Temat: Zmienna losowa. Rozkład skokowy. Rozkład ciągły. Kody kolorów: Ŝółty nowe pojęcie pomarańczowy uwaga. Anna Rajfura, Matematyka

Wielkość: px
Rozpocząć pokaz od strony:

Download "Temat: Zmienna losowa. Rozkład skokowy. Rozkład ciągły. Kody kolorów: Ŝółty nowe pojęcie pomarańczowy uwaga. Anna Rajfura, Matematyka"

Transkrypt

1 Temat: Zmienna losowa. Rozkład skokowy. Rozkład ciągły Kody kolorów: Ŝółty nowe pojęcie pomarańczowy uwaga 1

2 Zagadnienia 1. Przypomnienie wybranych pojęć rachunku prawdopodobieństwa. Zmienna losowa. Rozkład zmiennej losowej 3. Rozkłady skokowe: dwupunktowy, dwumianowy 4. Rozkłady ciągłe: normalny 5. Parametry rozkładu

3 Doświadczenie losowe Przykłady: rzut kostką do gry rzut monetą losowanie kuli z urny losowanie karty z talii kart strzał do celu Mogą być powtarzane wielokrotnie. Doświadczenie losowe to takie doświadczenie, w którym wiadomo z góry, jakie wyniki mogą się pojawić, ale wynik konkretnego doświadczenia poznajemy dopiero po jego przeprowadzeniu. Pojedynczy wynik doświadczenia losowego nazywa się zdarzeniem elementarnym. 3

4 Opis matematyczny dośw. los. Przykład 1. Doświadczenie losowe D - rzut monetą Wszystkie moŝliwe wyniki (zdarzenia elementarne): orzeł, reszka Zbiór wszystkich moŝliwych wyników: { O, R } Zbiór wszystkich moŝliwych wyników doświadczenia losowego (zdarzeń elementarnych) nazywamy przestrzenią zdarzeń elementarnych, ozn. Ω. 4

5 Zdarzenie losowe Przykład. Doświadczenie losowe D - rzut kostką do gry Ω = { 1,, 3, 4, 5, 6 } Przyjmujemy, Ŝe kostka jest rzetelna, symetryczna (wszystkie wyniki są jednakowo prawdopodobne). A zdarzenie losowe polegające na tym, Ŝe wypadły dokładnie dwa oczka A = { } W nawiasach podajemy zdarzenia elementarne sprzyjające zdarzeniu losowemu A. 5

6 Przykład cd. B zdarzenie losowe polegające na tym, Ŝe wypadły co najmniej cztery oczka B = { 4, 5, 6 } 6

7 Moc zbioru Oznaczenie Y moc zbioru Y Moc zbioru Y to liczba elementów tego zbioru. W przykładzie : { 1,, 3, 4, 5, 6 } Ω = Ω = 6 { } A = A = 1 { 4, 5, 6 } B = B = 3 7

8 Oznaczenie Prawdopodobieństwo Wzór Laplace'a (181) klasyczna definicja p-stwa P(A) - p-stwo zdarzenia losowego A ( A) P = A Ω Komentarz o definicji i warunkach stosowania wzoru. 8

9 P P 1 6 Przykład cd. ( A) = 0,167 = 16,7 % = A Ω 3 ( B) = = 0,5 = 50 % = B Ω 6 Inne przykłady. 9

10 Definicja aksjomatyczna p-stwa Kołmogorowa (1933) P-stwo zdarzenia losowego A, dla A Ω, ma spełniać następujące warunki (aksjomaty): P P P ( A) 0, ( Ω) = 1, ( A A K ) = P( A ) + P( A ) + L 1 gdzie A 1, A,... - zdarzenia losowe wykluczające się (zbiory rozłączne). 1 10

11 Pojęcie zmiennej losowej 11

12 Przykład Przykład. W pewnej grze gracz rzuca kostką. JeŜeli wypadnie więcej niŝ 4 oczka, to gracz dostaje 10 zł, w przeciwnym razie płaci 1 zł. Jak najpełniej opisać wygraną gracza? 1

13 Przykład cd. D wyniki dośw. D: wygrana gracza: wygrana x i : p-stwo p i : 4/6 = /3 /6 = 1/3 13

14 Przykład cd. Dośw. los. D - rzut kostką do gry Ω = { 1,, 3, 4, 5, 6 } A 1 - zdarzenie losowe polegające na tym, Ŝe gracz dostaje 10 zł: A 1 = { 5, 6 } A - zdarzenie losowe polegające na tym, Ŝe gracz płaci 1 zł: A = { 1,, 3, 4 } P ( A ) = P( A ) 1 = 4 6 = = 3 14

15 Przykład cd. D Zmienna losowa wyniki dośw. D: wygrana gracza: wygrana x i : p-stwo p i : 4/6 = /3 /6 = 1/3 15

16 Zmienna losowa - definicja Zmienna losowa to funkcja, która wynikom doświadczenia losowego przyporządkowuje wartości liczbowe. Ozn.: X, Y, Z,..., X 1, X, X 3,... X : wynik liczba 16

17 Rozkład zmiennej losowej Przykład cd. Zmienna losowa X wygrana gracza Tabelka: wartości x i : p-stwo p i : /3 1/3 przedstawia rozkład zmiennej losowej X. 17

18 Rozkład zmiennej losowej Przykład cd. Funkcja rozkładu p-stwa*: f (x i )=p i *w skrócie frp 18

19 Rozkład zmiennej losowej Przykład cd. Funkcja rozkładu p-stwa*: f (x i )=p i p-stwo p i /3 Frp (takŝe jej wykres) przedstawia rozkład zmiennej losowej X. 1/ wartości x i 19

20 Dystrybuanta - definicja Dystrybuanta zmiennej losowej X: F X def ( t) = P( X t), t R 0

21 Wykres dystrybuanty przykład F X (t) 1 / t 1

22 Komentarz RóŜnie określone zmienne losowe X, Y, nawet z róŝnych doświadczeń losowych D X, D Y i przestrzeni Ω X, Ω Y, mogą mieć jednakowe rozkłady (przykład na tablicy). Dlatego moŝna badać własności samych rozkładów, pomijając słowny opis zmiennej losowej.

23 Typy rozkładów Rozkład skokowy (dyskretny) ciągły 3

24 Przykłady rozkładów skokowych dwupunktowy (0-1) równomierny dwumianowy Poissona (czyt.: płasona) 4

25 Rozkład dwupunktowy Inne nazwy: zero-jedynkowy, 0-1. wartości x i 0 1 p-stwo p i 1 - p p p i = 1 Wykres funkcji rozkładu p-stwa pstwo 0,8 0,6 0,4 0, 0 0 0,5 1 1,5 wartości zm. los.x 5

26 Przykłady rozkładów dwupunktowych Rozkład 0-1 p=0,5 Rozkład 0-1 p=0,8 pstwo 1 pstwo 1 0,5 0, ,5 1 1,5 wartości zm. los. X 0 0 0,5 1 1,5 wartości zm. los. X Zadanie* Narysuj wykres dystrybuanty dla przedstawionych przykładów. 6

27 * Rozkład równomierny wartości x i x 1 x... x n p-stwo p i p p... p p = 1 zatem p = 1/n Wykres funkcji rozkładu p-stwa pstwo 0, 0,1 0, wartości zm. los. X 7

28 * Rozkład dwumianowy B(n, p) Wartości k: 0, 1,,..., n P-stwo: P n ( X n! = k) = p k 1! k! ( n k) ( ) n k p n, p parametry rozkładu * Interpretacja parametrów W schemacie n doświadczeń niezaleŝnych Bernoulliego: n liczba prób p p-stwo sukcesu w pojedynczej próbie 8

29 * Wykres funkcji rozkładu B(n, p) Wykres funkcji rozkładu p-stwa dla n = 10 pstwo p = 0,5 p = 0,8 0,35 0,3 0,5 0, 0,15 0,1 0, wartości zm. los. 9

30 * Rozkład Poissona P(λ) Wartości k: 0, 1,,... P ( X = k) e λ P-stwo: k! λ parametr rozkładu, λ > 0 = λ k 30

31 Wykres funkcji rozkładu P(λ) Wykres funkcji rozkładu p-stwa 0,30 0,5 λ= λ=10 0,0 0,15 0,10 0,05 0,

32 Charakterystyki rozkładu Nazwy i oznaczenia: nazwa: średnia wariancja odchylenie standardowe ozn.: EX, µ D X, σ D X, σ 3

