Algorytm chińskiego listonosza Katarzyna Ignaszewska SPI51. Temat: Problem chińskiego listonosza, czyli jak obejść miasto najmniejszym nakładem sił.

Save this PDF as:
 WORD  PNG  TXT  JPG

Wielkość: px
Rozpocząć pokaz od strony:

Download "Algorytm chińskiego listonosza Katarzyna Ignaszewska SPI51. Temat: Problem chińskiego listonosza, czyli jak obejść miasto najmniejszym nakładem sił."

Transkrypt

1 Scenariusz lekcji Temat: Problem chińskiego listonosza, czyli jak obejść miasto najmniejszym nakładem sił. W roku 1962 chioski matematyk Mei-Ko Kwan zaproponował następujący problem: Listonosz roznosząc listy musi przejśd przez wszystkie ulice w swojej dzielnicy co najmniej jeden raz i wrócid na pocztę. Ponieważ jest człowiekiem leniwym (nie odnosi się to do pozostałych listonoszy, tylko do tego konkretnego), chciałby mied jak najkrótszą do przejścia trasę. Znalezienie takiej trasy jest problemem, który nazwano problemem chioskiego listonosza (ang. Chinese postman problem - CPP). Cele zajęć Uczeo: doskonali intuicyjne rozumienie pojęcia algorytmu zna pojęcie algorytmu optymalnego, czyli możliwie najlepszej metody rozwiązywania zauważa problemy w życiu codziennym, gdzie rozwiązanie jest algorytmem rozwija logiczne myślenie Adresaci lekcji Lekcja skierowana jest do uczniów ostatniej klasy gimnazjum lub do uczniów klas szkoły średniej. Uczniowie znają pojecie algorytmu, potrafią opisad krok po kroku algorytm zadanego problemu. Miejsce zajęć Zajęcia odbywają się w sali komputerowej wyposażonej w odpowiednią liczbę stanowisk komputerowych oraz w rzutnik multimedialny i ekran. Przebieg zajęć Mini wykład teoretyczny : 1 Podstawowe pojęcia użyte w wykładzie Graf w uproszczeniu zbiór wierzchołków, które mogą byd połączone krawędziami, w taki sposób, że każda krawędź kooczy się i zaczyna w którymś z wierzchołków. Grafy to 1 Wykład zaczerpnięty z MINI Wykłady, Wydział Matematyki i Nauk Informacyjnych Politechniki Warszawskiej

2 podstawowy obiekt rozważao teorii grafów. Za pierwszego teoretyka i badacza grafów uważa się Leonarda Eulera. Przykłady grafów możemy zobaczyd na Rysunku 1 graf z ponumerowanymi wierzchołkami i Rysunku 2 graf z ponumerowanymi wierzchołkami oraz wagami krawędzi. Rysunek 1 Przykład grafu Rysunek 2 Przykład grafu, z wagami krawędzi Cykl/ szlak Eulera: szlak, który zawiera każdą krawędź grafu G jest nazwany szlakiem/cyklem Eulera grafu G. Obchód grafu G to skooczony domknięty spacer przechodzący przez każdą krawędź G przynajmniej jeden raz. Obchód Eulera jest obchodem zawierającym każdą krawędź grafu G dokładnie jeden raz. Graf nazywamy eulerowskim (grafem Eulera) jeżeli zawiera obchód Eulera. Sformułowanie problemu. Rozważmy graf, którego krawędzie odpowiadają ulicom w rejonie, obsługiwanym przez listonosza. Wierzchołki to po prostu skrzyżowania ulic. Krawędziom nadajemy wagi, które oznaczają odległości między dwoma skrzyżowaniami. Znalezienie możliwie najkrótszej drogi, którą musi przejśd listonosz sprowadza sie do znalezienia w tym grafie drogi o minimalnej sumie wag krawędzi, która przechodzi przez każdą krawędź co najmniej raz. 2

3 Jeśli graf posiada cykl Eulera. Jeśli dany graf posiada cykl Eulera, to istnieje taka droga, która zaczyna i kooczy sie w tym samym punkcie i wymaga przejścia po każdej ulicy dokładnie raz. Zauważmy, że ponieważ każdy cykl Eulera przechodzi raz przez każdą krawędź to suma wag krawędzi (długośd drogi, którą musi przejśd listonosz) jest zawsze taka sama (nie zależy od wierzchołka, w którym cykl ten zaczyna się i kooczy). Rozwiązaniem jest więc dowolny cykl Eulera w tym grafie. Jeśli graf nie posiada cyklu Eulera. W takim przypadku listonosz będzie zmuszony przejśd niektórymi ulicami wielokrotnie. Rozwiązanie jest więc cyklem, w którym suma długości krawędzi wybranych więcej niż raz jest możliwie najmniejsza. Przykład Na rysunku pokazany jest układ ulic niedaleko Politechniki Warszawskiej. Załóżmy, że fragmenty tych pięciu ulic tworzą rejon listonosza. Rysunek 3 Fragment mapy w okolicy Politechniki Warszawskiej Obok nazw ulic umieszczone są odległości w metrach. Prostokąt oznaczony literą P oznacza miejsce, w którym umieściliśmy pocztę, na której pracuje 'nasz' listonosz. (Na marginesie: nazwy i układ ulic są prawdziwe, jednak podane odległości oraz umiejscowienie poczty nie odpowiadają rzeczywistości. Pocztę umieściliśmy w miejscu, gdzie w rzeczywistości znajduje się Gmach Główny, w którym ma swoją siedzibę Wydział MiNI. I niestety nie ma w tym budynku poczty.) Oto jak wygląda graf odpowiadający danemu układowi ulic. Zauważmy, że graf ten nie ma cyklu Eulera ponieważ posiada dwa wierzchołki, z których wychodzi nieparzysta liczba krawędzi. Na rysunku zaznaczono również rozwiązanie czyli optymalną trasę listonosza. 3

4 Rysunek 4 Graf na podstawie Rysunek 3 Zwródmy uwagę, że listonosz musi przejśd dwukrotnie tylko ulicę Nowakowskiego, zaś pozostałe ulice dokładnie raz. Powyższa droga jest najkrótszą z możliwych ponieważ odcinek, po którym przechodzi dwukrotnie liczy tylko 500 metrów i nie istnieje trasa spełniająca zadane warunki o krótszym odcinku, który listonosz musi pokonad więcej niż raz. Algorytm Fleury'ego Jest to algorytm znajdujący cykl Eulera w grafie. Jak już wiemy, jeśli graf posiada taki cykl, to jest on rozwiązaniem rozważanego problemu. Po wprowadzeniu pewnych modyfikacji może posłużyd również do rozwiązywania problemu chioskiego listonosza w przypadku grafów, które nie mają cyklu Eulera. Opis Algorytmu Fleury'ego Startujemy z dowolnego wierzchołka. Każda kolejna krawędź, po której przechodzimy, wybierana jest spośród krawędzi wychodzących z wierzchołka, w którym aktualnie się znajdujemy. Wybieramy oczywiście krawędź, po której jeszcze nie przeszliśmy. O ile jest to możliwe, usunięcie wybranej krawędzi nie powinno rozciąd grafu na dwa 'kawałki'. Jeśli uda nam się, postępując w ten sposób, dojśd do wierzchołka, z którego wyruszyliśmy i przejśd przez wszystkie krawędzie, to otrzymana droga jest cyklem Eulera. Podsumowując otrzymujemy następujący ogólny algorytm rozwiązujący problem chioskiego listonosza: K01: Sprawdź, czy graf jest spójny. Jeśli nie jest, to zakoocz algorytm z odpowiednim komunikatem K02: Wyszukaj w grafie wszystkie wierzchołki o nieparzystych stopniach K03: Jeśli liczba tych wierzchołków jest równa 0, przejdź do kroku K07 K04: Wyznacz najkrótsze ścieżki łączące ze sobą wszystkie znalezione wierzchołki o nieparzystych stopniach. K05: Wyszukaj skojarzenie tych wierzchołków w pary o najmniejszej sumie wag krawędzi 4

