Ćwiczenie 12/13. Komputerowy hologram Fouriera. Wprowadzenie teoretyczne

Podobne dokumenty
Ćwiczenie 11. Wprowadzenie teoretyczne

Ćwiczenie 3. Wybrane techniki holografii. Hologram podstawy teoretyczne

Laboratorium Informatyki Optycznej ĆWICZENIE 2. Koherentne korelatory optyczne i hologram Fouriera

Laboratorium optycznego przetwarzania informacji i holografii. Ćwiczenie 6. Badanie właściwości hologramów

Laboratorium Informatyki Optycznej ĆWICZENIE 3. Dwuekspozycyjny hologram Fresnela

Rys. 1 Geometria układu.

Ćwiczenie 12. Wprowadzenie teoretyczne

Laboratorium Optyki Falowej

Ćwiczenie 9 Y HOLOGRAM. Punkt P(x,y) emituje falę sferyczną o długości, której amplituda zespolona w płaszczyźnie hologramu ma postać U R exp( ikr)

Rys. 1 Schemat układu obrazującego 2f-2f

ĆWICZENIE 5. HOLOGRAM KLASYCZNY TYPU FRESNELA

Rejestracja i rekonstrukcja fal optycznych. Hologram zawiera pełny zapis informacji o fali optycznej jej amplitudzie i fazie.

WSTĘP DO OPTYKI FOURIEROWSKIEJ

Ćwiczenie H2. Hologram Fresnela

Różne reżimy dyfrakcji

Optyka Fourierowska. Wykład 9 Hologramy cyfrowe

Laboratorium Informatyki Optycznej ĆWICZENIE 7. Hologram gruby widoczny w zakresie 360

PROPAGACJA PROMIENIOWANIA PRZEZ UKŁAD OPTYCZNY W UJĘCIU FALOWYM. TRANSFORMACJE FAZOWE I SYGNAŁOWE

Fala jest zaburzeniem, rozchodzącym się w ośrodku, przy czym żadna część ośrodka nie wykonuje zbyt dużego ruchu

Hologram gruby (objętościowy)

Ćwiczenie 4. Część teoretyczna

Laboratorium Informatyki Optycznej ĆWICZENIE 5. Sprzęganie fazy

Mikroskop teoria Abbego

ĆWICZENIE 6. Hologram gruby

WSTĘP DO OPTYKI FOURIEROWSKIEJ

ĆWICZENIA LABORATORYJNE Z KONSTRUKCJI METALOWCH. Ć w i c z e n i e H. Interferometria plamkowa w zastosowaniu do pomiaru przemieszczeń

WSTĘP DO OPTYKI FOURIEROWSKIEJ

Ćwiczenie: "Zagadnienia optyki"

Rys. 1 Interferencja dwóch fal sferycznych w punkcie P.

WYZNACZANIE DŁUGOŚCI FALI ŚWIETLNEJ ZA POMOCĄ SIATKI DYFRAKCYJNEJ

Laboratorium optycznego przetwarzania informacji i holografii. Ćwiczenie 4. Badanie optycznej transformaty Fouriera

Laboratorium optycznego przetwarzania informacji i holografii. Ćwiczenie 3. Częstotliwości przestrzenne struktur okresowych

Ćwiczenie 3. Koherentne korelatory optyczne

BADANIE I ACHROMATYZACJA PRĄŻKÓW INTERFERENCYJNYCH TWORZONYCH ZA POMOCĄ ZWIERCIADŁA LLOYDA

Fotonika. Plan: Wykład 2: Elementy refrakcyjne i dyfrakcyjne

Interferometr Macha-Zehndera. Zapis sinusoidalnej siatki dyfrakcyjnej i pomiar jej okresu przestrzennego.

Laboratorium Informatyki Optycznej ĆWICZENIE 1. Optyczna filtracja sygnałów informatycznych

Wyznaczanie ogniskowych soczewek cienkich oraz płaszczyzn głównych obiektywów lub układów soczewek. Aberracje.