33 Wzory dla rozkładu skokowego X - zmienna losowa skokowa wartość x i x 1 x... x n pstwo p i p 1 p... p n def EX = x p + x p x n p n = i x i p i D = X = ( ) ( ) x EX p + x EX p ( x EX ) ( x EX ) i i def 1 p i 1 n p n = Obliczenia na tablicy. 33

34 * Wzory Charakterystyki rozkładu dwumianowego EX = np D X = np(1-p) Charakterystyki rozkładu Poissona EX = λ D X = λ 34

35 Typy rozkładów Rozkład skokowy ciągły Przykłady: dwupunktowy (0-1) równomierny dwumianowy Poissona Komentarz do idei przedstawienia rozkładu ciągłego. 35

36 Rozkład ciągły 36

37 Rozkład zmiennej losowej ciągłej Rozkład zmiennej losowej X ciągłej moŝna przedstawić za pomocą: funkcji gęstości p-stwa (fgp) y = f(x) funkcji dystrybuanty: F X def ( t ) = P( X t ) 37

38 * Funkcja gęstości p-stwa def. Funkcja gęstości p-stwa zmiennej losowej X, ozn.: y = f (x), to funkcja spełniająca warunki: 1. wykres leŝy nad lub na osi OX f( x) 0, gdy. pole obszaru ograniczonego z góry wykresem funkcji, a z dołu osią OX jest równe 1 + f ( x) dx x = 1 D f 38

39 Rozkład normalny 39

40 Rozkład normalny Wzór funkcji gęstości: f ( x) = 1 π σ e ( x µ ) σ, x R Parametry w rozkładzie normalnym: µ (czyt.: mi) σ (czyt.: sigma) µ R σ > 0 40

41 Rozkład normalny wykres fgp f(x) µ=, σ= x Własności matematyczne. krzywa Gaussa 41

42 Parametr µ f(x) µ = -4 σ = µ = σ = x 4

43 Parametr σ µ = σ = 1 µ = σ =

44 WyraŜenie: Oznaczenia zmienna losowa X ma rozkład normalny z parametrami µ oraz σ zapisujemy: X ~ N ( µ, σ ) Definicja. Mówimy, Ŝe zmienna losowa Z ma rozkład normalny standardowy, jeśli µ = 0, σ = 1. Zapisujemy: Z ~ N ( 0, 1) 44

45 Wykres fgp y = f (x) Zdarzenie losowe Zdarzenie losowe f(x) µ=, σ=1 X a ; b a b x 45

46 Zdarzenia losowe - przykłady Przykłady (przy a < b): ( a b ) X, X a, b ) X a, b X ( a, b X (, a X (, a ) ( a + ) X, X a, + ) X a, a = { a } 46

47 P-stwo zdarzenia losowego Wykres fgp y = f (x) P-stwo zdarzenia losowego - zakreskowane µ=, pole σ=1 pod f(x) krzywą a b x 47

48 P-stwo zdarzenia losowego P-stwo zdarzenia losowego: { X a b } b = f ( x) a P, dx Przypomnienie. Dystrybuanta zmiennej losowej X, ozn.: F X (t) F ( t) X def { } = L = P X t 48

49 P-stwo zdarzenia losowego P-stwo zdarzenia losowego: { X a b } b = f ( x) a P, dx Przypomnienie. Dystrybuanta zmiennej losowej X, ozn.: F X (t) F ( t) X def = P { X t } = f ( x) t dx 49

50 Dystrybuanta na wykresie fgp Wykres fgp y = f (x) zakreskowane pole = t f(x) µ=, σ=1 = f ( x) dx x t 50

51 Tablice statystyczne 51

52 Tablica dystrybuanty F Z (x ) x 0,00 0,01 0,0 0,03 0,04 0,05 0,06 0,07 0,08 0,09 0,0 0,1 0, 0,3 0,4 0,5 0, , , , , , ,539 0,5790 0, , , , , ,5517 0, ,5596 0, , ,5714 0, ,5796 0, , , , , ,6057 0,6064 0,6106 0, , ,617 0,655 0,6930 0, , , , , , ,6554 0, ,6676 0, , , ,6774 0,6808 0, , , , , , , , ,716 0, , ,740 0,6 0,7575 0,7907 0,7337 0, , ,7415 0, , , ,75490 : 3,8 3,9 0, , , , , , , , , , , , , , , , , , , ,99997 Zadania. 5

53 Wzory Wyznaczanie wartości dystrybuanty standardowego rozkładu normalnego przy uŝyciu tablic: Jeśli Z ~ N (0, 1), a > 0, to: F Z ( a) = 1 F Z (a) (1) Wzór na standaryzację zmiennej losowej: Jeśli Z~N (0, 1), X~N (µ, σ ), to: F ) 0 X ( ) x - µ ( x = F 0 Z σ () 53

54 * Prawo trzech sigm Jeśli X ~ N( µ, σ ), to: P P P { } X µ σ ;µ + σ 0, 68 { } X µ σ ;µ + σ 0, 95 { } X µ 3σ ;µ + 3σ 0, 9973 Rysunek na tablicy. 54

55 Charakterystyki rozkładu Nazwy i oznaczenia: nazwa : średnia wariancja odchylenie standardowe ozn.: EX, µ D X, σ D X, σ 55

56 Wzory dla rozkładu ciągłego X - zmienna losowa ciągła, y = f (x) funkcja gęstości + EX = x f x) dx + ( X ( x EX) D = f( x) dx Wzory dla rozkładu normalnego EX = µ D X = σ 56

57 * Rozkład chi kwadrat Jeśli zmienne losowe X 1, X,..., X n są: niezaleŝne X i ~N (0, 1), i = 1,,..., n to X 1 + X X n jest zmienną losową o rozkładzie χ z liczbą stopni swobody n. Ozn. χ czytamy: chi-kwadrat 57

58 * Rozkład chi kwadrat cd. Funkcja gęstości dla rozkładu χ : f ( x) 0, dla x 0, = n ( ) n 1 Γ 1 n x e x, dla x > 0 gdzie: Γ + ( t) = 0 u t 1 e u du, t R + 58

59 * Rozkład chi kwadrat cd. Wykres funkcji gęstości dla rozkładu χ : Chi-Square Distribution density 0,5 0, 0,15 0,1 0,05 Deg. of freedom x 59

60 * Rozkład t-studenta Jeśli zmienne losowe X 0, X 1,..., X n są: niezaleŝne X i ~N (0, 1), i = 1,,..., n to X 0 1 n ( X 1 + X + K + X n ) jest zmienną losową o rozkładzie t-studenta z liczbą stopni swobody n. 60

61 * Rozkład t-studenta cd. Wykres funkcji gęstości dla rozkładu t-studenta: Student's t Distribution 0,4 0,3 Deg. of freedom density 0, 0, x 61

62 * Rozkład F Fishera Snedecora Jeśli zmienne losowe X 1, X,..., X n oraz Y 1, Y,..., Y m są: niezaleŝne X i, Y j ~N(0, 1) to 1 n ( 1 m X ( Y X Y + + K K + + Y n m X ) ) jest zmienną losową o rozkładzie F Fishera Snedecora z liczbami stopni swobody n i m. 6

63 * Rozkład F Fishera Snedecora Wykres funkcji gęstości dla rozkładu F F (variance ratio) Distribution 1,5 1, Numerator d.f,d 10,10 50,40 density 0,9 0,6 0, x 63

II WYKŁAD STATYSTYKA. 12/03/2014 B8 sala 0.10B Godz. 15:15

II WYKŁAD STATYSTYKA. 12/03/2014 B8 sala 0.10B Godz. 15:15 II WYKŁAD STATYSTYKA 12/03/2014 B8 sala 0.10B Godz. 15:15 WYKŁAD 2 Rachunek prawdopodobieństwa zdarzenia elementarne zdarzenia losowe zmienna losowa skokowa i ciągła prawdopodobieństwo i gęstość prawdopodobieństwa

Bardziej szczegółowo

Rozkłady zmiennych losowych

Rozkłady zmiennych losowych Rozkłady zmiennych losowych Wprowadzenie Badamy pewną zbiorowość czyli populację pod względem występowania jakiejś cechy. Pobieramy próbę i na podstawie tej próby wyznaczamy pewne charakterystyki. Jeśli

Bardziej szczegółowo

III. ZMIENNE LOSOWE JEDNOWYMIAROWE

III. ZMIENNE LOSOWE JEDNOWYMIAROWE III. ZMIENNE LOSOWE JEDNOWYMIAROWE.. Zmienna losowa i pojęcie rozkładu prawdopodobieństwa W dotychczas rozpatrywanych przykładach każdemu zdarzeniu była przyporządkowana odpowiednia wartość liczbowa. Ta

Bardziej szczegółowo

Statystyka Opisowa z Demografią oraz Biostatystyka. Zmienne losowe. Aleksander Denisiuk. denisjuk@euh-e.edu.pl

Statystyka Opisowa z Demografią oraz Biostatystyka. Zmienne losowe. Aleksander Denisiuk. denisjuk@euh-e.edu.pl Statystyka Opisowa z Demografią oraz Biostatystyka Zmienne losowe Aleksander Denisiuk denisjuk@euh-e.edu.pl Elblaska Uczelnia Humanistyczno-Ekonomiczna ul. Lotnicza 2 82-300 Elblag oraz Biostatystyka p.

