σ 2π + = E µ,σ (X µ) 2 { (x µ) 2 exp 1 ( ) } x µ 2 dx 2 σ Rozkład N(µ, σ). Estymacja σ σ 2 = 1 σ 2π + = E µ,σ

Bardziej szczegółowo

Kurs do wyboru Wstęp do analizy algorytmów Instytut Matematyki i Informatyki UO 2011/2012

Kurs do wyboru Wstęp do analizy algorytmów Instytut Matematyki i Informatyki UO 2011/2012 dr Przemysław Szczepaniak Kurs do wyboru Wstęp do analizy algorytmów Instytut Matematyki i Informatyki UO 2011/2012 ZLICZANIE 1.ZmiastaAdomiastaBprowadzipięćdróg.Ilomasposobamimożnaodbyćpodróż A B Apodwarunkiem,żeniemożnawracaćtąsamądrogą?

Bardziej szczegółowo

Dokładne i graniczne rozkłady statystyk z próby

Dokładne i graniczne rozkłady statystyk z próby Dokładne i graniczne rozkłady statystyk z próby Przypomnijmy Populacja Próba Wielkość N n Średnia Wariancja Odchylenie standardowe 4.2 Rozkład statystyki Mówimy, że rozkład statystyki (1) jest dokładny,

Bardziej szczegółowo

Wykład 14. Testowanie hipotez statystycznych - test zgodności chi-kwadrat. Generowanie liczb losowych.

Wykład 14. Testowanie hipotez statystycznych - test zgodności chi-kwadrat. Generowanie liczb losowych. Wykład 14 Testowanie hipotez statystycznych - test zgodności chi-kwadrat. Generowanie liczb losowych. Rozkład chi-kwadrat Suma kwadratów n-zmiennych losowych o rozkładzie normalnym standardowym ma rozkład

Bardziej szczegółowo

Metody probabilistyczne opracowane notatki 1. Zdefiniuj zmienną losową, rozkład prawdopodobieństwa. Przy jakich założeniach funkcje: F(x) = sin(x),

Metody probabilistyczne opracowane notatki 1. Zdefiniuj zmienną losową, rozkład prawdopodobieństwa. Przy jakich założeniach funkcje: F(x) = sin(x), Metody probabilistyczne opracowane notatki 1. Zdefiniuj zmienną losową, rozkład prawdopodobieństwa. Przy jakich założeniach funkcje: Fx sinx, Fx a e x mogą być dystrybuantami?. Podaj twierdzenie Lindeberga

Bardziej szczegółowo

Kwantyle. Kwantyl rzędu p rozkładu prawdopodobieństwa to taka liczba x p. , że. Możemy go obliczyć z dystrybuanty: P(X x p.

Kwantyle. Kwantyl rzędu p rozkładu prawdopodobieństwa to taka liczba x p. , że. Możemy go obliczyć z dystrybuanty: P(X x p. Kwantyle Kwantyl rzędu p rozkładu prawdopodobieństwa to taka liczba x p, że P(X x p ) p P(X x p ) 1 p Możemy go obliczyć z dystrybuanty: Jeżeli F(x p ) = p, to x p jest kwantylem rzędu p Jeżeli F(x p )

Bardziej szczegółowo

1. Jednoczynnikowa analiza wariancji 2. Porównania szczegółowe

1. Jednoczynnikowa analiza wariancji 2. Porównania szczegółowe Zjazd 7. SGGW, dn. 28.11.10 r. Matematyka i statystyka matematyczna Tematy 1. Jednoczynnikowa analiza wariancji 2. Porównania szczegółowe nna Rajfura 1 Zagadnienia Przykład porównania wielu obiektów w

Bardziej szczegółowo

Ważne rozkłady i twierdzenia c.d.