5 K06: Krawędzie wchodzące w skład wyznaczonych ścieżek skojarzenia zdubluj w grafie wejściowym K07: Wyznacz w grafie cykl Eulera i wyprowadź wynik K08: Zakoocz algorytm Zadanie dla uczniów Wyobraź sobie, że zostałeś zatrudniony jako listonosz na poczcie przy ulicy Nowowiejskiej 48. Poczta znajduje się u zbiegu ulic Nowowiejskiej i Barlickiego (w rzeczywistości jest tam placówka pocztowa). Twój rewir, po którym codziennie się poruszasz roznosząc przesyłki listowe przedstawia mapka na Rysunku 5. Zaplanuj swoją codzienną pracę, czyli trasę roznoszenia listów tak, aby Twoja droga była jak najkrótsza. Rysunek 5 Fragment mapy Wrocławia 2 2 Mapa wykonana za pomocą Google Maps 5

6 Uczniowie zanim zaczną szukad rozwiązania danego problemu, powinni sami określid długośd poszczególnych ulic, korzystając z podanej skali. Następnie uczniowie przerysowują mapę do postaci grafu. Rysunek 6 Graf na podstawie Rysunek 5 Uczniowie korzystając z przykładu powinni zauważyd, że w grafie nie ma szlaku Eulera, ponieważ są wierzchołki, z których wychodzi nieparzysta liczba krawędzi (dokładnie są 4 takie wierzchołki). Zatem niektóre z ulic należy przejśd dwukrotnie. Postępując zgodnie z algorytmem Fleury'ego, tzn. wychodząc z poczty i wybierając ulicę po której jeszcze nie szliśmy i starając się nie rozcinając grafu na dwie części, uczniowie powinni otrzymad rozwiązanie. 6

7 Rysunek 7 Rozwiązanie zadania Widad, że w każdym nieparzystym wierzchołku (czyli takim, z którego wychodzi nieparzysta liczba ulic), jedna z wychodzących krawędzi została podwojona. Ulice Kluczborska na odcinku od Żeromskiego do Barlickiego, Nowowiejska pomiędzy Stein a Barlickiego oraz Barlickiego pomiędzy Nowowiejską a Orzeszkowej zostaną pokonane dwukrotnie. Jest to rozwiązanie optymalne, czyli droga listonosza będzie najkrótsza z możliwych. Kontynuacja Wcześniejsze zadanie może mied ciekawą kontynuacją. Problem chioskiego listonosza można przenieśd na wędrówkę po szklakach górskich. W tym przypadku należy jednak problem zmodyfikowad, wędrówki po górach są zazwyczaj kilkudniowe zatem wymagają zaplanowania noclegów. Jak zaplanowad wycieczkę w Kotlinę Kłodzką, aby wędrowad wszystkimi szlakami przy najmniejszej liczbie przebytych kilometrów? 7

8 Rysunek 8 Plan szlaków w Kotlinie Kłodzkiej Literatura Gurbiel E., Hardt-Olejniczak G., Kołczyk E., Krupicka H., Sysło M. M., Informatyka Poradnik dla nauczyciel, WSiP, Warszawa 2004 Sysło M.M., Informatyka i technologia informacyjna w szkole, Instytut Informatyki UWr, Wrocław 2004 MINI Wykłady, Wydział Matematyki i Nauk Informacyjnych Politechniki Warszawskiej

Grafy dla każdego. dr Krzysztof Bryś. Wydział Matematyki i Nauk Informacyjnych Politechnika Warszawska.

Grafy dla każdego. dr Krzysztof Bryś. Wydział Matematyki i Nauk Informacyjnych Politechnika Warszawska. Grafy dla każdego dr Krzysztof Bryś brys@mini.pw.edu.pl Wydział Matematyki i Nauk Informacyjnych Politechnika Warszawska www.mini.pw.edu.pl Warszawa, 28 marca 2015 Graf składa się z elementów pewnego zbioru

Bardziej szczegółowo

Suma dwóch grafów. Zespolenie dwóch grafów

Suma dwóch grafów. Zespolenie dwóch grafów Suma dwóch grafów G 1 = ((G 1 ), E(G 1 )) G 2 = ((G 2 ), E(G 2 )) (G 1 ) i (G 2 ) rozłączne Suma G 1 G 2 graf ze zbiorem wierzchołków (G 1 ) (G 2 ) i rodziną krawędzi E(G 1 ) E(G 2 ) G 1 G 2 G 1 G 2 Zespolenie

Bardziej szczegółowo

Matematyczne Podstawy Informatyki

Matematyczne Podstawy Informatyki Matematyczne Podstawy Informatyki dr inż. Andrzej Grosser Instytut Informatyki Teoretycznej i Stosowanej Politechnika Częstochowska Rok akademicki 03/0 Przeszukiwanie w głąb i wszerz I Przeszukiwanie metodą

Bardziej szczegółowo

Teoria grafów dla małolatów. Andrzej Przemysław Urbański Instytut Informatyki Politechnika Poznańska

Teoria grafów dla małolatów. Andrzej Przemysław Urbański Instytut Informatyki Politechnika Poznańska Teoria grafów dla małolatów Andrzej Przemysław Urbański Instytut Informatyki Politechnika Poznańska Wstęp Matematyka to wiele różnych dyscyplin Bowiem świat jest bardzo skomplikowany wymaga rozważenia

Bardziej szczegółowo

Elementy teorii grafów Elementy teorii grafów

Elementy teorii grafów Elementy teorii grafów Spis tresci 1 Spis tresci 1 Często w zagadnieniach praktycznych rozważa się pewien zbiór obiektów wraz z zależnościami jakie łączą te obiekty. Dla przykładu można badać pewną grupę ludzi oraz strukturę

Bardziej szczegółowo

Algorytmy i Struktury Danych.