Bardziej szczegółowo

Z Wikipedii, wolnej encyklopedii.

Z Wikipedii, wolnej encyklopedii. Rozkład normalny Rozkład normalny jest niezwykle ważnym rozkładem prawdopodobieństwa w wielu dziedzinach. Nazywa się go także rozkładem Gaussa, w szczególności w fizyce i inżynierii. W zasadzie jest to

Bardziej szczegółowo

a)dane są wartości zmiennej losowej: 2, 4, 2, 1, 1, 3, 2, 1. Obliczyć wartość średnią i wariancję.

a)dane są wartości zmiennej losowej: 2, 4, 2, 1, 1, 3, 2, 1. Obliczyć wartość średnią i wariancję. Zad Rozkład zmiennej losowej dyskretnej : a)dane są wartości zmiennej losowej: 2, 4, 2,,, 3, 2,. Obliczyć wartość średnią i wariancję. b)oceny z pracy klasowej w tabeli: Ocena 2 3 4 5 6 Liczba uczniów

Bardziej szczegółowo

STATYSTYKA MATEMATYCZNA ZESTAW 0 (POWT. RACH. PRAWDOPODOBIEŃSTWA) ZADANIA

STATYSTYKA MATEMATYCZNA ZESTAW 0 (POWT. RACH. PRAWDOPODOBIEŃSTWA) ZADANIA STATYSTYKA MATEMATYCZNA ZESTAW 0 (POWT. RACH. PRAWDOPODOBIEŃSTWA) ZADANIA Zadanie 0.1 Zmienna losowa X ma rozkład określony funkcją prawdopodobieństwa: x k 0 4 p k 1/3 1/6 1/ obliczyć EX, D X. (odp. 4/3;

Bardziej szczegółowo

Zmienna losowa i jej rozkład Dystrybuanta zmiennej losowej Wartość oczekiwana zmiennej losowej

Zmienna losowa i jej rozkład Dystrybuanta zmiennej losowej Wartość oczekiwana zmiennej losowej Zmienna losowa i jej rozkład Dystrybuanta zmiennej losowej Wartość oczekiwana zmiennej losowej c Copyright by Ireneusz Krech ikrech@ap.krakow.pl Instytut Matematyki Uniwersytet Pedagogiczny im. KEN w Krakowie

Bardziej szczegółowo

Diagramy Venna. Uwagi:

Diagramy Venna. Uwagi: Wykład 3: Prawdopodobieństwopodstawowe pojęcia i modele Często modelujemy zmienność używając rachunku prawdopodobieństwa. Prawdopodobieństwo opadów deszczu wynosi 80%. (zinterpretuj) Prawdopodobieństwo

Bardziej szczegółowo

Kurs do wyboru Wstęp do analizy algorytmów Instytut Matematyki i Informatyki UO 2011/2012

Kurs do wyboru Wstęp do analizy algorytmów Instytut Matematyki i Informatyki UO 2011/2012 dr Przemysław Szczepaniak Kurs do wyboru Wstęp do analizy algorytmów Instytut Matematyki i Informatyki UO 2011/2012 ZLICZANIE 1.ZmiastaAdomiastaBprowadzipięćdróg.Ilomasposobamimożnaodbyćpodróż A B Apodwarunkiem,żeniemożnawracaćtąsamądrogą?

Bardziej szczegółowo

PODSTAWOWE ROZKŁADY ZMIENNYCH LOSOWYCH CIĄGŁYCH

PODSTAWOWE ROZKŁADY ZMIENNYCH LOSOWYCH CIĄGŁYCH Opracowała: Joanna Kisielińska 1 PODSTAWOWE ROZKŁADY ZMIENNYCH LOSOWYCH CIĄGŁYCH Rozkład normalny Zmienna losowa X ma rozkład normalny z parametrami µ i σ (średnia i odchylenie standardowe), jeśli jej

Bardziej szczegółowo

c) ( 13 (1) (2) Zadanie 2. Losując bez zwracania kolejne litery ze zbioru AAAEKMMTTY, jakie jest prawdopodobieństwo Odp.

c) ( 13 (1) (2) Zadanie 2. Losując bez zwracania kolejne litery ze zbioru AAAEKMMTTY, jakie jest prawdopodobieństwo Odp. Zadania na kolokwium nr Zadanie. Spośród kart w tali wylosowano. Jakie jest prawdopodobieństwo: pików, kierów, trefli i karo otrzymania wszystkich kolorów otrzymania dokładnie pików a ( b ( ( c ( ( ( (

Bardziej szczegółowo

ANALIZA STATYSTYCZNA WYNIKÓW BADAŃ

ANALIZA STATYSTYCZNA WYNIKÓW BADAŃ ANALIZA STATYSTYCZNA WYNIKÓW BADAŃ Dopasowanie rozkładów Dopasowanie rozkładów- ogólny cel Porównanie średnich dwóch zmiennych 2 zmienne posiadają rozkład normalny -> test parametryczny (t- studenta) 2

Bardziej szczegółowo

Zadania o numerze 4 z zestawów licencjat 2014.

Zadania o numerze 4 z zestawów licencjat 2014. Zadania o numerze 4 z zestawów licencjat 2014. W nawiasie przy zadaniu jego występowanie w numerze zestawu Spis treści (Z1, Z22, Z43) Definicja granicy ciągu. Obliczyć granicę:... 3 Definicja granicy ciągu...

Bardziej szczegółowo

STATYSTYKA. Rafał Kucharski. Uniwersytet Ekonomiczny w Katowicach 2015/16 ROND, Finanse i Rachunkowość, rok 2

STATYSTYKA. Rafał Kucharski. Uniwersytet Ekonomiczny w Katowicach 2015/16 ROND, Finanse i Rachunkowość, rok 2 STATYSTYKA Rafał Kucharski Uniwersytet Ekonomiczny w Katowicach 2015/16 ROND, Finanse i Rachunkowość, rok 2 Wybrane litery alfabetu greckiego α alfa β beta Γ γ gamma δ delta ɛ, ε epsilon η eta Θ θ theta

Bardziej szczegółowo

STATYSTYKA I DOŚWIADCZALNICTWO Wykład 1 i 2

STATYSTYKA I DOŚWIADCZALNICTWO Wykład 1 i 2 STATYSTYKA I DOŚWIADCZALNICTWO Wykład 1 i 2 Dariusz Gozdowski Katedra Doświadczalnictwa i Bioinformatyki Wydział Rolnictwa i Biologii SGGW Słowo statystyka pochodzi od łacińskiego słowa status, które oznacza

Bardziej szczegółowo

Mariusz Kaszubowski Katedra Statystyki Wydział Zarządzania i Ekonomii Politechnika Gdańska. Statystyka Mariusz Kaszubowski

Mariusz Kaszubowski Katedra Statystyki Wydział Zarządzania i Ekonomii Politechnika Gdańska. Statystyka Mariusz Kaszubowski Mariusz Kaszubowski Katedra Statystyki Wydział Zarządzania i Ekonomii Politechnika Gdańska Zmienna losowa i jej rozkład Statystyka matematyczna Podstawowe pojęcia Zmienna losowa (skokowa, ciągła) Rozkład

Bardziej szczegółowo

R ozkład norm alny Bardzo często używany do modelowania symetrycznych rozkładów zmiennych losowych ciągłych

R ozkład norm alny Bardzo często używany do modelowania symetrycznych rozkładów zmiennych losowych ciągłych R ozkład norm alny Bardzo często używany do modelowania symetrycznych rozkładów zmiennych losowych ciągłych Przykłady: Błąd pomiarowy Wzrost, wydajność Temperatura ciała Zawartość różnych składników we

