Dynamika punktu materialnego Katarzyna Weron Wykład dla Matematyki Stosowanej
Powtórka Kinematyczne równania ruchu r = r t = x t, y t, z(t) Otrzymujemy z definicji d v a = dt, a = a x, a y, a z = dv x dt, dv y dt, dv x dt d r v = dt, v = v x, v y, v z = dx dt, dy dt, dz dt Skąd znamy a = a(t)? Musimy znać warunki początkowe
Równania parametryczne kinetyczne równania ruchu (parametr to czas t) tor ruchu eliminacja t y = y(x)
Równanie parametryczne okręgu y y 0 R x x 0 2 + y y 0 2 = R 2 Podstawmy: x x 0 = Rcosα y y 0 = Rsinα x 0 x Czyli: x = x 0 + Rcosα y = y 0 + Rsinα
Fizycy lubią pytać Dlaczego? Dlaczego satelita nie spada na Ziemię? Dlaczego astronauta na statku kosmicznym znajduje się w stanie nieważkości?
Siła przyczyna ruchu czy przyśpieszenia? Poglądy przez Newtonem Stanem naturalnym ciała jest spoczynek Aby utrzymać ciało w ruchu ze stałą prędkością należy je jakoś napędzać Bez tego oddziaływania ciało po jakimś czasie się zatrzyma Bez dodatkowej siły ciało się zatrzyma Brzmi rozsądnie?
Bez dodatkowej siły ciało się zatrzyma? Pchnijmy krążek a) Na stole zatrzyma się szybko b) Na lodzie zatrzyma się dalej c) Na powietrznym stole do hokeja pojedzie najdalej UNIVERSITY PHYSICS, Copyright 2012 Pearson Education, Inc., publishing as Addison-Wesley
Pierwsza zasada dynamiki Newtona Philosophiae Naturalis Principia Mathematica, (1726) W inercjalnym układzie odniesienia, jeśli na ciało nie działa żadna siła lub siły działające równoważą się, to ciało pozostaje w spoczynku lub porusza się ruchem jednostajnym prostoliniowym. Tzn. że ta zasada nie zawsze działa? Co to jest układ inercjalny? Dlaczego ta zasada nosi nazwę prawa inercji?
Pierwsza zasada dynamiki Newtona nie działa we wszystkich układach! Co się dzieje w samolocie lecącym ze stałą v = 800 km/h? UNIVERSITY PHYSICS, Copyright 2012 Pearson Education, Inc., publishing as Addison-Wesley A co się dzieje na karuzeli obracającej się ze stałą v = 10 km/h?
Układ Inercjalny Kluczowa koncepcja Newtona I zasada dynamiki Newtona definiuje układ inercjalny Pierwsza zasada dynamiki - postulat istnienia inercjalnego układu odniesienia Jeżeli nie jest spełniona I zasada to układ nie jest inercjalny jakieś przykłady?
Układ Inercjalny vs. nieinercjalny W układzie nieinercjalnym nie są spełnione zasady Newtona! Siła bezwładności Siła dośrodkowa Siła Coriolisa Układ poruszający się ruchem jednostajnym względem układu inercjalnego też jest inercjalny!
Efekt Coriolisa
Siła i efekt Coriolisa Siłą pozorna, działającą na ciała, poruszające się w wirującym układzie odniesienia Efekt Coriolisa odchylenie danego obiektu z jego toru ruchu (widziane w tym układzie) Znany od XVII wieku: ruch obrotowy Ziemi powoduje odchylenie pocisków artyleryjskich od ich torów Ważne zjawisko w meteorologii odpowiedzialne za zmianę kierunków wiatrów, kierunek cyklonów na półkuli PN wirują odwrotnie do ruchu wskazówek zegara na półkuli PD zgodnie z ruchem wskazówek zegara
Inercjalne i nieinercjalne układy odniesienia (inercjalne definiuje I zasada dynamiki) a = (0, a y, 0) Jestem w układzie nieinercjalnym! Jestem w układzie inercjalnym Pomocy!!! Tu są siły nieczyste! F = m a
W inercjalnych układach odniesienia nie ma siły odśrodkowej i bezwładności!!! R. DOUGLAS GREGORY, CLASSICAL MECHANICS Classical_M.pdf
Równowaga Ciało spoczywa lub porusza się ruchem jednostajnym prostoliniowym F = 0, F x = 0, F y = 0, Przykłady: Wisząca lampa Stojący stół Samochód jadący prosto ze stałą prędkością
Równowaga trwała i nietrwała (stabilna i niestabilna) równowaga stabilna (minimum) równowaga niestabilna (maksimum) równowaga metastabilna (minimum lokalne) Więcej jak poznamy koncepcję energii
Co się dzieje jeśli siła nie równa się zero?