Badanie zjawisk optycznych przy użyciu zestawu Laser Kit

LABORATORIUM FIZYKI PAŃSTWOWEJ WYŻSZEJ SZKOŁY ZAWODOWEJ W NYSIE

Ćwiczenie 2. Wyznaczanie ogniskowych soczewek cienkich oraz płaszczyzn głównych obiektywów lub układów soczewek. Aberracje. Wprowadzenie teoretyczne

Ćwiczenie 4. Doświadczenie interferencyjne Younga. Rys. 1

Metody Obliczeniowe Mikrooptyki i Fotoniki. - Dyfrakcja różne reżimy - Obliczanie elementów dyfrakcyjnych

ODWZOROWANIE I PRZETWARZANIE SYGNAŁU OPTYCZNEGO W OŚWIETLENIU KOHERENTNYM

BADANIE INTERFEROMETRU YOUNGA

Badania elementów i zespołów maszyn laboratorium (MMM4035L)

Wyznaczanie rozmiarów szczelin i przeszkód za pomocą światła laserowego

WYZNACZANIE DŁUGOŚCI FALI ŚWIETLNEJ ZA POMOCĄ SIATKI DYFRAKCYJNEJ

ĆWICZENIE 5/6 HOLOGRAM SYNTETYCZNY

MODULATOR CIEKŁOKRYSTALICZNY

Rys. 1 Pole dyfrakcyjne obiektu wejściowego. Rys. 2 Obiekt quasi-periodyczny.

Metody Optyczne w Technice. Wykład 5 Interferometria laserowa

Pomiar drogi koherencji wybranych źródeł światła

Ćwiczenie 12 (44) Wyznaczanie długości fali świetlnej przy pomocy siatki dyfrakcyjnej

Propagacja w przestrzeni swobodnej (dyfrakcja)

OPTYKA FALOWA I (FTP2009L) Ćwiczenie 2. Dyfrakcja światła na szczelinach.

Wykład III. Interferencja fal świetlnych i zasada Huygensa-Fresnela

Ćwiczenie 2. Wyznaczanie ogniskowych soczewek cienkich oraz płaszczyzn głównych obiektywów lub układów soczewek. Aberracje. Wprowadzenie teoretyczne

Dyfrakcja. interferencja światła. dr inż. Romuald Kędzierski

ĆWICZENIE 6/7. NUMERYCZNE MODELOWANIE ZJAWISKA PROPAGACJI ŚWIATŁA. ZAPROJEKTOWANIE I WYKONANIE HOLOGRAMU SYNTETYCZNEGO OBIEKTU TRÓJWYMIAROWEGO

Cyfrowe przetwarzanie sygnałów Jacek Rezmer -1-

Podstawy Przetwarzania Sygnałów

POMIARY OPTYCZNE 1. Proste przyrządy optyczne. Damian Siedlecki

pobrano z serwisu Fizyka Dla Każdego zadania z fizyki, wzory fizyczne, fizyka matura

Ćwiczenie 2. Interferometr Ronchiego - badanie jakości soczewek. Sensor Shack ahartmann a badanie frontów sferycznych i porównanie z falą płaską.

OPTYKA GEOMETRYCZNA I INSTRUMENTALNA

Def. MO Optyczne elementy o strukturze submm lub subμm, produkowane głównie metodami litograficznymi

PL B1. POLITECHNIKA WROCŁAWSKA, Wrocław, PL BUP 02/08. PIOTR KURZYNOWSKI, Wrocław, PL JAN MASAJADA, Nadolice Wielkie, PL

7. Szybka transformata Fouriera fft

Problemy optyki falowej. Teoretyczne podstawy zjawisk dyfrakcji, interferencji i polaryzacji światła.

PODSTAWY DYFRAKCJI WYBRANE ZAGADNIENIA DYFRAKCJI FRAUNHOFERA Krzysztof

Pomiar długości fali świetlnej i stałej siatki dyfrakcyjnej.