Algorytmy i Struktury Danych. Algorytmy i Struktury Danych. Grafy dr hab. Bożena Woźna-Szcześniak bwozna@gmail.com Jan Długosz University, Poland Wykład 9 Bożena Woźna-Szcześniak (AJD) Algorytmy i Struktury Danych. Wykład 9 1 / 53

Bardziej szczegółowo

TEORIA GRAFÓW I SIECI

TEORIA GRAFÓW I SIECI TEORIA GRAFÓW I SIECI Temat nr 3: Marszruty, łańcuchy, drogi w grafach dr hab. inż. Zbigniew TARAPATA, prof. WAT e-mail: zbigniew.tarapata@wat.edu.pl http://tarapata.edu.pl tel.: 261-83-95-04, p.225/100

Bardziej szczegółowo

Matematyczne Podstawy Informatyki

Matematyczne Podstawy Informatyki Matematyczne Podstawy Informatyki dr inż. Andrzej Grosser Instytut Informatyki Teoretycznej i Stosowanej Politechnika Częstochowska Rok akademicki 2013/2014 Twierdzenie 2.1 Niech G będzie grafem prostym

Bardziej szczegółowo

Konspekt zajęć z informatyki Wojciech Furgała ZPR-S Oława

Konspekt zajęć z informatyki Wojciech Furgała ZPR-S Oława Konspekt zajęć z informatyki Wojciech Furgała ZPR-S Oława 1. Temat: Planowanie optymalnej wycieczki szlakami górskimi (problem Eulera) 2. Czas trwania lekcji: 2 godziny lekcyjne 3. Przygotowanie uczniów:

Bardziej szczegółowo

Opracowanie prof. J. Domsta 1

Opracowanie prof. J. Domsta 1 Opracowanie prof. J. Domsta 1 Algorytm FLEURY'ego: Twierdzenie 6.5 G-graf eulerowski. Wtedy cykl Eulera otrzymujemy nastepująco: a) Start w dowolnym wierzchołku b) Krawędzie w dowolnej kolejności po przebyciu

Bardziej szczegółowo

MATEMATYKA DYSKRETNA - MATERIAŁY DO WYKŁADU GRAFY

MATEMATYKA DYSKRETNA - MATERIAŁY DO WYKŁADU GRAFY ERIAŁY DO WYKŁADU GRAFY Graf nieskierowany Grafem nieskierowanym nazywamy parę G = (V, E), gdzie V jest pewnym zbiorem skończonym (zwanym zbiorem wierzchołków grafu G), natomiast E jest zbiorem nieuporządkowanych

Bardziej szczegółowo

Teoria grafów II. Materiały pomocnicze do wykładu. wykładowca: dr Magdalena Kacprzak

Teoria grafów II. Materiały pomocnicze do wykładu. wykładowca: dr Magdalena Kacprzak Teoria grafów II Materiały pomocnicze do wykładu wykładowca: dr Magdalena Kacprzak Graf planarny Graf planarny Graf, który może być narysowany tak, by uniknąć przecinania się krawędzi, nazywamy grafem

Bardziej szczegółowo

Matematyka dyskretna

Matematyka dyskretna Matematyka dyskretna Wykład 13: Teoria Grafów Gniewomir Sarbicki Literatura R.J. Wilson Wprowadzenie do teorii grafów Definicja: Grafem (skończonym, nieskierowanym) G nazywamy parę zbiorów (V (G), E(G)),

Bardziej szczegółowo

WYŻSZA SZKOŁA INFORMATYKI STOSOWANEJ I ZARZĄDZANIA

WYŻSZA SZKOŁA INFORMATYKI STOSOWANEJ I ZARZĄDZANIA DROGI i CYKLE w grafach Dla grafu (nieskierowanego) G = ( V, E ) drogą z wierzchołka v 0 V do v t V nazywamy ciąg (naprzemienny) wierzchołków i krawędzi grafu: ( v 0, e, v, e,..., v t, e t, v t ), spełniający

Bardziej szczegółowo

Algorytmy i Struktury Danych.

Algorytmy i Struktury Danych. Algorytmy i Struktury Danych. Grafy Bożena Woźna-Szcześniak bwozna@gmail.com Jan Długosz University, Poland Wykład 8 Bożena Woźna-Szcześniak (AJD) Algorytmy i Struktury Danych. Wykład 8 1 / 39 Plan wykładu

Bardziej szczegółowo

Wstęp do informatyki dr Adrian Horzyk, paw. H Wykład TEORIA GRAFÓW

Wstęp do informatyki dr Adrian Horzyk, paw. H Wykład TEORIA GRAFÓW TEORIA GRAFÓW W osiemnastym wieku mieszkańcy Królewca lubili spacerować po mostach na rzece Pregole, których mieli w mieście siedem. Plan mostów pokazuje rysunek. Ale takie zwykłe spacerowanie po jakimś

Bardziej szczegółowo

Graf. Definicja marca / 1

Graf. Definicja marca / 1 Graf 25 marca 2018 Graf Definicja 1 Graf ogólny to para G = (V, E), gdzie V jest zbiorem wierzchołków (węzłów, punktów grafu), E jest rodziną krawędzi, które mogą być wielokrotne, dokładniej jednoelementowych

Bardziej szczegółowo

Digraf. 13 maja 2017

Digraf. 13 maja 2017 Digraf 13 maja 2017 Graf skierowany, digraf, digraf prosty Definicja 1 Digraf prosty G to (V, E), gdzie V jest zbiorem wierzchołków, E jest rodziną zorientowanych krawędzi, między różnymi wierzchołkami,

Bardziej szczegółowo

Działanie algorytmu oparte jest na minimalizacji funkcji celu jako suma funkcji kosztu ( ) oraz funkcji heurystycznej ( ).

Działanie algorytmu oparte jest na minimalizacji funkcji celu jako suma funkcji kosztu ( ) oraz funkcji heurystycznej ( ). Algorytm A* Opracowanie: Joanna Raczyńska 1.Wstęp Algorytm A* jest heurystycznym algorytmem służącym do znajdowania najkrótszej ścieżki w grafie. Jest to algorytm zupełny i optymalny, co oznacza, że zawsze

Bardziej szczegółowo

Przykłady grafów. Graf prosty, to graf bez pętli i bez krawędzi wielokrotnych.

Przykłady grafów. Graf prosty, to graf bez pętli i bez krawędzi wielokrotnych. Grafy Graf Graf (ang. graph) to zbiór wierzchołków (ang. vertices), które mogą być połączone krawędziami (ang. edges) w taki sposób, że każda krawędź kończy się i zaczyna w którymś z wierzchołków. Graf

Bardziej szczegółowo

Droga i cykl Eulera Przykłady zastosowania drogi i cyku Eulera Droga i cykl Hamiltona. Wykład 4. Droga i cykl Eulera i Hamiltona

Droga i cykl Eulera Przykłady zastosowania drogi i cyku Eulera Droga i cykl Hamiltona. Wykład 4. Droga i cykl Eulera i Hamiltona Wykład 4. Droga i cykl Eulera i Hamiltona 1 / 92 Grafy Eulera Droga i cykl Eulera Niech G będzie grafem spójnym. Definicja Jeżeli w grafie G istnieje zamknięta droga prosta zawierająca wszystkie krawędzie

Bardziej szczegółowo

Drzewa. Jeżeli graf G jest lasem, który ma n wierzchołków i k składowych, to G ma n k krawędzi. Własności drzew

Drzewa. Jeżeli graf G jest lasem, który ma n wierzchołków i k składowych, to G ma n k krawędzi. Własności drzew Drzewa Las - graf, który nie zawiera cykli Drzewo - las spójny Jeżeli graf G jest lasem, który ma n wierzchołków i k składowych, to G ma n k krawędzi. Własności drzew Niech T graf o n wierzchołkach będący

Bardziej szczegółowo

Minimalne drzewa rozpinające

Minimalne drzewa rozpinające KNM UŚ 26-28 listopada 2010 Ostrzeżenie Wprowadzenie Motywacja Definicje Niektóre pojęcia pojawiające się podczas tego referatu są naszymi autorskimi tłumaczeniami z języka angielskiego. Nie udało nam

Bardziej szczegółowo

MODELE SIECIOWE 1. Drzewo rozpinające 2. Najkrótsza droga 3. Zagadnienie maksymalnego przepływu źródłem ujściem