Bardziej szczegółowo

ĆWICZENIA nr Dane ilościowe (próba n-elementowa) 2. Parametry opisowe a) Średnia arytmetyczna : EXCEL Formuły Wstaw funkcję Statystyczne ŚREDNIA

ĆWICZENIA nr Dane ilościowe (próba n-elementowa) 2. Parametry opisowe a) Średnia arytmetyczna : EXCEL Formuły Wstaw funkcję Statystyczne ŚREDNIA ĆWICZENIA nr 3 Parametry opisowe danych ilościowych Funkcje statystyczne Gęstośd prawdopodobieostwa, dystrybuanta Prawdopodobieostwo rozkładu ciągłego Rozkłady zmiennych losowych ĆWICZENIA nr 2 1. Dane

Bardziej szczegółowo

Plan wynikowy. Klasa III Technik pojazdów samochodowych/ Technik urządzeń i systemów energetyki odnawialnej. Kształcenie ogólne w zakresie podstawowym

Plan wynikowy. Klasa III Technik pojazdów samochodowych/ Technik urządzeń i systemów energetyki odnawialnej. Kształcenie ogólne w zakresie podstawowym Oznaczenia: wymagania konieczne, P wymagania podstawowe, R wymagania rozszerzające, D wymagania dopełniające, W wymagania wykraczające. Plan wynikowy lasa III Technik pojazdów samochodowych/ Technik urządzeń

Bardziej szczegółowo

STATYSTYKA wykład 5-6

STATYSTYKA wykład 5-6 TATYTYKA wykład 5-6 Twierdzenia graniczne Rozkłady statystyk z próby Wanda Olech Twierdzenia graniczne Jeżeli rozpatrujemy ciąg zmiennych losowych {X ; X ;...; X n }, to zdarza się, że ich rozkłady przy

Bardziej szczegółowo

KURS PRAWDOPODOBIEŃSTWO

KURS PRAWDOPODOBIEŃSTWO KURS PRAWDOPODOBIEŃSTWO Lekcja 4 Prawdopodobieństwo całkowite i twierdzenie Bayesa. Drzewko stochastyczne. Schemat Bernoulliego. ZADANIE DOMOWE www.etrapez.pl Strona 1 Część 1: TEST Zaznacz poprawną odpowiedź

Bardziej szczegółowo

Zadania z Rachunku Prawdopodobieństwa I - 1. a) Jacek i Agatka stoją koło siebie; b) Jacek, Placek i Agatka stoją koło siebie.

Zadania z Rachunku Prawdopodobieństwa I - 1. a) Jacek i Agatka stoją koło siebie; b) Jacek, Placek i Agatka stoją koło siebie. Zadania z Rachunku Prawdopodobieństwa I - 1 1. Grupę n dzieci ustawiono w sposón losowy w szereg. Oblicz prawdopodobieństwo tego, że a) Jacek i Agatka stoją koło siebie; b) Jacek, Placek i Agatka stoją

Bardziej szczegółowo

Przegląd ważniejszych rozkładów

Przegląd ważniejszych rozkładów Przegląd ważniejszych rozkładów Rozkład dwupunktowy P (X = x) = { p dla x = a, 1 p dla x = b, to zmienna losowa X ma rozkład dwupunktowy z parametrem p (0 < p < 1). Rozkład ten pojawia się przy opisie

Bardziej szczegółowo

Wykład 10 (12.05.08). Testowanie hipotez w rodzinie rozkładów normalnych przypadek nieznanego odchylenia standardowego

Wykład 10 (12.05.08). Testowanie hipotez w rodzinie rozkładów normalnych przypadek nieznanego odchylenia standardowego Wykład 10 (12.05.08). Testowanie hipotez w rodzinie rozkładów normalnych przypadek nieznanego odchylenia standardowego Przykład Cena metra kwadratowego (w tys. zł) z dla 14 losowo wybranych mieszkań w

Bardziej szczegółowo

KURS PRAWDOPODOBIEŃSTWO

KURS PRAWDOPODOBIEŃSTWO KURS PRAWDOPODOBIEŃSTWO Lekcja 2 Klasyczna definicja prawdopodobieństwa ZADANIE DOMOWE www.etrapez.pl Strona 1 Część 1: TEST Zaznacz poprawną odpowiedź (tylko jedna jest prawdziwa). Pytanie 1 Według klasycznej

Bardziej szczegółowo

Statystyka matematyczna. w zastosowaniach

Statystyka matematyczna. w zastosowaniach Statystyka matematyczna w zastosowaniach Robert Pietrzykowski STATYSTYKA: nauka poświęcona metodom badania (analizowania) zjawisk masowych; polega na systematyzowaniu obserwowanych cech ilościowych i jakościowych

Bardziej szczegółowo

Definicja 7.4 (Dystrybuanta zmiennej losowej). Dystrybuantą F zmiennej losowej X nazywamy funkcję: Własności dystrybuanty zmiennej losowej:

Definicja 7.4 (Dystrybuanta zmiennej losowej). Dystrybuantą F zmiennej losowej X nazywamy funkcję: Własności dystrybuanty zmiennej losowej: Definicja 7.4 (Dystrybuanta zmiennej losowej). Dystrybuantą F zmiennej losowej X nazywamy funkcję: F (t) P (X t) < t < Własności dystrybuanty zmiennej losowej: jest niemalejąca: 0 F (t) jest prawostronnie

Bardziej szczegółowo

Aleksander Adamowski (s1869) zmienn ą losow ą T o rozkładzie wykładniczym o średniej 5 minut.

Aleksander Adamowski (s1869) zmienn ą losow ą T o rozkładzie wykładniczym o średniej 5 minut. Zadanie Statystyczna Analiza Danych - Zadania 6 Aleksander Adamowski (s869) W pewnym biurze czas losowo wybranej rozmowy telefonicznej jest zmienn ą losow ą T o rozkładzie wykładniczym o średniej 5 minut.

Bardziej szczegółowo

Statystyczna analiza danych

Statystyczna analiza danych Statystyczna analiza danych Marek Ptak 21 października 2013 Marek Ptak Statystyka 21 października 2013 1 / 70 Część I Wstęp Marek Ptak Statystyka 21 października 2013 2 / 70 LITERATURA A. Łomnicki, Wprowadzenie

Bardziej szczegółowo

Lista 1 - Prawdopodobieństwo

Lista 1 - Prawdopodobieństwo Lista 1 - Prawdopodobieństwo Zadanie 1. Niech A, B, C będą zdarzeniami. Zapisać za pomocą działań na zbiorach następujące zdarzenia: a) zachodzi dokładnie jedno ze zdarzeń A, B, C; b) zachodzą dokładnie

Bardziej szczegółowo

Rachunek Prawdopodobieństwa i Statystyka Matematyczna

Rachunek Prawdopodobieństwa i Statystyka Matematyczna Rachunek rawdopodobieństwa i Statystyka Matematyczna rowadzący: prof. dr hab. inż. Ireneusz Jóźwiak Zestaw nr. Opracowanie: Grzegorz Drzymała 4996 Grzegorz Dziemidowicz 49965 drian Gawor 49985 Zadanie..

Bardziej szczegółowo

Weryfikacja hipotez statystycznych, parametryczne testy istotności w populacji

Weryfikacja hipotez statystycznych, parametryczne testy istotności w populacji Weryfikacja hipotez statystycznych, parametryczne testy istotności w populacji Dr Joanna Banaś Zakład Badań Systemowych Instytut Sztucznej Inteligencji i Metod Matematycznych Wydział Informatyki Politechniki

Bardziej szczegółowo

Rachunek prawdopodobieństwa - Teoria - Przypomnienie.. A i B są niezależne, gdy P(A B) = P(A)P(B). P(A B i )P(B i )

Rachunek prawdopodobieństwa - Teoria - Przypomnienie.. A i B są niezależne, gdy P(A B) = P(A)P(B). P(A B i )P(B i ) Rachunek prawdopodobieństwa - Teoria - Przypomnienie Podstawy Definicja 1. Schemat klasyczny - wszystkie zdarzenia elementarne są równo prawdopodobne, licząc prawdopodobieństwo liczymy stosunek liczby

Bardziej szczegółowo

Obliczanie prawdopodobieństwa za pomocą metody drzew metoda drzew. Drzewem Reguła iloczynów. Reguła sum.

