Wykład 3 Generatory liczb losowych o dowolnych rozkładach.. Metoda odwracania Niech X oznacza zmienna losowa o dystrybuancie F. Oznaczmy F (t) = inf (x : t F (x)). Uwaga Zauważmy, że t [0, ] : F ( F (t) ) = t. Mamy następujace proste Twierdzenie Twierdzenie 2 Niech F będzie dystrybuanta pewnego rozkładu prawdopodobieństwa. Je sli U U (0, ), to zmienna losowa ma rozkład o dystrybuancie F. X = F (U) = inf (x : U F (x)) Dowód. Rozważmy zdarzenie {U F (t)}. Zatem t {x : U F (x)} czyli t inf {x : U F (x)} = X zatem {U F (t)} {X t}. Weźmy teraz pod uwagę zdarzenie{x t}. Dla ω {X t} mamy X (ω) t czyli F (X (ω)) F (t). Ale F (inf {x : U (ω) F (t)}) = U (ω). Czyli {X t} {U F (t)}. Przykład:. Rozkład wykładniczy, F (x) = exp ( λx) : x 0 2. Rozkład arcusinus: F (x) = 2 arcsin(x) 2 ( + π ) dla x < 3. Rozkład Weibula: F (x) = exp ( λx α ) : x 0, λ, α 0 4. Rozkład Pareto F (x) = ( b x) α : x b, a, b > 0. 5. Rozkład dyskretny o nośniku {0,,...} z p k = P (X = k) można generować np. generujac ciag zmiennych U i U (0, ) i kładac X n = min Np. dla rozkładu Bin (n, p) wyliczamy p k = k i=0 ( n i) p i ( p) n i, k = 0,..., n i mamy generator: Generuj liczbę u z rozkładu U (0, ), połóż X := 0 While u > p X do X = X + Return X Podobnie dla rozkładu Poissona P oiss (λ). Generację można uprościć zauważajac, że U U gdy U U (0, ). { k : U n k i=0 p k }.
2
.2 Metoda eliminacji Najpierw następujaca definicja Definicja 3 Mówimy, że punkt losowy X R d ma rozkład równomierny na zbiorze mierzalnym D R d, je sli dla dowolnego zbioru mierzalnego C D mamy równo sć P (X C) = l d(c) l d (D), gdzie l d oznacza d wymiarowa miarę Lebesgue a. Metodę eliminacji opiera się na następujacych 2 twierdzeniach. Twierdzenie 4 Przypu sćmy, że X, X 2... jest ciagiem i.i.d. o warto sciach z R d. Niech A R d będzie takim mierzalnym podzbiorem, że P (X A) > 0. Niech τ = min {k : X k A} i Y = X τ. Wówczas dla dowolnego mierzalnego B R d mamy P (Y B) = p P (X A B), gdzie p = P (X A). W szczególno sci gdy X, X 2... rozkład równomierny na D A, Y ma rozkład równomierny na A. Dowód. Dla dowolnego zbioru mierzalnego mamy: P (Y B) = = P ( X / A,..., X i / A, X i A B ) i= ( p) i P (X i A B) = p P (X A B). i= Gdy X ma rozkład jednostajny na D to mamy P (Y B) = p P (X A B) = l d (A B) l d (D) l d (D) l d (A) = l d (A B). l d (A) Twierdzenie 5 Niech X będzie d wymiarowym wektorem losowym o gęsto sci f (x) a U niech będzie niezależna od X zmienna losowa o rozkładzie U (0, ). Wówczas { zmienna losowa (X,cU f (X)) ma rozkład jednostajny na zbiorze A = (x, y) : x R d, 0 y cf (x) } dla każdego c > 0. Na odwrót, je sli zmienna losowa (X, Y ) R d+ ma rozkład jednostajny na zbiorze A, to wektor X ma gęsto sć f (x), x R d. Dowód. Najpierw udowodnimy pierwsze stwierdzenie. Weźmy B A. Niech B x = {u : (x,u) B}. Na podstawie tw. Tonelliego mamy: P ((X,cUf (X) B)) = B x cf (x) duf (x) dx = dudx. c B 3
Zauważmy jednak, że ze względu na to, ze f jest gęstościa dxdu = c. To A kończy dowód części pierwszej. Dla drugiej części mamy oznaczajac B = {(x, y) : x B,0 y cf (x)} P (X B) = P ((X, Y ) B ) cf(x) dudx B 0 = cf(x) dudx R = d 0 B f (x) dx. Algorytm metody eliminacji oparty na tych twierdzeniach jest następujacy. Przez f oznaczmy gęstość z której chcemy symulować. Przypuśćmy, ze znaleźliśmy inna gęstość g taka, że. jest z niej łatwo symulować ciagi i.i.d. 2. można znaleźć stał a c taka, że f (x) sup c. () x g(x) Algorytm eliminacji polega na Repeat Generuj obserwację X zgodnie z rozkładem g i obserwację U z rozkładu jednostajnego U (0, ), T < cg(x) f(x) Until T U Return X Sa 3 rzeczy które trzeba znać aby stosować ten algorytm: (i) gęstość g spełniajac a nierówność (), (ii) prosty sposób na generację z tej gęstości, (iii) znajomość stałej c. Często (i) i (iii) można znaleźć po prostu analizujac postać analityczna gęstość f. Zwykle g winna mieć grubsze ogony i ostrzejsze czubki w nieskończoności. Dominujace krzywe cg(x) musza być dobierane starannie, nie tylko ze względu na łatwość generacji z gęstości g ale także ze względu na łatwość obliczania f(x) g(x). Niech N będzie ilościa par (X,U) wygenerowanych zanim algorytm stanie tzn. zostanie wygenerowana obserwacja z gęstości f. Mamy: P (N = i) = ( p) i p; P (N i) = ( p) i dla i, gdzie p = P (f (X) Ug (X)) = P A więc E (N) = p = c; var (N) = p p 2 = c 2 c. ( ) U f(x) cg(x) g (x) dx = c f (x) dx = c. Jednym słowem E (N) jest odwrotnościa prawdopodobieństwa zaakceptowania X, czyli c winno być jak najmniejsze. 4
Przykład 6 Rozkład normalny N (0, ): Za g (x) we zmy gęsto sć rozkłady Laplace a. Mamy exp ( x 2 /2 ) 2 max x 2π exp ( x) 2 = max = x π exp ( (x ) 2 /2 + /2 2e π =. 35 5. ) 5