Jak przyśpieszenie zależy od siły? F = m a Masa bezwładna Druga zasada dynamiki Newtona Dlaczego nazywamy tą masę bezwładną?
A co z masą? Użyjmy tej samej siły do trzech różnych mas Im większa masa tym większej trzeba użyć siły żeby nadać jej przyśpieszenie (zmienić prędkość) Masa miara bezwładności Masa skalar, jednostka to kilogram [kg]
Druga zasada dynamiki Newtona F = m a Czyli: F x = ma x F y = ma y F z = ma z Spełniona tylko w układach inercjalnych!
Jednostki! Masa jednostka to kilogram kg Przyśpieszenie a = dv dt m/s s = m s 2 Siła F = m a kg m s 2 N Jednostką siły jest Newton zdefiniowany przy pomocy jednostek podstawowych kilograma, metra i sekundy
Jakie fizyk stawia pytania? Dalekozasięgowa siła: F 1 = F 2 = G m 1m 2 r 2 Source: http://www.brighthub.com Z drugiej strony masa bezwładna: F = m a F y = mg Czy masa grawitacyjna jest równa masie bezwładnej? F y = G Mm r 2
Trzecia zasada dynamiki Newtona Jeśli ciało A działa na ciało B pewną siłą (akcja), to ciało B działa na ciało A siłą (reakcja) o takiej samej wartości i kierunku, lecz o przeciwnym zwrocie. F AB = F BA Skąd się bierze opór powietrza? UNIVERSITY PHYSICS, Copyright 2012 Pearson Education, Inc., publishing as Addison-Wesley
Para sił akcja-reakcja Przykład: Gdzie są te siły? Stół na jabłko Ziemia na jabłko Siły działające na jabłko Tu równowaga, ale nie musi być. Co wtedy? Stół na jabłko Jabłko na stół Ziemia na jabłko Jabłko na Ziemię Para sił akcja-reakcja
Przykład: Gimnastyczka Gimnastyczka o masie m G = 50kg utrzymuje się trzymając dolny koniec liny przymocowanej do sufitu sali gimnastycznej. Masa liny m l 0 Jaką siłę (wielkość i kierunek) wywiera na nią lina? Jakie jest napięcie na szczycie liny? sytuacja diagram dla gimnastyczki diagram dla liny lina na gimnastyczkę T LG akcja-reakcja T SL sufit na linę ciężar gimnastyczki T GL gimnastyczka na linę
Przykład: Gimnastyczka Siły działające na gimnastyczkę (w równowadze) F y = T LG W G = 0 T LG = W G = m G g = 490N Siły działające na linę (w równowadze) F y = T SL T GL = 0 T SL = T GL = T LG = 490N III zasada Newtona sytuacja diagram dla gimnastyczki diagram dla liny lina na gimnastyczkę T LG akcja-reakcja T SL sufit na linę ciężar gimnastyczki T GL gimnastyczka na linę
Przykład: lina ma masę y Diagram sił dla gimnastyczki Diagram sił dla liny przy suficie T LG Lina na gimnastyczkę T SL Sufit na linę W G = m G g Ciężar gimnastyczki T GL Gimnastyczna na linę W L = m L g Ciężar liny Jakie napięcie liny przy suficie? Jakie napięcie liny w połowie długości?