Obliczanie prawdopodobieństwa za pomocą metody drzew metoda drzew. Drzewem Reguła iloczynów. Reguła sum. Obliczanie prawdopodobieństwa za pomocą metody drzew Jeżeli doświadczenie losowe składa się z więcej niż jednego etapu, takich jak serie rzutów kostką lub monetą, zastosowanie klasycznej definicji prawdopodobieństwa

Bardziej szczegółowo

Probabilistyczne podstawy statystyki matematycznej. Dr inż. Małgorzata Michalcewicz-Kaniowska

Probabilistyczne podstawy statystyki matematycznej. Dr inż. Małgorzata Michalcewicz-Kaniowska Probabilistyczne podstawy statystyki matematycznej Dr inż. Małgorzata Michalcewicz-Kaniowska 1 Zdarzenia losowe, algebra zdarzeń Do podstawowych pojęć w rachunku prawdopodobieństwa zaliczamy: doświadczenie

Bardziej szczegółowo

Zmienna losowa (wygrana w pojedynczej grze): (1, 0.5), ( 1, 0.5)

Zmienna losowa (wygrana w pojedynczej grze): (1, 0.5), ( 1, 0.5) Przykład 0. Gra polega na jednokrotnym rzucie symetryczną monetą, przy czym wygrywamy 1 jeżeli wypadnie orzeł oraz przegrywamy 1 jeżeli wypadnie reszka. Nasz początkowy kapitał wynosi 5. Jakie jest prawdopodobieństwo,

Bardziej szczegółowo

7. Estymacja parametrów w modelu normalnym(14.04.2008) Pojęcie losowej próby prostej

7. Estymacja parametrów w modelu normalnym(14.04.2008) Pojęcie losowej próby prostej 7. Estymacja parametrów w modelu normalnym(14.04.2008) Pojęcie losowej próby prostej Definicja 1 n-elementowa losowa próba prosta nazywamy ciag n niezależnych zmiennych losowych o jednakowych rozkładach

Bardziej szczegółowo

Metoda Monte Carlo i jej zastosowania

Metoda Monte Carlo i jej zastosowania i jej zastosowania Tomasz Mostowski Zajęcia 31.03.2008 Plan 1 PWL 2 3 Plan PWL 1 PWL 2 3 Przypomnienie PWL Istnieje wiele wariantów praw wielkich liczb. Wspólna ich cecha jest asymptotyczne zachowanie

Bardziej szczegółowo

MATeMAtyka 3. Propozycja przedmiotowego systemu oceniania wraz z określeniem wymagań edukacyjnych. Zakres podstawowy i rozszerzony

MATeMAtyka 3. Propozycja przedmiotowego systemu oceniania wraz z określeniem wymagań edukacyjnych. Zakres podstawowy i rozszerzony Agnieszka Kamińska, Dorota Ponczek MATeMAtyka 3 Propozycja przedmiotowego systemu oceniania wraz z określeniem wymagań edukacyjnych Zakres podstawowy i rozszerzony Wyróżnione zostały następujące wymagania

Bardziej szczegółowo

Środowisko R wprowadzenie c.d. Wykład R2; 21.05.07 Struktury danych w R c.d.

Środowisko R wprowadzenie c.d. Wykład R2; 21.05.07 Struktury danych w R c.d. Środowisko R wprowadzenie c.d. Wykład R2; 21.05.07 Struktury danych w R c.d. Oprócz zmiennych i wektorów strukturami danych w R są: macierze; ramki (ang. data frames); listy; klasy S3 1 Macierze Macierze

Bardziej szczegółowo

Wykład 7: Warunkowa wartość oczekiwana. Rozkłady warunkowe.

Wykład 7: Warunkowa wartość oczekiwana. Rozkłady warunkowe. Rachunek prawdopodobieństwa MAP3040 WPPT FT, rok akad. 2010/11, sem. zimowy Wykładowca: dr hab. Agnieszka Jurlewicz Wykład 7: Warunkowa wartość oczekiwana. Rozkłady warunkowe. Warunkowa wartość oczekiwana.

Bardziej szczegółowo

STATYSTYKA Statistics. Inżynieria Środowiska. II stopień ogólnoakademicki

STATYSTYKA Statistics. Inżynieria Środowiska. II stopień ogólnoakademicki Załącznik nr 7 do Zarządzenia Rektora nr../12 z dnia.... 2012r. KARTA MODUŁU / KARTA PRZEDMIOTU Kod modułu Nazwa modułu Nazwa modułu w języku angielskim Obowiązuje od roku akademickiego 2012/13 STATYSTYKA

Bardziej szczegółowo

Rozkłady dwóch zmiennych losowych

Rozkłady dwóch zmiennych losowych Rozkłady dwóch zmiennych losowych Uogólnienie pojęć na rozkład dwóch zmiennych Dystrybuanta i gęstość prawdopodobieństwa Rozkład brzegowy Prawdopodobieństwo warunkowe Wartości średnie i odchylenia standardowe

Bardziej szczegółowo

Lean Six Sigma Black Belt

Lean Six Sigma Black Belt 14.X.2011 Porządek wykładu Grupowanie i prezentacja danych Analiza struktury Analiza współzależności Rozkłady prawdopodobieństwa Literatura - Kot, S. (2007), Statystyka podręcznik dla studiów ekonomicznych,

Bardziej szczegółowo

Wykład 2. Wpływ stałej (odejmujemy 20) Liniowa transformacja zmiennych, cd. Liniowa transformacja zmiennych, cd. Liniowa transformacja zmiennych, cd.

Wykład 2. Wpływ stałej (odejmujemy 20) Liniowa transformacja zmiennych, cd. Liniowa transformacja zmiennych, cd. Liniowa transformacja zmiennych, cd. Wykład 2 Wpływ przekształceń Co się stanie ze średnią i odchyleniem standardowym gdy zmienimy jednostki? stopnie Celsiusza stopnie Fahrenheita dolary 1,000 dolarów wartość faktyczna odległość od minimum

Bardziej szczegółowo

Rozkład łatwości zadań

Rozkład łatwości zadań Klasa 3a średnia klasy: 22.52 pkt średnia szkoły: 21.93 pkt średnia ogólnopolska: 14.11 pkt Rozkład łatwości zadań 1 0.9 0.8 0.7 0.6 łatwość 0.5 0.4 0.3 0.2 0.1 0 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16

Bardziej szczegółowo

Komputerowa Analiza Danych Doświadczalnych

Komputerowa Analiza Danych Doświadczalnych Komputerowa Analiza Danych Doświadczalnych dr inż. Adam Kisiel kisiel@if.pw.edu.pl pokój 117b (12b) 1 Materiały do wykładu Transparencje do wykładów: http://www.if.pw.edu.pl/~kisiel/kadd/kadd.html Literatura

Bardziej szczegółowo

LEKCJA 1 nauka rysowania :)

LEKCJA 1 nauka rysowania :) LEKCJA 1 nauka rysowania :) Poniżej znajdują się wykresy, które wypadałoby umieć narysować, jeśli zostaniecie o to poproszeni :). Celowo nie ma tutaj za dużo teorii teorię rozwiniemy później. Na razie

Bardziej szczegółowo

EGZAMIN GIMNAZJALNY W ROKU SZKOLNYM 2011/2012. CZĘŚĆ MATEMATYCZNO-PRZYRODNICZA Matematyka WOJEWÓDZTWO KUJAWSKO-POMORSKIE

EGZAMIN GIMNAZJALNY W ROKU SZKOLNYM 2011/2012. CZĘŚĆ MATEMATYCZNO-PRZYRODNICZA Matematyka WOJEWÓDZTWO KUJAWSKO-POMORSKIE Okręgowa Komisja Egzaminacyjna w Gdańsku EGZAMIN GIMNAZJALNY W ROKU SZKOLNYM 2011/2012 CZĘŚĆ MATEMATYCZNO-PRZYRODNICZA Matematyka WOJEWÓDZTWO KUJAWSKO-POMORSKIE Osiągnięcia gimnazjalistów z zakresu matematyki

Bardziej szczegółowo

Bardzo często podejmujemy decyzję, nie wiedząc, co się stanie w przyszłości:

Bardzo często podejmujemy decyzję, nie wiedząc, co się stanie w przyszłości: 1 Prawdopodobieństwo Bardzo często podejmujemy decyzję, nie wiedząc, co się stanie w przyszłości: 1. Czy zainwestować pieniądze na giełdzie? 2. Czy ubezpieczyć laptop przed uszkodzeniami mechanicznymi?