MODELE SIECIOWE 1. Drzewo rozpinające 2. Najkrótsza droga 3. Zagadnienie maksymalnego przepływu źródłem ujściem MODELE SIECIOWE 1. Drzewo rozpinające (spanning tree) w grafie liczącym n wierzchołków to zbiór n-1 jego krawędzi takich, że dowolne dwa wierzchołki grafu można połączyć za pomocą krawędzi należących do

Bardziej szczegółowo

Teoria grafów podstawy. Materiały pomocnicze do wykładu. wykładowca: dr Magdalena Kacprzak

Teoria grafów podstawy. Materiały pomocnicze do wykładu. wykładowca: dr Magdalena Kacprzak Teoria grafów podstawy Materiały pomocnicze do wykładu wykładowca: dr Magdalena Kacprzak Grafy zorientowane i niezorientowane Przykład 1 Dwa pociągi i jeden most problem wzajemnego wykluczania się Dwa

Bardziej szczegółowo

6a. Grafy eulerowskie i hamiltonowskie

6a. Grafy eulerowskie i hamiltonowskie 6a. Grafy eulerowskie i hamiltonowskie Grzegorz Kosiorowski Uniwersytet Ekonomiczny w Krakowie zima 2016/2017 rzegorz Kosiorowski (Uniwersytet Ekonomiczny6a. w Krakowie) Grafy eulerowskie i hamiltonowskie

Bardziej szczegółowo

1) Grafy eulerowskie własnoci algorytmy. 2) Problem chiskiego listonosza

1) Grafy eulerowskie własnoci algorytmy. 2) Problem chiskiego listonosza 165 1) Grafy eulerowskie własnoci algorytmy 2) Problem chiskiego listonosza 166 Grafy eulerowskie Def. Graf (multigraf, niekoniecznie spójny) jest grafem eulerowskim, jeli zawiera cykl zawierajcy wszystkie

Bardziej szczegółowo

Algorytm Dijkstry znajdowania najkrótszej ścieżki w grafie

Algorytm Dijkstry znajdowania najkrótszej ścieżki w grafie Algorytm Dijkstry znajdowania najkrótszej ścieżki w grafie Używane struktury danych: V - zbiór wierzchołków grafu, V = {1,2,3...,n} E - zbiór krawędzi grafu, E = {(i,j),...}, gdzie i, j Î V i istnieje

Bardziej szczegółowo

Algorytmiczna teoria grafów

Algorytmiczna teoria grafów Przedmiot fakultatywny 20h wykładu + 20h ćwiczeń 21 lutego 2014 Zasady zaliczenia 1 ćwiczenia (ocena): kolokwium, zadania programistyczne (implementacje algorytmów), praca na ćwiczeniach. 2 Wykład (egzamin)

Bardziej szczegółowo

Programowanie sieciowe. Tadeusz Trzaskalik

Programowanie sieciowe. Tadeusz Trzaskalik Programowanie Tadeusz Trzaskalik 8.1. Wprowadzenie Słowa kluczowe Drzewo rozpinające Minimalne drzewo rozpinające Najkrótsza droga w sieci Wierzchołek początkowy Maksymalny przepływ w sieci Źródło Ujście

Bardziej szczegółowo

Algorytmika Problemów Trudnych

Algorytmika Problemów Trudnych Algorytmika Problemów Trudnych Wykład 9 Tomasz Krawczyk krawczyk@tcs.uj.edu.pl Kraków, semestr letni 2016/17 plan wykładu Algorytmy aproksymacyjne: Pojęcie algorytmu aproksymacyjnego i współczynnika aproksymowalności.

Bardziej szczegółowo

Ogólne wiadomości o grafach

Ogólne wiadomości o grafach Ogólne wiadomości o grafach Algorytmy i struktury danych Wykład 5. Rok akademicki: / Pojęcie grafu Graf zbiór wierzchołków połączonych za pomocą krawędzi. Podstawowe rodzaje grafów: grafy nieskierowane,

Bardziej szczegółowo

a) 7 b) 19 c) 21 d) 34

a) 7 b) 19 c) 21 d) 34 Zadanie 1. Pytania testowe dotyczące podstawowych własności grafów. Zadanie 2. Przy każdym z zadań może się pojawić polecenie krótkiej charakterystyki algorytmu. Zadanie 3. W zadanym grafie sprawdzenie

Bardziej szczegółowo

Drzewa spinające MST dla grafów ważonych Maksymalne drzewo spinające Drzewo Steinera. Wykład 6. Drzewa cz. II

Drzewa spinające MST dla grafów ważonych Maksymalne drzewo spinające Drzewo Steinera. Wykład 6. Drzewa cz. II Wykład 6. Drzewa cz. II 1 / 65 drzewa spinające Drzewa spinające Zliczanie drzew spinających Drzewo T nazywamy drzewem rozpinającym (spinającym) (lub dendrytem) spójnego grafu G, jeżeli jest podgrafem

Bardziej szczegółowo

5c. Sieci i przepływy

5c. Sieci i przepływy 5c. Sieci i przepływy Grzegorz Kosiorowski Uniwersytet Ekonomiczny w Krakowie zima 2016/2017 rzegorz Kosiorowski (Uniwersytet Ekonomiczny w Krakowie) 5c. Sieci i przepływy zima 2016/2017 1 / 40 1 Definicje

Bardziej szczegółowo

Matematyczne Podstawy Informatyki

Matematyczne Podstawy Informatyki Matematyczne Podstawy Informatyki dr inż. Andrzej Grosser Instytut Informatyki Teoretycznej i Stosowanej Politechnika Częstochowska Rok akademicki 2013/2014 Informacje podstawowe 1. Konsultacje: pokój

Bardziej szczegółowo

TEORETYCZNE PODSTAWY INFORMATYKI

TEORETYCZNE PODSTAWY INFORMATYKI 1 TEORETYCZNE PODSTAWY INFORMATYKI WFAiS UJ, Informatyka Stosowana I rok studiów, I stopień Wykład 14c 2 Definicje indukcyjne Twierdzenia dowodzone przez indukcje Definicje indukcyjne Definicja drzewa

Bardziej szczegółowo

Porównanie algorytmów wyszukiwania najkrótszych ścieżek międz. grafu. Daniel Golubiewski. 22 listopada Instytut Informatyki

Porównanie algorytmów wyszukiwania najkrótszych ścieżek międz. grafu. Daniel Golubiewski. 22 listopada Instytut Informatyki Porównanie algorytmów wyszukiwania najkrótszych ścieżek między wierzchołkami grafu. Instytut Informatyki 22 listopada 2015 Algorytm DFS w głąb Algorytm przejścia/przeszukiwania w głąb (ang. Depth First

Bardziej szczegółowo

Wyznaczanie optymalnej trasy problem komiwojażera

Wyznaczanie optymalnej trasy problem komiwojażera Wyznaczanie optymalnej trasy problem komiwojażera Optymalizacja w podejmowaniu decyzji Opracowała: mgr inż. Natalia Malinowska Wrocław, dn. 28.03.2017 Wydział Elektroniki Politechnika Wrocławska Plan prezentacji

Bardziej szczegółowo

Algorytmy grafowe. Wykład 1 Podstawy teorii grafów Reprezentacje grafów. Tomasz Tyksiński CDV