Zasady Dynamiki Newtona skrót (inercjalne układy odniesienia) 1. F = 0 a = 0 (definicja układu inercjalnego) 2. F = ma 3. F AB = F BA Spadającym jabłkiem rządzą te same prawa co ruchem planet! Rachunek różniczkowy i całkowy Wyznaczamy równania ruchu 2013 Marcin Weron
Na Facebooku czy ktoś to rozumie? Nie? Jeszcze do tego wrócimy
Sztuka rozwiązywania zadań Pierwsze i drugie prawo Newtona odnoszą się do konkretnego obiektu ustal, który badasz Tylko siły działające na ten obiekt mają znaczenie Bardzo wygodny jest tzw. diagram sił (free-body diagram) narysuj wyłącznie siły działające na obiekt Obiekt zaznacz kropką i wszystkie siły powinny być rysowane z tej kropki Wybierz mądrze układ współrzędnych
Typowe błędy przy rysowaniu diagramów! DOBRY ZŁY UNIVERSITY PHYSICS, Copyright 2012 Pearson Education, Inc., publishing as Addison-Wesley
Pola sił i siły kontaktowe Pola sił (siły działające na odległość) siła grawitacji, siła elektromagnetyczna Siły kontaktowe siła nacisku siła naprężenia siła sprężystości siła tarcia siła oporu
Jakiej wagi lepiej użyć? UNIVERSITY PHYSICS, Copyright 2012 Pearson Education, Inc., publishing as Addison-Wesley
Masa i waga W życiu codziennym często używane zamiennie Waga siła grawitacyjna działająca na ciało: F = ma, a = g 9.81m/s 2 Obiekt Przyśpieszenie grawitacyjne Słońce 273.95 m/s 2 Mars 3.69 m/s 2 Jowisz 20.87 m/s 2 Pluton 0.58 m/s 2 Ziemia 9.805665 m/s 2 Księżyc 1.622 m/s 2
Co mierzy waga łazienkowa? Siła normalna n ciało wywiera nacisk na powierzchnię, ale z III zasady powierzchnia popycha ciało siłą skierowaną prostopadle do powierzchni waga sprężynowa mierzy siłę nacisku F n = F gx F gy F gx F g = mg
Przeciążenia i nieważkość y a y = g F N F g = mg F y = ma y mg F N = mg F N = 0 a y = a rad F N F g = mg Singapore Flyer (2008), 165 m F y = ma y F N F g = ma rad y Zumanjaro: Drop of Doom, New Jersey, USA, 126m
Dlaczego księżyc nie spada na Ziemię? Dlaczego satelita nie spada na Ziemię? Dlaczego astronauta na statku kosmicznym znajduje się w stanie nieważkości?
Oryginalne rozumowanie Newtona Jeżeli wystrzelimy kulę z bardzo dużą prędkością z wysokiej góry Im większą prędkość początkową ma kula, tym dalej poleci Od prędkości początkowej zależy również krzywizna ruchu http://galileoandeinstein.physics.virginia.edu/lectures/newton.html
Oryginalne rozumowanie Newtona Zakrzywienie łuku po jakim będzie opadać = zakrzywieniu Ziemi Powierzchnia planety będzie "uciekać" kuli z taką samą prędkością, z jaką kula będzie ją "gonić" czyli opadać http://galileoandeinstein.physics.virginia.edu/lectures/newton.html
Kula cały czas spada na Ziemię! Analogicznie spada satelita! Statek kosmiczny też spada! To samo dzieje się z astronautą! Co znaczy nieważkość? http://www.astro.virginia.edu/class/oconnell/astr121/guide08.html