Dr Piotr Sitarek. Instytut Fizyki, Politechnika Wrocławska

LABORATORIUM FIZYKI PAŃSTWOWEJ WYŻSZEJ SZKOŁY ZAWODOWEJ W NYSIE

LASERY I ICH ZASTOSOWANIE

INTERFERENCJA WIELOPROMIENIOWA

WYZNACZANIE PROMIENIA KRZYWIZNY SOCZEWKI I DŁUGOŚCI FALI ŚWIETLNEJ ZA POMOCĄ PIERŚCIENI NEWTONA

Laboratorium nr 4: Porównanie filtrów FIR i IIR. skończonej odpowiedzi impulsowej (FIR) zawsze stabilne, mogą mieć liniową charakterystykę fazową

GWIEZDNE INTERFEROMETRY MICHELSONA I ANDERSONA

POMIARY OPTYCZNE 1. Wykład 1. Dr hab. inż. Władysław Artur Woźniak

OPTYKA GEOMETRYCZNA I INSTRUMENTALNA

Wyznaczenie długości fali świetlnej metodą pierścieni Newtona

Ćwiczenie 2. Fotografia integralna. Wprowadzenie teoretyczne. Rysunek 1 Macierz mikro soczewek. Emulsja światłoczuła

ZADANIE 111 DOŚWIADCZENIE YOUNGA Z UŻYCIEM MIKROFAL

Ćwiczenie 3. Właściwości przekształcenia Fouriera

ZASTOSOWANIE LASERÓW W HOLOGRAFII


HOLOGRAFIA CEL ĆWICZENIA APARATURA ZAGADNIENIA DO KOLOKWIUM (INSTRUKCJA + PROPONOWANA LITERATURA) ZADANIA DO PRZYGOTOWANIA

BIBLIOTEKA PROGRAMU R - BIOPS. Narzędzia Informatyczne w Badaniach Naukowych Katarzyna Bernat

AKADEMIA MORSKA KATEDRA NAWIGACJI TECHNICZEJ

Wstęp do fotografii. piątek, 15 października ggoralski.com

PRZEKSZTAŁCANIE WIĄZKI LASEROWEJ PRZEZ UKŁADY OPTYCZNE

Hologram Fresnela obiektu punktowego

Pomiar ogniskowych soczewek metodą Bessela

Prawa optyki geometrycznej

Ćwiczenie 53. Soczewki

SCENARIUSZ LEKCJI Temat lekcji: Soczewki i obrazy otrzymywane w soczewkach

Optyka instrumentalna

Obiektywy fotograficzne

Transkrypt:

Ćwiczenie 12/13 Komputerowy hologram Fouriera. Wprowadzenie teoretyczne W klasycznej holografii w wyniku interferencji dwóch wiązek: wiązki światła zmodyfikowanej przez pewien przedmiot i spójnej z nią wiązki odniesienia, otrzymujemy zestaw prążków interferencyjnych (tak zwany interferogram). Ten skomplikowany wzór po zapisaniu na emulsji holograficznej można traktować jako zbiór wielu mikroskopijnych siatek dyfrakcyjnych. Przy oświetleniu takiej struktury siatki uginają światło w taki sposób, że na ekranie, elemencie światłoczułym, bądź siatkówce oka tworzy się obraz rzeczywisty zarejestrowanego przedmiotu. Wspomniany wzór prążków interferencyjnych jest niezwykle gęsty i złożony, tym niemniej istnieją metody numeryczne pozwalające na obliczenie interferogramu obiektu płaskiego (przeźrocza) przy pomocy komputera (stąd nazwa hologram komputerowy ). Hologram Fouriera Hologramy możemy umownie podzielić w zależności od odległości odtwarzanego obrazu rzeczywistego na: hologram Fresnela odtwarza obraz w skończonej odległości, hologram Fouriera odtwarza obraz w nieskończoności. Numeryczne zaprojektowanie hologramu Fresnela wymaga obliczania propagacji światła na odległość, w której ma być rekonstruowany obraz. W przypadku hologramu Fouriera projektowanie jest o wiele prostsze, gdyż zakłada jedynie obliczenie transformaty Fouriera obiektu. Dlatego w tym ćwiczeniu skupimy się na hologramie Fouriera. Hologram Fouriera jest w istocie zapisem widma obiektu wejściowego, tj. transformaty Fouriera transmitancji tego obiektu. Przy oświetleniu takiego hologramu falą płaską front falowy za hologramem musi zostać poddany wtórnej transformacji Fouriera, by uzyskać rekonstruowany obraz rzeczywisty. Dokonuje się tego najczęściej w jednej z dwóch konfiguracji przedstawionych na Rys. 1. a) 1