Algorytmy grafowe. Wykład 1 Podstawy teorii grafów Reprezentacje grafów. Tomasz Tyksiński CDV Algorytmy grafowe Wykład 1 Podstawy teorii grafów Reprezentacje grafów Tomasz Tyksiński CDV Rozkład materiału 1. Podstawowe pojęcia teorii grafów, reprezentacje komputerowe grafów 2. Przeszukiwanie grafów

Bardziej szczegółowo

Zad. 1 Zad. 2 Zad. 3 Zad. 4 Zad. 5 SUMA

Zad. 1 Zad. 2 Zad. 3 Zad. 4 Zad. 5 SUMA Zad. 1 Zad. 2 Zad. 3 Zad. 4 Zad. 5 SUMA Zad. 1 (12p.)Niech n 3k > 0. Zbadać jaka jest najmniejsza możliwa liczba krawędzi w grafie, który ma dokładnie n wierzchołków oraz dokładnie k składowych, z których

Bardziej szczegółowo

WYŻSZA SZKOŁA INFORMATYKI STOSOWANEJ I ZARZĄDZANIA

WYŻSZA SZKOŁA INFORMATYKI STOSOWANEJ I ZARZĄDZANIA DRZEWA i LASY Drzewem nazywamy graf spójny nie zawierający cykli elementarnych. Lasem nazywamy graf nie zawierający cykli elementarnych. Przykłady drzew i lasów takie krawędzie są wykluczone drzewo las

Bardziej szczegółowo

Kolorowanie wierzchołków Kolorowanie krawędzi Kolorowanie regionów i map. Wykład 8. Kolorowanie

Kolorowanie wierzchołków Kolorowanie krawędzi Kolorowanie regionów i map. Wykład 8. Kolorowanie Wykład 8. Kolorowanie 1 / 62 Kolorowanie wierzchołków - definicja Zbiory niezależne Niech G będzie grafem bez pętli. Definicja Mówimy, że G jest grafem k kolorowalnym, jeśli każdemu wierzchołkowi możemy

Bardziej szczegółowo

Grafy co o ich rysowaniu wiedzą przedszkolaki i co z tego wynika dla matematyków

Grafy co o ich rysowaniu wiedzą przedszkolaki i co z tego wynika dla matematyków Wykłady popularne z matematyki Grafy co o ich rysowaniu wiedzą przedszkolaki i co z tego wynika dla matematyków Joanna Jaszuńska Politechnika Warszawska, 6 maja 2010 Grafy Wykłady popularne z matematyki,

Bardziej szczegółowo

Temat 9. Zabłocone miasto Minimalne drzewa rozpinające

Temat 9. Zabłocone miasto Minimalne drzewa rozpinające Temat 9 Zabłocone miasto Minimalne drzewa rozpinające Streszczenie Nasze życie związane jest z funkcjonowaniem wielu sieci: telefonicznych, energetycznych, komputerowych i drogowych. W przypadku każdej

Bardziej szczegółowo

Czy istnieje zamknięta droga spaceru przechodząca przez wszystkie mosty w Królewcu dokładnie jeden raz?

Czy istnieje zamknięta droga spaceru przechodząca przez wszystkie mosty w Królewcu dokładnie jeden raz? DROGI i CYKLE EULERA w grafach Czy istnieje zamknięta droga spaceru przechodząca przez wszystkie mosty w Królewcu dokładnie jeden raz? Czy można narysować podaną figurę nie odrywając ołówka od papieru

Bardziej szczegółowo

Przykładowe rozwiązania

Przykładowe rozwiązania Przykładowe rozwiązania Poniższy dokument zawiera przykładowe rozwiązania zadań z I etapu I edycji konkursu (2014 r.). Rozwiązania w formie takiej jak przedstawiona niżej uzyskałyby pełną liczbę punktów

Bardziej szczegółowo

ĆWICZENIE NR 1 WPROWADZENIE DO INFORMATYKI

ĆWICZENIE NR 1 WPROWADZENIE DO INFORMATYKI J.NAWROCKI, M. ANTCZAK, H. ĆWIEK, W. FROHMBERG, A. HOFFA, M. KIERZYNKA, S.WĄSIK ĆWICZENIE NR 1 WPROWADZENIE DO INFORMATYKI ZAD. 1. Narysowad graf nieskierowany. Zmodyfikowad go w taki sposób, aby stał

Bardziej szczegółowo

Temat: Czytamy mapę najbliższej okolicy.

Temat: Czytamy mapę najbliższej okolicy. Scenariusz lekcji geografii w klasie VII z wykorzystaniem tablicy interaktywnej Temat: Czytamy mapę najbliższej okolicy. Dział: Mój region i moja mała ojczyzna. Cel ogólny: Kształtowanie umiejętności czytania

Bardziej szczegółowo

Scenariusz lekcji. potrafi podać formułę obliczającą wartość wielomianu stopnia n w punkcie wg schemat Hornera;

Scenariusz lekcji. potrafi podać formułę obliczającą wartość wielomianu stopnia n w punkcie wg schemat Hornera; Scenariusz lekcji Scenariusz lekcji 1 TEMAT LEKCJI: Schemat Hornera 2 CELE LEKCJI: 2.1 Wiadomości: Uczeń potrafi: potrafi podać formułę obliczającą wartość wielomianu stopnia n w punkcie wg schemat Hornera;

Bardziej szczegółowo

SPÓJNOŚĆ. ,...v k. }, E={v 1. v k. i v k. ,...,v k-1. }. Wierzchołki v 1. v 2. to końce ścieżki.

SPÓJNOŚĆ. ,...v k. }, E={v 1. v k. i v k. ,...,v k-1. }. Wierzchołki v 1. v 2. to końce ścieżki. SPÓJNOŚĆ Graf jest spójny, gdy dla każdego podziału V na dwa rozłączne podzbiory A i B istnieje krawędź z A do B. Definicja równoważna: Graf jest spójny, gdy każde dwa wierzchołki są połączone ścieżką

Bardziej szczegółowo

Algorytmy wyznaczania centralności w sieci Szymon Szylko

Algorytmy wyznaczania centralności w sieci Szymon Szylko Algorytmy wyznaczania centralności w sieci Szymon Szylko Zakład systemów Informacyjnych Wrocław 10.01.2008 Agenda prezentacji Cechy sieci Algorytmy grafowe Badanie centralności Algorytmy wyznaczania centralności

Bardziej szczegółowo

Problem skoczka szachowego i inne cykle Hamiltona na szachownicy n x n

Problem skoczka szachowego i inne cykle Hamiltona na szachownicy n x n i inne cykle Hamiltona na szachownicy n x n Uniwersytet Warszawski 15 marca 2007 Agenda 1 2 naiwne Prosty algorytm liniowy 3 Problem znany był już od bardzo dawna, jako łamigłówka logiczna. Był też stosowany

Bardziej szczegółowo

Przykład planowania sieci publicznego transportu zbiorowego

Przykład planowania sieci publicznego transportu zbiorowego TRANSPORT PUBLICZNY Przykład planowania sieci publicznego transportu zbiorowego Źródło: Bieńczak M., 2015 Politechnika Poznańska, Wydział Maszyn Roboczych i Transportu 1 METODYKA ZAŁOśENIA Dostarczanie

Bardziej szczegółowo

Scenariusz lekcji. podać przykłady zalet użycia takiej instrukcji; opisać algorytm obliczania średniej n liczb;