Siła oporu Siła jaką płyn (gaz lub ciecz) wywiera na ciało w ruchu Skierowana zawsze przeciwnie do kierunku ruchu ciała Poruszające się ciało wywiera siłę na płyn toruje drogę Z III zasady Newtona płyn działa na ciało małe prędkości: f = kv duże prędkości: f = Dv 2 D = 1 2 CρS S- przekrój poprzeczny C współczynnik aerodynamiczny (eksperyment) ρ gęstość ośrodka (powietrza) UNIVERSITY PHYSICS, Copyright 2012 Pearson Education, Inc., publishing as Addison-Wesley
Siła oporu aerodynamicznego f = f v v, v = v v f v = bv + cv 2 związany z lepkością (tarcie płynu), proporcjonalny do: lepkości płynu rozmiaru liniowego obiektu związany z przyśpieszaniem cząstek, z którymi się zderza obiekt proporcjonalny do: gęstości ośrodka przekroju poprzecznego obiektu
Przykład: kulka w oleju (mała prędkość) Siła działają tylko w kierunku Y F y (t) = mg kv y (t) = ma y (t) Na początku v y 0 = 0 oraz a y 0 = g Wraz ze wzrostem prędkości rośnie opór W końcu układ osiąga równowagę: F y = mg kv t = 0 v t = mg/k prędkość graniczna (terminal speed) UNIVERSITY PHYSICS, Copyright 2012 Pearson Education, Inc., publishing as Addison-Wesley
Przykład: kulka w oleju równania ruchu v t = mg/k UNIVERSITY PHYSICS, Copyright 2012 Pearson Education, Inc., publishing as Addison-Wesley
Przykład: Spadające koty Badania z 1987r. dane z pogotowia weterynaryjnego w Nowym Yorku 132 koty, 90% kotów przeżyło rekordzista spadł z 32 piętra na beton Prędkość graniczna 97km/h a potem? F g = mg F g = mg F g = mg
Przykład: Powietrzny skoczek Dla ciała ludzkiego spadającego w powietrzu w pozycji jak na zdjęciu wartość współczynnika D 0.25 kg. Znajdź graniczną prędkość m skoczka o masie 50kg. A co jeśli masa będzie większa? F y = mg Dv 2 y = 0 v y = mg D = 44 m s 160 km h! UNIVERSITY PHYSICS, Copyright 2012 Pearson Education, Inc., publishing as Addison-Wesley
Rzut ukośny z oporem liniowym v y > 0 v v x > 0 v x > 0 v y < 0 v F oy = (0, k y v y (t 2 ), 0) F g = (0, mg, 0) F oy = (0, k y v y (t 1 ), 0) F g = (0, mg, 0) v = (v x, v y, 0) v x = (v x, 0,0) v y = (0, v y, 0) v = v x + v y = (v x, v y, 0) Co liczycie z definicji? Współrzędne wektora czy wartości? d v a = dt, a = a x, a y, a z = dv x dt, dv y dt, dv x dt d r v = dt, v = v x, v y, v z = dx dt, dy dt, dz dt
Rzut ukośny z oporem liniowym Ruch poziomy: ma x = bv x dv x dt = b m v x x t = v 0x τ 1 exp( t/τ), Gdzie τ = 1 = m czas charakterystyczny (relaksacji) k b Ruch pionowy: ma y = mg bv y dv y dt = g b m v y y t = (v 0y +v g )τ 1 exp( t/τ) v g t
Tor ruchu i zasięg (jak policzyć?) x t = v 0x τ 1 exp( t/τ), y t = (v 0y +v g )τ 1 exp( t/τ) v g t y x = v 0y v g v 0x x + v g τln 1 x v 0x τ Zasięg y t R = 0 R = x(t R ) v 0y v g R + v v g τln 1 R 0x v 0x τ = 0
Komputer lub rozwiązanie przybliżone v 0y v g v 0x R + v g τln 1 R v 0x τ = 0 Jeśli opór nie jest duży to ten czynnik mały ln 1 ε = (ε + 1 2 ε2 + 1 3 ε3 + ) Fizycy zawsze szukają czegoś małego lub dużego! Rozwijamy w szereg potęgowy i zaniedbujemy wyrazy wyższego rzędu
