Suma dwóch grafów G 1 = ((G 1 ), E(G 1 )) G 2 = ((G 2 ), E(G 2 )) (G 1 ) i (G 2 ) rozłączne Suma G 1 G 2 graf ze zbiorem wierzchołków (G 1 ) (G 2 ) i rodziną krawędzi E(G 1 ) E(G 2 ) G 1 G 2 G 1 G 2 Zespolenie dwóch grafów G 1 = ((G 1 ), E(G 1 )) G 2 = ((G 2 ), E(G 2 )) (G 1 ) i (G 2 ) rozłączne Zespolenie G 1 +G 2 bierzemy sumę G 1 G 2 i prowadzimy krawędzie z każdego wierzchołka (G 1 ) do każdego wierzchołka (G 2 ). G 1 G 2 G 1 +G 2 Barbara Głut 1
Odrzucanie Jeżeli e jest krawędzią grafu G, to G e jest grafem otrzymanym z G po odrzuceniu krawędzi e. Jeżeli v jest wierzchołkiem grafu G, to G v jest grafem otrzymanym z G po usunięciu z G wierzchołka v wraz z przyległymi do niego krawędziami. Ściągnięcie G \ e graf otrzymany w wyniku ściągnięcia krawędzi e i utożsamienia jej końców v oraz w i to w taki sposób, że otrzymany wierzchołek jest incydentny z tymi krawędziami, które przedtem były incydentne z v i w (z wyjątkiem krawędzi e). Z Barbara Głut 2
Trasa (marszruta) w grafie G skończony ciąg krawędzi v 0 v 1 v 2... v m w którym każde dwie kolejne krawędzie są albo sąsiednie, albo identyczne. długość trasy liczba krawędzi w trasie. Trasa wyznacza pewien ciąg wierzchołków, gdzie v 0 początek, v m koniec Ścieżka (łańcuch) trasa, w której wszystkie krawędzie są różne. Droga ścieżka, w której ponadto wszystkie wierzchołki są różne. Ścieżka lub droga są zamknięte, gdy v 0 = v m. Cykl Droga zamknięta zawierającą przynajmniej jedną krawędź Obwód grafu długość najkrótszego cyklu w tym grafie. Przykład: Trasa: o długości 6. Ścieżka: Droga: Cykl: Obwód: 3 Barbara Głut 3
Spójność grafu Graf jest spójny, gdy nie może być przedstawiony w postaci sumy dwóch grafów. Graf jest spójny, gdy dowolna para wierzchołków grafu jest połączona drogą. Graf niespójny - w przeciwnym przypadku. Dowolny niespójny graf może być przedstawiony jako suma skończonej liczby grafów spójnych, zwanych składowymi spójnymi grafu. Twierdzenie: Każdy graf prosty, który ma n wierzchołków i więcej niż (n 1)(n 2)/2 krawędzi, jest spójny. spójny niespójny 8 wierzchołków 8 wierzchołków 9 krawędzi 8 krawędzi Pytanie: jak bardzo graf spójny jest spójny? To znaczy: ile krawędzi lub wierzchołków należy usunąć, aby graf stał się niespójny? Barbara Głut 4
Zbiór rozspajający grafu spójnego G zbiór krawędzi, których usunięcie spowoduje, że graf G przestanie być spójny. Zbiór rozspajający: {e 1, e 2, e 5 } lub {e 3, e 6, e 7, e 8 } Rozcięcie zbiór rozspajający, którego żaden podzbiór właściwy nie jest już zbiorem rozspajającym. Np. {e 3, e 6, e 7, e 8 } Most jeżeli rozcięcie składa się z jednej krawędzi, to krawędź tę nazywamy mostem. Spójność krawędziowa λ(g) w grafie spójnym jest to liczba krawędzi należących do najmniej licznego rozcięcia grafu. Tzn. jest to najmniejsza liczba krawędzi, które należy usunąć, aby graf przestał być spójny. Graf jest k spójny krawędziowo, jeśli λ (G) k. 1-spójny i 2-spójny krawędziowo, ale nie 3-spójny Barbara Głut 5
Zbiór rozdzielający grafu spójnego G zbiór wierzchołków, których usunięcie spowoduje, że graf przestanie być spójny. Zbiór rozdzielający: {, } Spójność wierzchołkowa κ(g) Jeżeli graf G jest spójny i nie jest pełny, to spójnością wierzchołkową grafu G nazywamy liczbę elementów najmniejszego zbioru rozdzielającego. Graf jest k spójny wierzchołkowo, jeśli κ (G) k. ierzchołek rozcinający Jeżeli zbiór rozdzielający składa się tylko z jednego wierzchołka, to ten wierzchołek nazywamy wierzchołkiem rozcinającym. Barbara Głut 6
Grafy eulerowskie Graf spójny G nazywamy grafem eulerowskim, jeżeli istnieje ścieżka zamknięta zawierająca każdą krawędź G. Taką ścieżkę nazywamy cyklem Eulera. waga: nazwa cykl, choć od cyklu żąda się by był drogą. Niekonsekwencja ze względu na tradycyjną nazwę. Jak narysować ten graf bez odrywania ołówka i bez rysowania tej samej linii wielokrotnie? Grafy półeulerowskie Graf, który nie jest grafem eulerowskim, nazywamy półeulerowskim, jeżeli istnieje ścieżka zawierająca każdą krawędź grafu G. Graf półeulerowski Graf, który nie jest eulerowski ani półeulerowski Barbara Głut 7