Scenariusz lekcji. podać przykłady zalet użycia takiej instrukcji; opisać algorytm obliczania średniej n liczb; 1 TEMAT LEKCJI: Instrukcja pętli For w języku Turbo Pascal 2 CELE LEKCJI: 2.1 Wiadomości: Uczeń potrafi: podać konstrukcję instrukcji pętli For w języku Turbo Pascal; omówić sposób działania instrukcji

Bardziej szczegółowo

Konspekt lekcji matematyki z wykorzystaniem multimedialnych podręczników EDU ROM przeprowadzonej w klasie VI SP

Konspekt lekcji matematyki z wykorzystaniem multimedialnych podręczników EDU ROM przeprowadzonej w klasie VI SP Konspekt lekcji matematyki z wykorzystaniem multimedialnych podręczników EDU ROM przeprowadzonej w klasie VI SP Temat: Ostrosłupy przykłady ostrosłupów, siatki ostrosłupów I WSTĘP Autor: mgr Elżbieta Kubis

Bardziej szczegółowo

Kombinowanie o nieskończoności. 2. Wyspy, mosty, mapy i kredki materiały do ćwiczeń

Kombinowanie o nieskończoności. 2. Wyspy, mosty, mapy i kredki materiały do ćwiczeń Kombinowanie o nieskończoności. 2. Wyspy, mosty, mapy i kredki materiały do ćwiczeń Projekt Matematyka dla ciekawych świata spisał: Michał Korch 15 marzec 2018 Szybkie przypomnienie z wykładu Prezentacja

Bardziej szczegółowo

Krzyżówka oraz hasła do krzyżówki. Kalina R., Przewodnik po matematyce dla klas VII-VIII, część IV, SENS, Poznań 1997, s.20-22.

Krzyżówka oraz hasła do krzyżówki. Kalina R., Przewodnik po matematyce dla klas VII-VIII, część IV, SENS, Poznań 1997, s.20-22. Omnibus matematyczny 1. Cele lekcji a) Wiadomości Uczeń: zna pojęcia matematyczne z zakresu szkoły podstawowej i gimnazjum. b) Umiejętności Uczeń: potrafi podać odpowiednie pojęcie matematyczne na podstawie

Bardziej szczegółowo

Kolorowanie wierzchołków

Kolorowanie wierzchołków Kolorowanie wierzchołków Mając dany graf, pokolorować jego wierzchołki w taki sposób, aby każde dwa wierzchołki sąsiednie miały inny kolor. Każda krawędź łączy wierzchołki różnych kolorów. Takie pokolorowanie

Bardziej szczegółowo

2. Graficzna prezentacja algorytmów

2. Graficzna prezentacja algorytmów 1. Uczeń: Uczeń: 2. Graficzna prezentacja algorytmów a. 1. Cele lekcji i. a) Wiadomości zna sposoby graficznego przedstawiania algorytmów, wie w jaki sposób skonstruować schemat blokowy w taki sposób aby

Bardziej szczegółowo

Reprezentacje grafów nieskierowanych Reprezentacje grafów skierowanych. Wykład 2. Reprezentacja komputerowa grafów

Reprezentacje grafów nieskierowanych Reprezentacje grafów skierowanych. Wykład 2. Reprezentacja komputerowa grafów Wykład 2. Reprezentacja komputerowa grafów 1 / 69 Macierz incydencji Niech graf G będzie grafem nieskierowanym bez pętli o n wierzchołkach (x 1, x 2,..., x n) i m krawędziach (e 1, e 2,..., e m). 2 / 69

Bardziej szczegółowo

Graf to nie tylko tytuł szlachecki

Graf to nie tylko tytuł szlachecki Kàcik olimpijski Grafy Graf to nie tylko tytuł szlachecki karta pracy Graf to nie tylko tytuł szlachecki Graf co to takiego? Pojęcie grafu wprowadził szwajcarski matematyk Leonhard Euler (707 783). Grafem

Bardziej szczegółowo

Badania operacyjne: Wykład Zastosowanie kolorowania grafów w planowaniu produkcji typu no-idle

Badania operacyjne: Wykład Zastosowanie kolorowania grafów w planowaniu produkcji typu no-idle Badania operacyjne: Wykład Zastosowanie kolorowania grafów w planowaniu produkcji typu no-idle Paweł Szołtysek 12 czerwca 2008 Streszczenie Planowanie produkcji jest jednym z problemów optymalizacji dyskretnej,

Bardziej szczegółowo

Zofia Kruczkiewicz, Algorytmu i struktury danych, Wykład 14, 1

Zofia Kruczkiewicz, Algorytmu i struktury danych, Wykład 14, 1 Wykład Algorytmy grafowe metoda zachłanna. Właściwości algorytmu zachłannego:. W przeciwieństwie do metody programowania dynamicznego nie występuje etap dzielenia na mniejsze realizacje z wykorzystaniem

Bardziej szczegółowo

Scenariusz lekcji. podać definicję metody zachłannej stosowanej w algorytmie; wymienić cechy algorytmów zachłannych;

Scenariusz lekcji. podać definicję metody zachłannej stosowanej w algorytmie; wymienić cechy algorytmów zachłannych; Scenariusz lekcji 1 TEMAT LEKCJI: Algorytmy zachłanne. 2 CELE LEKCJI: 2.1 Wiadomości: Uczeń potrafi: podać definicję metody zachłannej stosowanej w algorytmie; wymienić cechy algorytmów zachłannych; wymienić

Bardziej szczegółowo

Wykłady z Matematyki Dyskretnej

Wykłady z Matematyki Dyskretnej Wykłady z Matematyki Dyskretnej dla kierunku Informatyka dr Instytut Informatyki Politechnika Krakowska Wykłady na bazie materiałów: dra hab. Andrzeja Karafiata dr hab. Joanny Kołodziej, prof. PK Kolorowanie

Bardziej szczegółowo

Matematyka dyskretna. Andrzej Łachwa, UJ, /14

Matematyka dyskretna. Andrzej Łachwa, UJ, /14 Matematyka dyskretna Andrzej Łachwa, UJ, 2016 andrzej.lachwa@uj.edu.pl 13/14 Grafy podstawowe definicje Graf to para G=(V, E), gdzie V to niepusty i skończony zbiór, którego elementy nazywamy wierzchołkami

Bardziej szczegółowo

Wprowadzenie Podstawy Fundamentalne twierdzenie Kolorowanie. Grafy planarne. Przemysław Gordinowicz. Instytut Matematyki, Politechnika Łódzka

Wprowadzenie Podstawy Fundamentalne twierdzenie Kolorowanie. Grafy planarne. Przemysław Gordinowicz. Instytut Matematyki, Politechnika Łódzka Grafy planarne Przemysław Gordinowicz Instytut Matematyki, Politechnika Łódzka Grafy i ich zastosowania Wykład 12 Plan prezentacji 1 Wprowadzenie 2 Podstawy 3 Fundamentalne twierdzenie 4 Kolorowanie grafów

Bardziej szczegółowo

Modele i narzędzia optymalizacji w systemach informatycznych zarządzania

Modele i narzędzia optymalizacji w systemach informatycznych zarządzania Politechnika Poznańska Modele i narzędzia optymalizacji w systemach informatycznych zarządzania Joanna Józefowska POZNAŃ 2010/11 Spis treści Rozdział 1. Metoda programowania dynamicznego........... 5

Bardziej szczegółowo

MATEMATYKA DYSKRETNA - KOLOKWIUM 2

MATEMATYKA DYSKRETNA - KOLOKWIUM 2 1 MATEMATYKA DYSKRETNA - KOLOKWIUM 2 GRUPA A RACHUNKI+KRÓTKIE WYJAŚNIENIA! NA TEJ KARTCE! KAŻDA DODATKOWA KARTKA TO MINUS 1 PUNKT! Imię i nazwisko...... Nr indeksu... 1. (3p.) Znajdź drzewo o kodzie Prufera

Bardziej szczegółowo

SKOJARZENIA i ZBIORY WEWN. STABILNE WIERZCH. Skojarzeniem w grafie G nazywamy dowolny podzbiór krawędzi parami niezależnych.