Siła tarcia Bardzo ważna ( złe i dobre aspekty): Olej w silniku samochodowym minimalizuje tarcie pomiędzy ruchomymi częściami Bez tarcia między oponami a drogą nie mogliśmy jechać ani skręcić Jak odkręcałoby się żarówkę? Dziewczyny pewnie znają ten trik? UNIVERSITY PHYSICS, Copyright 2012 Pearson Education, Inc., publishing as Addison-Wesley
Co się dzieje z tarciem? UNIVERSITY PHYSICS, Copyright 2012 Pearson Education, Inc., publishing as Addison-Wesley
Wybrane współczynniki tarcia powierzchnie μ s μ k stal-stal 0.74 0.57 aluminium na stali 0.61 0.47 szkło-szkło 0.94 0.40 teflon-teflon 0.04 0.04 teflon na stali 0.04 0.04 guma na betonie (suchym) 1.0 0.8 guma na betonie (mokrym) 0.30 0.25 lód-lód 0.1 0.03 nawoskowane drewno na mokrym śniegu 0.14 0.1 nawoskowane drewno na suchym śniegu - 0.04
Tarcie kinetyczne i statyczne Tarcie statyczne działa kiedy nie ma względnego ruchu powierzchni próbujesz przesunąć pudło po podłodze a ono się nie rusza podłoga wywiera przeciwnie skierowaną siłę na pudło f s μ s n UNIVERSITY PHYSICS, Copyright 2012 Pearson Education, Inc., publishing as Addison-Wesley
Tarcie kinetyczne i statyczne Trudniej poruszyć ciało niż utrzymać je w ruchu! Tarcie kinetyczne działa gdy ciało ślizga się po powierzchni dwie powierzchnie poruszają się względem siebie siła tarcia wzrasta, gdy rośnie siła normalna Empiryczne! f k = μ k n współczynnik tarcia kinetycznego UNIVERSITY PHYSICS, Copyright 2012 Pearson Education, Inc., publishing as Addison-Wesley
Przykład: Jazda na sankach z tarciem Jaki kąt, żeby sanki jechały ze stałą prędkością? Znajdź ten kąt w zależności od wagi w i współczynnika tarcia μ k. F x = wsin α f k = wsin α μ k n = 0 wsin α = μ k n Równowaga! F y = n wcos(α) = 0 n = wcos(α) UNIVERSITY PHYSICS, Copyright 2012 Pearson Education, Inc., publishing as Addison-Wesley
Przykład: Jazda na sankach z tarciem F x = wsin α f k = wsin α μ k n = 0 wsin α = μ k n F y = n wcos(α) = 0 n = wcos(α) wsin α = μ k wcos(α) μ k = sin(α) cos(α) = tg(α) UNIVERSITY PHYSICS, Copyright 2012 Pearson Education, Inc., publishing as Addison-Wesley
Przykład: przesuwanie skrzyni (tarcie) Chcesz przesunąć skrzynię o wadze w = 500N po poziomej podłodze. Aby ruszyć skrzynię musisz ciągnąć z siłą 230N, ale gdy już ruszy wystarczy 200N aby utrzymać stałą prędkość. Jakie są współczynniki tarcia statycznego i kinetycznego? Diagram tuż przed ruszeniem Diagram dla ruchu o stałej prędkości UNIVERSITY PHYSICS, Copyright 2012 Pearson Education, Inc., publishing as Addison-Wesley
Przykład: przesuwanie skrzyni (tarcie) przed ruszeniem F x = T + f s max = 0 f s max = T Równowaga! F y = n + w = 0 n = w f s max = μ s n μ s = f s max n = T w = 0.46 UNIVERSITY PHYSICS, Copyright 2012 Pearson Education, Inc., publishing as Addison-Wesley
Przykład: przesuwanie skrzyni (tarcie) po ruszeniu stała prędkość F x = T + ( f k ) = 0 f k = T Równowaga! F y = n + w = 0 n = w f k = μ k n μ k = f k n = T w = 0.40 UNIVERSITY PHYSICS, Copyright 2012 Pearson Education, Inc., publishing as Addison-Wesley
Do czytania ten wykład D. Halliday, R. Resnick, J. Walker Podstawy fizyki (2007), Tom 1, Rozdziały 1-4