Problem mostów królewieckich Czy można przejść dokładnie jeden raz przez każdy z siedmiu mostów i powrócić do punktu wyjścia? Rozwiązane przez Eulera Pytanie: Czy możliwe jest znalezienie warunku koniecznego i wystarczającego na to, by graf był eulerowski? Twierdzenie (Euler, 1776): Graf spójny G jest grafem eulerowskim wtedy i tylko wtedy, gdy stopień każdego wierzchołka grafu G jest liczbą parzystą. Twierdzenie: Graf spójny G jest grafem półeulerowskim wtedy i tylko wtedy, gdy ma dokładnie dwa wierzchołki nieparzystych stopni. grafie półeulerowskim każda ścieżka Eulera musi zaczynać się w jednym wierzchołku nieparzystego stopnia i kończyć w drugim takim wierzchołku. Barbara Głut 8
waga: żaden graf nie może mieć dokładnie jednego wierzchołka nieparzystego stopnia. To wynika z lematu o uściskach dłoni: jeśli pewne osoby witają się podając sobie dłonie, to łączna liczba uściśniętych dłoni jest parzysta. każdym grafie suma stopni wszystkich wierzchołków jest liczbą parzystą. każdym grafie liczba wierzchołków o nieparzystych stopniach jest parzysta. Algorytm Fleury ego służy do konstrukcji cyklu Eulera w grafie eulerowskim Zacznij cykl w dowolnym wierzchołku u i przechodź krawędzie w dowolnej kolejności, dbając jedynie o zachowanie następujących reguł: (1) usuwaj z grafu przechodzone krawędzie i wierzchołki izolowane powstające w wyniku usuwania krawędzi; (2) w każdym momencie przechodź przez most tylko wtedy, gdy nie masz innej możliwości. Barbara Głut 9
Grafy hamiltonowskie Czy istnieje zamknięta ścieżka przechodząca dokładnie jeden raz przez każdy wierzchołek grafu spójnego G? Taka ścieżka musi być cyklem cykl Hamiltona Graf, w którym istnieje cykl Hamiltona nazywamy grafem hamiltonowskim. Graf półhamiltonowski graf, który nie jest hamiltonowski i w którym istnieje droga przechodząca dokładnie jeden raz przez każdy wierzchołek graf półhamiltonowski graf niehamiltonowski Barbara Głut 10
Dla grafów hamiltonowskich nie ma udowodnionych warunków koniecznych i wystarczających takich, jak w przypadku grafów eulerowskich. Twierdzenie (Dirac, 1952): Jeżeli w grafie prostym G o n wierzchołkach (n 3), stopień każdego wierzchołka jest większy bądź równy n/2, to graf G jest hamiltonowski. Twierdzenie (Ore,, 1960): Jeśli graf prosty G ma n wierzchołków (n 3) oraz suma stopni dowolnych dwóch wierzchołków, które nie są sąsiednie, jest większa od n, to graf G jest hamiltonowski. Zagadnienie najkrótszej drogi B D G J A E H L C F Graf z wagami liczba przypisana krawędzi - waga Litery oznaczają miasta połączone drogami. Liczby oznaczają długości dróg lub czas podróży, lub koszt przejazdu. Znaleźć drogę z miasta A do miasta L o najmniejszej całkowitej wadze. I K Barbara Głut 11
Przesuwamy się wzdłuż grafu z lewa na prawo, przypisując każdemu wierzchołkowi liczbę l() określającą najkrótszą odległość od wierzchołka A do wierzchołka. B D G J A E H L C F I K Zagadnienie chińskiego listonosza Zadanie polega na tym, by listonosz, który musi doręczyć pocztę, przeszedł jak najkrótszą łączną drogę i powrócił do punktu wyjścia. B C A D F E Znaleźć taką trasę zamkniętą, której całkowita waga jest minimalna i w której każda krawędź występuje co najmniej jeden raz. Jeśli graf jest grafem eulerowskim, to każdy cykl Eulera jest poszukiwaną trasą. Jeśli graf nie jest eulerowski zadanie trudniejsze. Barbara Głut 12
A B C D ierzchołki B i E są jedynymi wierzchołkami stopni nieparzystych znajdujemy ścieżkę półeulerowską z B do E. F E Aby powrócić najkrótszą drogą do punktu wyjścia znajdujemy najkrótszą drogę z E do B. Rozwiązanie: znaleziona ścieżka półeulerowska + najkrótsza droga E F A B B C razem tworzą graf eulerowski => A Droga długości: 13 + 64 = 77 F E D Zagadnienie komiwojażera Komiwojażer, który chce odwiedzić kilka miast i powrócić do punktu wyjścia, powinien znaleźć drogę o najmniejszej łącznej długości. A B E C Znaleźć cykl Hamiltona o najmniejszej całkowitej wadze. D Barbara Głut 13