SKOJARZENIA i ZBIORY WEWN. STABILNE WIERZCH. Skojarzeniem w grafie G nazywamy dowolny podzbiór krawędzi parami niezależnych. SKOJARZENIA i ZBIORY WEWN. STABILNE WIERZCH. Rozważamy graf G = (V, E) Dwie krawędzie e, e E nazywamy niezależnymi, jeśli nie są incydentne ze wspólnym wierzchołkiem. Skojarzeniem w grafie G nazywamy dowolny

Bardziej szczegółowo

Scenariusz lekcji. opisać działanie poczty elektronicznej; opisać podobieństwa i różnice między pocztą elektroniczną i tradycyjną;

Scenariusz lekcji. opisać działanie poczty elektronicznej; opisać podobieństwa i różnice między pocztą elektroniczną i tradycyjną; Scenariusz lekcji 1 TEMAT LEKCJI Poczta elektroniczna 2 CELE LEKCJI 2.1 Wiadomości Uczeń potrafi: opisać działanie poczty elektronicznej; opisać podobieństwa i różnice między pocztą elektroniczną i tradycyjną;

Bardziej szczegółowo

Rzut oka na współczesną matematykę spotkanie 9-10: Zagadnienie czterech barw i teoria grafów

Rzut oka na współczesną matematykę spotkanie 9-10: Zagadnienie czterech barw i teoria grafów Rzut oka na współczesną matematykę spotkanie 9-10: Zagadnienie czterech barw i teoria grafów P. Strzelecki pawelst@mimuw.edu.pl Instytut Matematyki, Uniwersytet Warszawski MISH UW, semestr zimowy 2011-12

Bardziej szczegółowo

MATEMATYKA DLA CIEKAWSKICH

MATEMATYKA DLA CIEKAWSKICH MATEMATYKA DLA CIEKAWSKICH Dowodzenie twierdzeń przy pomocy kartki. Część II Na rysunku przedstawiony jest obszar pewnego miasta wraz z zaznaczonymi szkołami podstawowymi. Wyobraźmy sobie, że mamy przydzielić

Bardziej szczegółowo

Algorytmy mrówkowe. H. Bednarz. Wydział Informatyki Zachodniopomorski Uniwersytet Technologiczny w Szczecinie Inteligentne systemy informatyczne

Algorytmy mrówkowe. H. Bednarz. Wydział Informatyki Zachodniopomorski Uniwersytet Technologiczny w Szczecinie Inteligentne systemy informatyczne Algorytmy mrówkowe H. Bednarz Wydział Informatyki Zachodniopomorski Uniwersytet Technologiczny w Szczecinie Inteligentne systemy informatyczne 13 kwietnia 2015 1 2 3 4 Przestrzeń poszukiwań Ograniczenia

Bardziej szczegółowo

Matematyka Dyskretna - zadania

Matematyka Dyskretna - zadania zad. 1. Chcemy zdefiniować rekurencyjnie zbiór Z wszystkich trójkątów równoramiennych ABC, gdzie współrzędne wierzchołków będą liczbami całkowitymi, wierzchołek A zawsze będzie leżeć w początku układu

Bardziej szczegółowo

Środki dydaktyczne: komputer, projektor multimedialny, tablica, liniał, kolorowa kreda.

Środki dydaktyczne: komputer, projektor multimedialny, tablica, liniał, kolorowa kreda. Temat: Pojęcie wektora, składanie wektorów. Klasa: I LB. Czas trwania: 2 godziny lekcyjne. Cel ogólny (po lekcji uczeń): Zna pojęcie wektora oraz jego cechy, Rozumie pojęcia wartości, kierunku i zwrotu

Bardziej szczegółowo

Autostopem przez galaiktykę: Intuicyjne omówienie zagadnień. Tom I: Optymalizacja. Nie panikuj!

Autostopem przez galaiktykę: Intuicyjne omówienie zagadnień. Tom I: Optymalizacja. Nie panikuj! Autostopem przez galaiktykę: Intuicyjne omówienie zagadnień Tom I: Optymalizacja Nie panikuj! Autorzy: Iwo Błądek Konrad Miazga Oświadczamy, że w trakcie produkcji tego tutoriala nie zginęły żadne zwierzęta,

Bardziej szczegółowo

Przykładowe zadania z teorii liczb

Przykładowe zadania z teorii liczb Przykładowe zadania z teorii liczb I. Podzielność liczb całkowitych. Liczba a = 346 przy dzieleniu przez pewną liczbę dodatnią całkowitą b daje iloraz k = 85 i resztę r. Znaleźć dzielnik b oraz resztę

Bardziej szczegółowo

Informatyka w szkole - algorytm Dijkstry dla każdego. Krzysztof Diks Instytut Informatyki, Uniwersytet Warszawski

Informatyka w szkole - algorytm Dijkstry dla każdego. Krzysztof Diks Instytut Informatyki, Uniwersytet Warszawski Informatyka w szkole - algorytm Dijkstry dla każdego Krzysztof Diks Instytut Informatyki, Uniwersytet Warszawski Problem 1: Labirynt Źródło: www.dla-dzieci.ugu.pl Problem : Wilk, owca i kapusta Źródło:

Bardziej szczegółowo

Scenariusz lekcji. wymienić różnice pomiędzy kryptologią, kryptografią i kryptoanalizą;

Scenariusz lekcji. wymienić różnice pomiędzy kryptologią, kryptografią i kryptoanalizą; Scenariusz lekcji Scenariusz lekcji 1 TEMAT LEKCJI: Kryptografia i kryptoanaliza. 2 CELE LEKCJI: 2.1 Wiadomości: Uczeń potrafi: podać definicje pojęć: kryptologia, kryptografia i kryptoanaliza; wymienić

Bardziej szczegółowo

Podstawowe własności grafów. Wykład 3. Własności grafów

Podstawowe własności grafów. Wykład 3. Własności grafów Wykład 3. Własności grafów 1 / 87 Suma grafów Niech będą dane grafy proste G 1 = (V 1, E 1) oraz G 2 = (V 2, E 2). 2 / 87 Suma grafów Niech będą dane grafy proste G 1 = (V 1, E 1) oraz G 2 = (V 2, E 2).

Bardziej szczegółowo

1 Automaty niedeterministyczne

1 Automaty niedeterministyczne Szymon Toruńczyk 1 Automaty niedeterministyczne Automat niedeterministyczny A jest wyznaczony przez następujące składniki: Alfabet skończony A Zbiór stanów Q Zbiór stanów początkowych Q I Zbiór stanów

Bardziej szczegółowo

Scenariusz lekcji. rozpoznać prawidłową deklarację tablicy; podać odwołanie do określonego elementu tablicy.