Bardziej szczegółowo

Oszacowanie i rozkład t

Oszacowanie i rozkład t Oszacowanie i rozkład t Marcin Zajenkowski Marcin Zajenkowski () Oszacowanie i rozkład t 1 / 31 Oszacowanie 1 Na podstawie danych z próby szacuje się wiele wartości w populacji, np.: jakie jest poparcie

Bardziej szczegółowo

Planimetria 1 12 godz.

Planimetria 1 12 godz. Planimetria 1 1 godz. Funkcje trygonometryczne kąta ostrego 1 definicje funkcji trygonometrycznych kąta ostrego wartości funkcji trygonometrycznych kątów 30º, 45º, 60º Trygonometria zastosowania Rozwiązywanie

Bardziej szczegółowo

SCENARIUSZ LEKCJI MATEMATYKI, FIZYKI LUB BIOLOGII Z WYKORZYSTANIEM FILMU ROZKŁAD NORMALNY.

SCENARIUSZ LEKCJI MATEMATYKI, FIZYKI LUB BIOLOGII Z WYKORZYSTANIEM FILMU ROZKŁAD NORMALNY. SCENARIUSZ LEKCJI MATEMATYKI, FIZYKI LUB BIOLOGII Z WYKORZYSTANIEM FILMU ROZKŁAD NORMALNY. SPIS TREŚCI: I. Wprowadzenie. II. Części lekcji. 1. Część wstępna. 2. Część realizacji. 3. Część podsumowująca.

Bardziej szczegółowo

Matematyk Ci powie, co łączy Eugeniusza Oniegina i gry hazardowe

Matematyk Ci powie, co łączy Eugeniusza Oniegina i gry hazardowe Matematyk Ci powie, co łączy Eugeniusza Oniegina i gry hazardowe Empik każdego inspiruje inaczej Aleksander Puszkin (1799 1837) Andrey (Andrei) Andreyevich Markov (1856 1922) Wśród 20 tysięcy początkowych

Bardziej szczegółowo

Rozkład materiału nauczania

Rozkład materiału nauczania Dział/l.p. Ilość godz. Typ szkoły: TECHNIKUM Zawód: TECHNIK USŁUG FRYZJERSKICH Rok szkolny 2015/2016 Przedmiot: MATEMATYKA Klasa: III 2 godz/tyg 30 = 60 godzin Rozkład materiału nauczania Temat I. LOGARYTMY

Bardziej szczegółowo

MATEMATYKA - CYKL 5 GODZINNY. DATA : 8 czerwca 2009

MATEMATYKA - CYKL 5 GODZINNY. DATA : 8 czerwca 2009 MATURA EUROPEJSKA 2009 MATEMATYKA - CYKL 5 GODZINNY DATA : 8 czerwca 2009 CZAS TRWANIA EGZAMINU: 4 godziny (240 minut) DOZWOLONE POMOCE : Europejski zestaw wzorów Kalkulator (bez grafiki, bez możliwości

Bardziej szczegółowo

Spis treści. Przedmowa... XI. Rozdział 1. Pomiar: jednostki miar... 1. Rozdział 2. Pomiar: liczby i obliczenia liczbowe... 16

Spis treści. Przedmowa... XI. Rozdział 1. Pomiar: jednostki miar... 1. Rozdział 2. Pomiar: liczby i obliczenia liczbowe... 16 Spis treści Przedmowa.......................... XI Rozdział 1. Pomiar: jednostki miar................. 1 1.1. Wielkości fizyczne i pozafizyczne.................. 1 1.2. Spójne układy miar. Układ SI i jego

Bardziej szczegółowo

Narzędzia statystyczne i ekonometryczne. Wykład 1. dr Paweł Baranowski

Narzędzia statystyczne i ekonometryczne. Wykład 1. dr Paweł Baranowski Narzędzia statystyczne i ekonometryczne Wykład 1 dr Paweł Baranowski Informacje organizacyjne Wydział Ek-Soc, pok. B-109 pawel@baranowski.edu.pl Strona: baranowski.edu.pl (w tym materiały) Konsultacje:

Bardziej szczegółowo

ARKUSZ ĆWICZENIOWY Z MATEMATYKI MARZEC 2012 POZIOM PODSTAWOWY. Czas pracy: 170 minut. Liczba punktów do uzyskania: 50

ARKUSZ ĆWICZENIOWY Z MATEMATYKI MARZEC 2012 POZIOM PODSTAWOWY. Czas pracy: 170 minut. Liczba punktów do uzyskania: 50 Centralna Komisja Egzaminacyjna ARKUSZ ĆWICZENIOWY Z MATEMATYKI MARZEC 01 POZIOM PODSTAWOWY 1. Sprawdź, czy arkusz ćwiczeniowy zawiera strony (zadania 1 ).. Rozwiązania zadań i odpowiedzi wpisuj w miejscu

Bardziej szczegółowo

Metody numeryczne. Wykład nr 12. Dr Piotr Fronczak

Metody numeryczne. Wykład nr 12. Dr Piotr Fronczak Metody numeryczne Wykład nr 1 Dr Piotr Fronczak Generowanie liczb losowych Metody Monte Carlo są oparte na probabilistyce działają dzięki generowaniu liczb losowych. W komputerach te liczby generowane

Bardziej szczegółowo

POLITECHNIKA WARSZAWSKA

POLITECHNIKA WARSZAWSKA POLITECHNIKA WARSZAWSKA WYDZIAŁ BUDOWNICTWA, MECHANIKI I PETROCHEMII INSTYTUT INŻYNIERII MECHANICZNEJ STATYSTYCZNA KONTROLA PROCESU (SPC) Ocena i weryfikacja statystyczna założeń przyjętych przy sporządzaniu

Bardziej szczegółowo

ZAGADNIENIA NA EGZAMIN POPRAWKOWY Z MATEMATYKI W KLASIE III TECHNIKUM.

ZAGADNIENIA NA EGZAMIN POPRAWKOWY Z MATEMATYKI W KLASIE III TECHNIKUM. ZAGADNIENIA NA EGZAMIN POPRAWKOWY Z MATEMATYKI W KLASIE III TECHNIKUM. I. Trygonometria. 1. Definicje funkcji trygonometrycznych kąta ostrego w trójkącie prostokątnym. 2. Rozwiązywanie trójkątów prostokątnych

Bardziej szczegółowo

Lista 1. Procesy o przyrostach niezależnych.

Lista 1. Procesy o przyrostach niezależnych. Lista. Procesy o przyrostach niezależnych.. Niech N t bedzie procesem Poissona o intensywnoci λ = 2. Obliczyć a) P (N 2 < 3, b) P (N =, N 3 = 6), c) P (N 2 = N 5 = 2), d) P (N =, N 2 = 3, N 4 < 5), e)

Bardziej szczegółowo

Wykład 12: Warunkowa wartość oczekiwana. Rozkłady warunkowe. Mieszanina rozkładów.

Wykład 12: Warunkowa wartość oczekiwana. Rozkłady warunkowe. Mieszanina rozkładów. Rachunek prawdopodobieństwa MAP1181 Wydział PPT, MS, rok akad. 213/14, sem. zimowy Wykładowca: dr hab. Agnieszka Jurlewicz Wykład 12: Warunkowa wartość oczekiwana. Rozkłady warunkowe. Mieszanina rozkładów.

Bardziej szczegółowo

Metody Probabilistyczne zestaw do ćwiczeń Katarzyna Lubnauer

Metody Probabilistyczne zestaw do ćwiczeń Katarzyna Lubnauer Metody Probabilistyczne zestaw do ćwiczeń Katarzyna Lubnauer Model klasyczny prawdopodobieństwa.losowo ustawiam w szeregu klocki z literami MMAAATTYKE. Opisać przestrzeń zdarzeń elementarnych i obliczyć

Bardziej szczegółowo

Podstawy statystyki dla psychologów. Podręcznik akademicki. Wydanie drugie poprawione. Wiesław Szymczak

Podstawy statystyki dla psychologów. Podręcznik akademicki. Wydanie drugie poprawione. Wiesław Szymczak Podstawy statystyki dla psychologów. Podręcznik akademicki. Wydanie drugie poprawione. Wiesław Szymczak Autor prezentuje spójny obraz najczęściej stosowanych metod statystycznych, dodatkowo omawiając takie

Bardziej szczegółowo

Państwowa Wyższa Szkoła Zawodowa w Nowym Sączu. Karta przedmiotu. obowiązuje studentów rozpoczynających studia w roku akademickim 2011/2012

Państwowa Wyższa Szkoła Zawodowa w Nowym Sączu. Karta przedmiotu. obowiązuje studentów rozpoczynających studia w roku akademickim 2011/2012 Państwowa Wyższa Szkoła Zawodowa w Nowym Sączu Karta Instytut Pedagogiczny obowiązuje studentów rozpoczynających studia w roku akademickim 011/01 Kierunek studiów: Matematyka Profil: Ogólnoakademicki Forma

Bardziej szczegółowo

Rozkład materiału z matematyki dla II klasy technikum zakres podstawowy I wariant (38 tyg. 2 godz. = 76 godz.)