Ważne rozkłady i twierdzenia c.d. Ważne rozkłady i twierdzenia c.d. Funkcja charakterystyczna rozkładu Wielowymiarowy rozkład normalny Elipsa kowariacji Sploty rozkładów Rozkłady jednostajne Sploty z rozkładem normalnym Pobieranie próby

Bardziej szczegółowo

Statystyka Astronomiczna

Statystyka Astronomiczna Statystyka Astronomiczna czyli zastosowania statystyki w astronomii historycznie astronomowie mieli wkład w rozwój dyscypliny Rachunek prawdopodobieństwa - gałąź matematyki Statystyka - metoda oceny właściwości

Bardziej szczegółowo

L.Kowalski zadania z rachunku prawdopodobieństwa-zestaw 3 ZADANIA - ZESTAW 3

L.Kowalski zadania z rachunku prawdopodobieństwa-zestaw 3 ZADANIA - ZESTAW 3 ZADANIA - ZESTAW 3 Zadanie 3. L Prawdopodobieństwo trafienia celu w jednym strzale wynosi 0,6. Do celu oddano niezależnie 0 strzałów. Oblicz prawdopodobieństwo, że cel został trafiony: a) jeden raz, b)

Bardziej szczegółowo

Wykład 10 Estymacja przedziałowa - przedziały ufności dla średn

Wykład 10 Estymacja przedziałowa - przedziały ufności dla średn Wykład 10 Estymacja przedziałowa - przedziały ufności dla średniej Wrocław, 21 grudnia 2016r Przedział ufności Niech będzie dana próba X 1, X 2,..., X n z rozkładu P θ, θ Θ. Definicja 10.1 Przedziałem

Bardziej szczegółowo

Wykład Centralne twierdzenie graniczne. Statystyka matematyczna: Estymacja parametrów rozkładu

Wykład Centralne twierdzenie graniczne. Statystyka matematyczna: Estymacja parametrów rozkładu Wykład 11-12 Centralne twierdzenie graniczne Statystyka matematyczna: Estymacja parametrów rozkładu Centralne twierdzenie graniczne (CTG) (Central Limit Theorem - CLT) Centralne twierdzenie graniczne (Lindenberga-Levy'ego)

Bardziej szczegółowo

Testowanie hipotez statystycznych cd.

Testowanie hipotez statystycznych cd. Temat Testowanie hipotez statystycznych cd. Kody znaków: żółte wyróżnienie nowe pojęcie pomarańczowy uwaga kursywa komentarz 1 Zagadnienia omawiane na zajęciach 1. Przykłady testowania hipotez dotyczących:

Bardziej szczegółowo

Estymacja przedziałowa - przedziały ufności dla średnich. Wrocław, 5 grudnia 2014

Estymacja przedziałowa - przedziały ufności dla średnich. Wrocław, 5 grudnia 2014 Estymacja przedziałowa - przedziały ufności dla średnich Wrocław, 5 grudnia 2014 Przedział ufności Niech będzie dana próba X 1, X 2,..., X n z rozkładu P θ, θ Θ. Definicja Przedziałem ufności dla paramertu

Bardziej szczegółowo

KURS PRAWDOPODOBIEŃSTWO

KURS PRAWDOPODOBIEŃSTWO KURS PRAWDOPODOBIEŃSTWO Lekcja 6 Ciągłe zmienne losowe ZADANIE DOMOWE www.etrapez.pl Strona 1 Część 1: TEST Zaznacz poprawną odpowiedź (tylko jedna jest prawdziwa). Pytanie 1 Zmienna losowa ciągła jest

Bardziej szczegółowo

= = a na podstawie zadania 6 po p. 3.6 wiemy, że. b 1. a 2 ab b 2

= = a na podstawie zadania 6 po p. 3.6 wiemy, że. b 1. a 2 ab b 2 64 III. Zienne losowe jednowyiarowe D Ponieważ D (A) < D (B), więc należy wybrać partię A. Przykład 3.4. Obliczyć wariancję rozkładu jednostajnego. Ponieważ a na podstawie zadania 6 po p. 3.6 wiey, że

Bardziej szczegółowo