Scenariusz lekcji. rozpoznać prawidłową deklarację tablicy; podać odwołanie do określonego elementu tablicy. Scenariusz lekcji 1 TEMAT LEKCJI: Zmienne tablicowe 2 CELE LEKCJI: 2.1 Wiadomości: Uczeń potrafi: podać definicję tablicy; podać definicję indeksu; wymienić cechy tablicy w VB.NET; podać postać deklaracji

Bardziej szczegółowo

Wojewódzki Konkurs Przedmiotowy z Matematyki dla uczniów gimnazjów województwa śląskiego w roku szkolnym 2012/2013

Wojewódzki Konkurs Przedmiotowy z Matematyki dla uczniów gimnazjów województwa śląskiego w roku szkolnym 2012/2013 Wojewódzki Konkurs Przedmiotowy z Matematyki dla uczniów gimnazjów województwa śląskiego w roku szkolnym 2012/2013 KOD UCZNIA Etap: Data: Czas pracy: rejonowy 10 stycznia 2013 r. 120 minut Informacje dla

Bardziej szczegółowo

OPTYMALIZACJA W LOGISTYCE

OPTYMALIZACJA W LOGISTYCE OPTYMALIZACJA W LOGISTYCE Optymalizacja zadań bazy transportowej ( część 1 ) Opracowano na podstawie : Stanisław Krawczyk, Metody ilościowe w logistyce ( przedsiębiorstwa ), Wydawnictwo C. H. Beck, Warszawa

Bardziej szczegółowo

KONSPEKT ZAJĘĆ KOŁA INFORMATYCZNEGO LUB MATEMATYCZNEGO W KLASIE III GIMNAZJUM LUB I LICEUM ( 2 GODZ.)

KONSPEKT ZAJĘĆ KOŁA INFORMATYCZNEGO LUB MATEMATYCZNEGO W KLASIE III GIMNAZJUM LUB I LICEUM ( 2 GODZ.) Joanna Osio asiaosio@poczta.onet.pl Nauczycielka matematyki w Gimnazjum im. Macieja Rataja w Żmigrodzie KONSPEKT ZAJĘĆ KOŁA INFORMATYCZNEGO LUB MATEMATYCZNEGO W KLASIE III GIMNAZJUM LUB I LICEUM ( 2 GODZ.)

Bardziej szczegółowo

Po zapoznaniu się z funkcją liniową możemy przyjśd do badania funkcji kwadratowej.

Po zapoznaniu się z funkcją liniową możemy przyjśd do badania funkcji kwadratowej. Po zapoznaniu się z funkcją liniową możemy przyjśd do badania funkcji kwadratowej. Definicja 1 Jednomianem stopnia drugiego nazywamy funkcję postaci: i a 0. Dziedziną tej funkcji jest zbiór liczb rzeczywistych

Bardziej szczegółowo

G. Wybrane elementy teorii grafów

G. Wybrane elementy teorii grafów Dorota Miszczyńska, Marek Miszczyński KBO UŁ Wybrane elementy teorii grafów 1 G. Wybrane elementy teorii grafów Grafy są stosowane współcześnie w różnych działach nauki i techniki. Za pomocą grafów znakomicie

Bardziej szczegółowo

Informatyka w logistyce przedsiębiorstw wykład 5

Informatyka w logistyce przedsiębiorstw wykład 5 Informatyka w logistyce przedsiębiorstw wykład 5 1. Charakterystyka i funkcje systemu klasy WMS 2. Funkcje systemu WMS 3. Elementy (moduły) systemu WMS 3.1. Operacje magazynowe 3.2. Transport i spedycja

Bardziej szczegółowo

51. Wykorzystywanie sumy, iloczynu i różnicy zdarzeń do obliczania prawdopodobieństw zdarzeń.

51. Wykorzystywanie sumy, iloczynu i różnicy zdarzeń do obliczania prawdopodobieństw zdarzeń. Matematyka lekcja 5 5. Wykorzystywanie sumy, iloczynu i różnicy zdarzeń do obliczania prawdopodobieństw zdarzeń. I. rzypomnij sobie:. Jak rysujemy drzewo stochastyczne i przy jego pomocy obliczamy prawdopodobieństwo

Bardziej szczegółowo

Algorytmiczna teoria grafów

Algorytmiczna teoria grafów Podstawowe pojęcia i klasy grafów Wykład 1 Grafy nieskierowane Definicja Graf nieskierowany (graf) G = (V,E) jest to uporządkowana para składająca się z niepustego skończonego zbioru wierzchołków V oraz

Bardziej szczegółowo

Złożoność obliczeniowa klasycznych problemów grafowych

Złożoność obliczeniowa klasycznych problemów grafowych Złożoność obliczeniowa klasycznych problemów grafowych Oznaczenia: G graf, V liczba wierzchołków, E liczba krawędzi 1. Spójność grafu Graf jest spójny jeżeli istnieje ścieżka łącząca każdą parę jego wierzchołków.

Bardziej szczegółowo

Egzamin, AISDI, I termin, 18 czerwca 2015 r.

Egzamin, AISDI, I termin, 18 czerwca 2015 r. Egzamin, AISDI, I termin, 18 czerwca 2015 r. 1 W czasie niezależnym do danych wejściowych działają algorytmy A. sortowanie bąbelkowego i Shella B. sortowanie szybkiego i przez prosty wybór C. przez podział

Bardziej szczegółowo

6. Wstępne pojęcia teorii grafów

6. Wstępne pojęcia teorii grafów 6. Wstępne pojęcia teorii grafów Grzegorz Kosiorowski Uniwersytet Ekonomiczny w Krakowie zima 2016/2017 rzegorz Kosiorowski (Uniwersytet Ekonomiczny w Krakowie) 6. Wstępne pojęcia teorii grafów zima 2016/2017

Bardziej szczegółowo

KONKURS Z MATEMATYKI DLA UCZNIÓW SZKÓŁ PODSTAWOWYCH

KONKURS Z MATEMATYKI DLA UCZNIÓW SZKÓŁ PODSTAWOWYCH ... kod pracy ucznia... pieczątka nagłówkowa szkoły KONKURS Z MATEMATYKI DLA UCZNIÓW SZKÓŁ PODSTAWOWYCH ETAP SZKOLNY Drogi Uczniu, witaj na I etapie konkursu matematycznego. Przeczytaj uważnie instrukcję

Bardziej szczegółowo

Matematyka dyskretna - 5.Grafy.

Matematyka dyskretna - 5.Grafy. Matematyka dyskretna - 5.Grafy. W tym rozdziale zajmiemy się grafami. Są to wykresy zawierające rozmaite informacje, przedstawiające połączenia pomiędzy różnymi swoimi elementami. Algorytmy na nich oparte

Bardziej szczegółowo

Struktury danych i złożoność obliczeniowa Wykład 5. Prof. dr hab. inż. Jan Magott

Struktury danych i złożoność obliczeniowa Wykład 5. Prof. dr hab. inż. Jan Magott Struktury danych i złożoność obliczeniowa Wykład. Prof. dr hab. inż. Jan Magott Algorytmy grafowe: podstawowe pojęcia, reprezentacja grafów, metody przeszukiwania, minimalne drzewa rozpinające, problemy

Bardziej szczegółowo