b) Rys. 1 Odtworzenie obrazu rzeczywistego z hologramu Fouriera: a) poprzez oświetlenie falą płaską i użycie soczewki skupiającej o ogniskowej f oraz b) poprzez oświetlenie falą sferyczną zbieżną. Algorytm obliczania rozkładu fazy hologramu Fouriera Najprostszym w implementacji i przez to bardzo popularnym jest algorytm IFTA (ang. Iterative Fourier Transform Algorithm). Jest to szczególny przypadek algorytmu Gerchberga- Saxtona, opublikowanego po raz pierwszy w 1972 roku. Schemat blokowy algorytmu dostosowanego do niniejszego ćwiczenia przedstawiono na Rys. 2. Rys. 2 Schemat blokowy algorytmu tworzenia hologramu Fouriera (użytego w ćwiczeniu). 2

W algorytmie wyróżnia się dwie płaszczyzny: płaszczyznę hologramu i płaszczyznę obrazową. Przejścia frontu falowego pomiędzy tymi płaszczyznami dokonuje się poprzez wykonanie transformacji Fouriera, którą jak pamiętamy w metodach numerycznych realizuje procedura FFT (ang. Fast Fourier Transform), a w układzie optycznym soczewka skupiająca. W algorytmie wykonuje się predefiniowaną liczbę N iteracji. Zasadę działania metody IFTA można sformułować następująco: Faza podlega modyfikowaniu tak, by: a) w płaszczyźnie obrazowej otrzymać żądany obraz b) w płaszczyźnie hologramu jednorodną amplitudę. O ile punkt a) jest oczywisty, o tyle punkt b) wymaga dodatkowego wyjaśnienia. Istotne jest, by zaprojektowany hologram posiadał jak najwięcej informacji o przedmiocie zapisanej w rozkładzie fazy, natomiast jak najmniej w części amplitudowej. W idealnym przypadku część amplitudowa nie będzie niosła żadnej informacji (tj. amplituda będzie jednakowa na całej powierzchni hologramu) - w takim przypadku pominięcie części amplitudowej nie usunie żadnej informacji i nie zmieni jakości rekonstruowanego obrazu. Część amplitudową musimy pominąć, gdyż w procesie naświetlania, wywołania, utrwalenia i odbielenia kliszy holograficznej uzyskuje się strukturę czysto fazową, a nie amplitudowo-fazową. Wytworzenie hologramu amplitudowo-fazowego wymagałoby stworzenia dwóch struktur oraz dokładnego ich złożenia z precyzyjnym pozycjonowaniem. Dlatego zwykle wytwarza się tylko elementy czysto fazowe. Biorąc pod uwagę wyżej sformułowane wymagania dotyczące amplitudy i fazy w płaszczyznach: hologramu i obrazowej, powyższy schemat algorytmu IFTA jest uzasadniony w każdej iteracji w płaszczyźnie hologramu wymuszamy jednorodną amplitudę, w płaszczyźnie obrazu wymuszamy amplitudę żądanej bitmapy. Mówiąc inaczej, optymalizacja wprowadzana przez IFTA wykorzystuje fakt, że ludzkie oko nie dostrzega rozkładu fazy, dlatego może być ona dowolnie zmieniana, by uzyskać najwierniejsze odtworzenie amplitudy zakodowanego obrazu. Przykładowo, Rys. 3 przedstawia obraz wejściowy oraz jego widmo fourierowskie: amplitudę i fazę. a) b) c) Rys. 3 Przykładowy obraz wejściowy (a), jego transformata Fouriera: amplituda (b), faza (c). W przypadku zwykłego pominięcia informacji amplitudowej rekonstrukcja z hologramu pokazana jest na Rys. 4a. Widać wyraźnie niedokładność odtworzenia oraz niski kontrast. W przypadku zastosowania algorytmu IFTA jakość uzyskanego obrazu wzrasta znacząco, jak to przedstawiono na Rys. 4b. Częściowo jest to zasługą losowej fazy początkowej, która w układzie optycznym odpowiada wstawieniu matówki (czyli rozpraszacza). 3