Rozkład materiału z matematyki dla II klasy technikum zakres podstawowy I wariant (38 tyg. 2 godz. = 76 godz.) Rozkład materiału z matematyki dla II klasy technikum zakres podstawowy I wariant (38 tyg. godz. = 76 godz.) I. Funkcja i jej własności.4godz. II. Przekształcenia wykresów funkcji...9 godz. III. Funkcja

Bardziej szczegółowo

Statystyka w pracy badawczej nauczyciela Wykład 4: Analiza współzależności. dr inż. Walery Susłow walery.suslow@ie.tu.koszalin.pl

Statystyka w pracy badawczej nauczyciela Wykład 4: Analiza współzależności. dr inż. Walery Susłow walery.suslow@ie.tu.koszalin.pl Statystyka w pracy badawczej nauczyciela Wykład 4: Analiza współzależności dr inż. Walery Susłow walery.suslow@ie.tu.koszalin.pl Statystyczna teoria korelacji i regresji (1) Jest to dział statystyki zajmujący

Bardziej szczegółowo

METROLOGIA. Dr inż. Eligiusz PAWŁOWSKI Politechnika Lubelska Wydział Elektrotechniki i Informatyki

METROLOGIA. Dr inż. Eligiusz PAWŁOWSKI Politechnika Lubelska Wydział Elektrotechniki i Informatyki METROLOGIA Dr inż. Eligiusz PAWŁOWSKI Politechnika Lubelska Wydział Elektrotechniki i Informatyki Prezentacja do wykładu dla EINS Zjazd 3, wykład nr 5, 6 Prawo autorskie Niniejsze materiały podlegają ochronie

Bardziej szczegółowo

Liczby rzeczywiste, wyrażenia algebraiczne, równania i nierówności, statystyka, prawdopodobieństwo.

Liczby rzeczywiste, wyrażenia algebraiczne, równania i nierówności, statystyka, prawdopodobieństwo. Liczby rzeczywiste, wyrażenia algebraiczne, równania i nierówności, statystyka, prawdopodobieństwo. Zagadnienia szczegółowe: obliczanie wartości wyrażeń arytmetycznych; działania na pierwiastkach i potęgach;

Bardziej szczegółowo

ZAGADNIENIA NA EGZAMIN POPRAWKOWY Z MATEMATYKI W KLASIE III TECHNIKUM.

ZAGADNIENIA NA EGZAMIN POPRAWKOWY Z MATEMATYKI W KLASIE III TECHNIKUM. ZAGADNIENIA NA EGZAMIN POPRAWKOWY Z MATEMATYKI W KLASIE III TECHNIKUM. I Geometria analityczna 1. Równanie prostej w postaci ogólnej i kierunkowej powtórzenie 2. Wzajemne położenie dwóch prostych powtórzenie

Bardziej szczegółowo

Plik pobrany ze strony www.zadania.pl

Plik pobrany ze strony www.zadania.pl Plik pobrany ze strony www.zadania.pl Wpisuje zdający przed rozpoczęciem pracy PESEL ZDAJĄCEGO Miejsce na nalepkę z kodem szkoły PRÓBNY EGZAMIN MATURALNY Z MATEMATYKI Instrukcja dla zdającego Arkusz I

Bardziej szczegółowo

Weryfikacja hipotez. Etap I. Formułowanie hipotezy zerowej H 0 oraz związanej z nią hipotezy alternatywnej H 1.

Weryfikacja hipotez. Etap I. Formułowanie hipotezy zerowej H 0 oraz związanej z nią hipotezy alternatywnej H 1. Weryfikacja hipotez Każde badanie naukowe rozpoczyna się od sformułowania problemu badawczego oraz najbardziej prawdopodobnego (na gruncie wiedzy badającego) ogólnego rozwiązania, czyli hipotezy badawczej.

Bardziej szczegółowo

WYKRESY FUNKCJI LINIOWEJ

WYKRESY FUNKCJI LINIOWEJ GIMNAZJUM NR 2 W KAMIENNEJ GÓRZE WYKRESY FUNKCJI LINIOWEJ Oprcowała Wiesława Kurnyta Kamienna Góra, 2006 Oto wypisy z Podstawy programowej o nauczaniu matematyki w gimnazjum Cele edukacyjne 1. E Przyswajanie

Bardziej szczegółowo

Matematyka zajęcia fakultatywne (Wyspa inżynierów) Dodatkowe w ramach projektu UE

Matematyka zajęcia fakultatywne (Wyspa inżynierów) Dodatkowe w ramach projektu UE PROGRAM ZAJĘĆ FAKULTATYWNYCH Z MATEMATYKI DLA STUDENTÓW I ROKU SYLABUS Nazwa uczelni: Wyższa Szkoła Przedsiębiorczości i Administracji w Lublinie ul. Bursaki 12, 20-150 Lublin Kierunek Rok studiów Informatyka

Bardziej szczegółowo

Metoda największej wiarygodności

Metoda największej wiarygodności Metoda największej wiarygodności Próbki w obecności tła Funkcja wiarygodności Iloraz wiarygodności Pomiary o różnej dokładności Obciążenie Informacja z próby i nierówność informacyjna Wariancja minimalna

Bardziej szczegółowo

a 1 = 1.5 dm a 2 = 2.1 dm a 3 = 3.3 dm a 4 = 4.5 dm

a 1 = 1.5 dm a 2 = 2.1 dm a 3 = 3.3 dm a 4 = 4.5 dm Zadanie 1. Zbudować szereg rozdzielczy dla danych: 2.0 2.3 2.7 2.8 2.7 2.7 2.6 2.6 2.5 2.6 2.7 2.8 2.8 2.7 2.7 2.6 2.6 2.6 2.6 2.6 2.6 2.7 2.6 2.5 2.4 2.4 2.3 przyjmując b = 0.19 oraz początek 1.98 wyznaczyć

Bardziej szczegółowo

Podstawa programowa przedmiotu MATEMATYKA. III etap edukacyjny (klasy I - III gimnazjum)

Podstawa programowa przedmiotu MATEMATYKA. III etap edukacyjny (klasy I - III gimnazjum) Podstawa programowa przedmiotu MATEMATYKA III etap edukacyjny (klasy I - III gimnazjum) Cele kształcenia wymagania ogólne: I. Wykorzystanie i tworzenie informacji. Uczeń interpretuje i tworzy teksty o

Bardziej szczegółowo

Statystyka matematyczna

Statystyka matematyczna Statystyka matematyczna dla kierunku Zarządzanie na studiach drugiego stopnia Wojciech Kordecki Wyższa Szkoła Handlowa we Wrocławiu Wrocław 2012 Materiał wyłącznie do użytku edukacyjnego. Reprodukcja do

Bardziej szczegółowo

Pytanie: Kiedy do testowania hipotezy stosujemy rozkład normalny?

Pytanie: Kiedy do testowania hipotezy stosujemy rozkład normalny? Pytanie: Kiedy do testowania hipotezy stosujemy rozkład normalny? Gdy: badana cecha jest mierzalna (tzn. posiada rozkład ciągły); badana cecha posiada rozkład normalny; dysponujemy pojedynczym wynikiem;

Bardziej szczegółowo

Rachunek prawdopodobieństwa dla informatyków

Rachunek prawdopodobieństwa dla informatyków Rachunek prawdopodobieństwa dla informatyków Adam Roman Instytut Informatyki UJ Wykład 1 rys historyczny zdarzenia i ich prawdopodobieństwa aksjomaty i reguły prawdopodobieństwa prawdopodobieństwo warunkowe

Bardziej szczegółowo

Testy nieparametryczne

Testy nieparametryczne Testy nieparametryczne Testy nieparametryczne możemy stosować, gdy nie są spełnione założenia wymagane dla testów parametrycznych. Stosujemy je również, gdy dane można uporządkować według określonych kryteriów

Bardziej szczegółowo

Analiza wariancji. dr Janusz Górczyński

Analiza wariancji. dr Janusz Górczyński Analiza wariancji dr Janusz Górczyński Wprowadzenie Powiedzmy, że badamy pewną populację π, w której cecha Y ma rozkład N o średniej m i odchyleniu standardowym σ. Powiedzmy dalej, że istnieje pewien czynnik

Bardziej szczegółowo

Rachunek całkowy funkcji wielu zmiennych

Rachunek całkowy funkcji wielu zmiennych Rachunek całkowy funkcji wielu zmiennych Całki potrójne wykład z MATEMATYKI Budownictwo studia niestacjonarne sem. II, rok ak. 2008/2009 Katedra Matematyki Wydział Informatyki olitechnika Białostocka 1

Bardziej szczegółowo

2008-03-18 wolne wolne 2008-03-25 wolne wolne

2008-03-18 wolne wolne 2008-03-25 wolne wolne PLAN SPOTKAŃ ĆWICZEŃ: Data Grupa 2a Grupa 4a Grupa 2b Grupa 4b 2008-02-19 Zajęcia 1 Zajęcia 1 2008-02-26 Zajęcia 1 Zajęcia 1 2008-03-04 Zajęcia 2 Zajęcia 2 2008-03-11 Zajęcia 2 Zajęcia 2 2008-03-18 wolne

Bardziej szczegółowo

ALGORYTMICZNA I STATYSTYCZNA ANALIZA DANYCH

ALGORYTMICZNA I STATYSTYCZNA ANALIZA DANYCH 1 ALGORYTMICZNA I STATYSTYCZNA ANALIZA DANYCH WFAiS UJ, Informatyka Stosowana II stopień studiów 2 Wnioskowanie statystyczne dla zmiennych numerycznych Porównywanie dwóch średnich Boot-strapping Analiza

Bardziej szczegółowo

ODRZUCANIE WYNIKÓW POJEDYNCZYCH POMIARÓW

ODRZUCANIE WYNIKÓW POJEDYNCZYCH POMIARÓW ODRZUCANIE WYNIKÓW OJEDYNCZYCH OMIARÓW W praktyce pomiarowej zdarzają się sytuacje gdy jeden z pomiarów odstaje od pozostałych. Jeżeli wykorzystamy fakt, że wyniki pomiarów są zmienną losową opisywaną

Bardziej szczegółowo

dr Jarosław Kotowicz 24 lutego 2003 roku 1 c Copyright J.Kotowicz

dr Jarosław Kotowicz 24 lutego 2003 roku 1 c Copyright J.Kotowicz Szkice do wykładu z Rachunku prawdopodobieństwa 1 II rok matematyki finansowej III roku matematyki ogólnej III roku matematyki z metodami informatycznymi dr Jarosław Kotowicz 24 lutego 2003 roku 1 c Copyright

Bardziej szczegółowo

STATYSTYKA I DOŚWIADCZALNICTWO. Wykład 2

STATYSTYKA I DOŚWIADCZALNICTWO. Wykład 2 STATYSTYKA I DOŚWIADCZALNICTWO Wykład Parametry przedziałowe rozkładów ciągłych określane na podstawie próby (przedziały ufności) Przedział ufności dla średniej s X t( α;n 1),X + t( α;n 1) n s n t (α;

Bardziej szczegółowo

FUNKCJA LINIOWA, OKRĘGI

FUNKCJA LINIOWA, OKRĘGI FUNKCJA LINIOWA, OKRĘGI. Napisz równanie prostej przechodzącej przez początek układu i prostopadłej do prostej 3x-y+=0.. Oblicz pole trójkąta ograniczonego osiami układy i prostą x+y-6=0. 3. Odcinek o

Bardziej szczegółowo

Generatory takie mają niestety okres, po którym sekwencja liczb powtarza się.

Generatory takie mają niestety okres, po którym sekwencja liczb powtarza się. 1 Wstęp Będziemyrozważaćgeneratorytypux n+1 =f(x n,x n 1,...,x n k )(modm). Zakładamy,żeargumentamifunkcjifsąliczbycałkowitezezbioru0,1,...,M 1. Dla ustalenia uwagi mogą to być generatory liniowe typu:

Bardziej szczegółowo

Analiza wyników egzaminu gimnazjalnego 2013 r. Test matematyczno-przyrodniczy (matematyka) Test GM-M1-132

Analiza wyników egzaminu gimnazjalnego 2013 r. Test matematyczno-przyrodniczy (matematyka) Test GM-M1-132 Analiza wyników egzaminu gimnazjalnego 2013 r. Test matematyczno-przyrodniczy (matematyka) Test GM-M1-132 Zestaw zadań z zakresu matematyki posłużył w dniu 24 kwietnia 2013 roku do sprawdzenia u uczniów

Bardziej szczegółowo

Proces Poissona. Proces {N(t), t 0} nazywamy procesem zliczającym jeśli N(t) oznacza całkowitą liczbę badanych zdarzeń zaobserwowanych do chwili t.

Proces Poissona. Proces {N(t), t 0} nazywamy procesem zliczającym jeśli N(t) oznacza całkowitą liczbę badanych zdarzeń zaobserwowanych do chwili t. Procesy stochastyczne WYKŁAD 5 Proces Poissona. Proces {N(t), t } nazywamy procesem zliczającym jeśli N(t) oznacza całkowitą liczbę badanych zdarzeń zaobserwowanych do chwili t. Proces zliczający musi

Bardziej szczegółowo

MATEMATYKA CYKL 3 GODZINNY

MATEMATYKA CYKL 3 GODZINNY MATURA EUROPEJSKA 010 MATEMATYKA CYKL 3 GODZINNY DATA 4 czerwca 010 CZAS TRWANIA EGZAMINU : 3 godziny (180 minut) DOZWOLONE POMOCE Europejski zestaw wzorów Kalkulator (bez grafiki, bez programowania) UWAGI:

Bardziej szczegółowo

Rachunek prawdopodobieństwa i statystyka matematyczna. Leszek Adamczyk Wykłady dla kierunku Fizyka Medyczna w semestrze letnim 2014/2015

Rachunek prawdopodobieństwa i statystyka matematyczna. Leszek Adamczyk Wykłady dla kierunku Fizyka Medyczna w semestrze letnim 2014/2015 Rachunek prawdopodobieństwa i statystyka matematyczna Leszek Adamczyk Wykłady dla kierunku Fizyka Medyczna w semestrze letnim 2014/2015 1 1 Wstęp Rachunek prawdopodobieństwa i statystyka to: działy matematyki

Bardziej szczegółowo

Ćw,1. Wypisz wszystkie k-wyrazowe wariacje bez powtórzeń zbioru A = {1, 2,3 }, gdy: a) k = l, b) k = 2, c) k = 3. Wariacje 1 z 6

Ćw,1. Wypisz wszystkie k-wyrazowe wariacje bez powtórzeń zbioru A = {1, 2,3 }, gdy: a) k = l, b) k = 2, c) k = 3. Wariacje 1 z 6 Wariacje bez powtórzeń Jeśli w doświadczeniu losowym ze zbioru n-elementowego wybieramy k elementów w ten sposób, że: wybrane elementy nie mogą się powtarzać kolejność wybranych elementów jest istotna

Bardziej szczegółowo

ROZKŁAD MATERIAŁU DO 1 KLASY LICEUM (ZAKRES PODSTAWOWY) A WYMAGANIA PODSTAWY PROGRAMOWEJ.

ROZKŁAD MATERIAŁU DO 1 KLASY LICEUM (ZAKRES PODSTAWOWY) A WYMAGANIA PODSTAWY PROGRAMOWEJ. ROZKŁAD MATERIAŁU DO 1 KLASY LICEUM (ZAKRES PODSTAWOWY) A WYMAGANIA PODSTAWY PROGRAMOWEJ. TEMAT Równania i nierówności (30h) LICZBA GODZIN LEKCYJNYCH Liczby wymierne 3 Liczby niewymierne 1 Zapisywanie

Bardziej szczegółowo

Zastosowanie Excela w matematyce

Zastosowanie Excela w matematyce Zastosowanie Excela w matematyce Komputer w dzisiejszych czasach zajmuje bardzo znamienne miejsce. Trudno sobie wyobrazić jakąkolwiek firmę czy instytucję działającą bez tego urządzenia. W szkołach pierwsze

Bardziej szczegółowo