a) b) Rys. 4 Rekonstrukcja numeryczna obrazu rzeczywistego a) bez procesu iteracyjnego, b) po 10 iteracjach algorytmu IFTA. Widoczny dodatkowy odwrócony obraz jest efektem binaryzacji fazy, koniecznej przed wydrukiem na drukarce laserowej. Odbywa się to analogicznie, jak w przypadku binarnych siatek dyfrakcyjnych, które kierują tę samą ilość światła symetrycznie w +1 i -1 rząd dyfrakcyjny. W związku z tym efektem, aby napisy odtworzone w +1 i -1 rzędzie ugięcia się nie nakładały na siebie, należy przygotować pliki z napisami przesuniętymi poza centrum, tak jak pokazano na Rys. 3a. Efektem działania algorytmu IFTA jest rozkład fazy (interferogram). Rozkład ten należy wydrukować i fotograficznie zmniejszyć zapisując go na emulsji holograficznej wg Rys. 5. Rys. 5 Układ wykorzystywany do fotograficznego pomniejszania zakodowanego rozkładu fazy, zapisanego na wydruku drukarki laserowej. W aparacie fotograficznym znajduje się fragment płyty holograficznej. Uzyskana struktura fazowa (po odbieleniu) stanowić będzie wysokiej jakości iterowany syntetyczny hologram Fouriera. Hologramy zaprojektowane w ten sposób charakteryzują się lepszą wydajnością dyfrakcyjną i mają mniejszy udział spekli w odtwarzanym obrazie w porównaniu z hologramami nie-iterowanymi. Jak można się spodziewać, jakość rekonstrukcji poprawia się wraz z ilością wykonanych iteracji. 4

Przebieg ćwiczenia W ćwiczeniu należy zaprojektować syntetyczny hologram Fouriera, wykonanć go metodą fotograficznego zmniejszania oraz zbadać zrekonstruowane obrazy. Uwaga! Na ćwiczenie należy dostarczyć plik BMP o rozmiarze 1024x1024 pikseli, szaro odcieniowy (greyscale 8-bit), zawierający napis lub inny element graficzny, który zostanie zapisany w hologramie. Powinien to być biały napis/obiekt na czarnym tle umieszczony poza środkiem obrazu analogicznie jak na rysunku poniżej. Grubość linii powinna być podobna jak na Rys. 3a. Wykonanie ćwiczenie przebiega w następujących etapach: 1) Zaprojektowanie w programie LightSword 6 hologramu Fouriera na podstawie dostarczonego pliku BMP. Punkt ten jest wykonywany z prowadzącym zajęcia. 2) Modelowanie odtworzenia zaprojektowanego obrazu i wprowadzenie ewentualnych poprawek do obiektu. 3) Wydrukowanie uzyskanych binarnych rozkładów fazy na drukarce laserowej. Pomiar wielkości wydruku. 4) Wykonanie hologramu poprzez: a. Sfotografowanie wydruku z odpowiednim powiększeniem, tak aby naświetlony na kliszy hologram miał rozmiar 20.48x20.48 mm. b. Wywołanie i utrwalenie emulsji holograficznej. c. Odbielenie emulsji holograficznej. 5) Sfotografowanie obrazów rzeczywistych odtworzonych z hologramu na ekranie oraz skupiając wiązkę bezpośrednio na macierzy światłoczułej aparatu cyfrowego. Uwaga należy bezwzględnie użyć filtrów szarych! 6) Określenie odległości odtworzenia obrazu przy fotografowaniu z obiektywem przez hologram na podstawie nastawów ostrości obiektywu. 7) Odtworzenie obrazu rzeczywistego przez oświetlenie hologramu bezpośrednio wiązką laserową. 5