LABORATORIUM WYTRZYMAŁOŚCI MATERIAŁÓW Ćwiczenie 8 WYBOCZENIE RĘTÓW ŚCISKANYCH 8.1. Ce ćwiczenia Ceem ćwiczenia jest doświadczane wyznaczenie siły krytycznej pręta ściskanego podpartego przegubowo na obu końcach. Rysunek 8.1. Wyboczenie pręta ściskanego. 8.. odstawowe zaeżności dotyczące wyboczenia pręta ściskanego Wzór Euera da pręta ściskanego: kr EJ. (8.1) w 1
Rysunek 8.. Długości wyboczeniowe prętów ściskanych. Smukłość i smukłość graniczna prętów ściskanych: s w I, A s gr E (8.) prop Rysunek 8.3. Zakres stosowaności wzoru Euera. 8.3. Metoda pomiaru Ze wzgędu na ugięcia wstępne pręta oraz nieosiowość zadanego obciążenia (pręta w praktyce nie można obciążyć siłą dokładnie przyłożoną w osi), bezpośrednie wyznaczenie siły krytycznej pręta jest niemożiwe. Wykorzystujemy zatem metodę Southwea, która opiera się na założeniu, że pręt posiada ugięcie wstępne. Na rys. 8.1 pokazano schemat pręta, który uegł wyboczeniu.
Zakładamy ugięcie wstępne (tzw. imperfekcję wstępną) w postaci: x y0 asin, (8.3) gdzie a jest ugięciem w połowie długości pręta. Funkcja (8.3) spełnia warunki brzegowe przegubowego podparcia pręta. Jeżei pręt obciążymy siłą osiową, to całkowite ugięcie wyniesie: Moment gnący w przekroju o współrzędnej x wynosi: y 1 y y. (8.4) 0 M g y y ). (8.5) 1 ( 0 y Zatem równanie inii ugięcia pręta możemy zapisać w postaci: d y EI ( y 0 y). (8.6) dx Dzieąc obie strony równania (8.6) przez EI i uwzgędniając w nim zaeżność (8.3) otrzymujemy: gdzie: d y x k y k asin. (8.7) dx EI k (8.8) Rozwiązanie równania (8.7) przewidujemy w postaci: a x y C1 cos kx C sin kx sin. (8.9) kr 1 Z warunków brzegowych swobodnego podparcia końców pręta wyznaczamy stałe C 1 i C. Z warunku y = 0 da x = 0 wynika, że C 1 = 0 oraz z warunku y = 0 da x = wynika również C =0 (da cr). Zatem inia ugięcia pręta da < cr zdefiniowana jest następująco: a x y sin. (8.10) kr 1 Ugięcie w połowie długości pręta wynosi: a y. (8.11) x kr 1 Zaeżność (8.11) jest równaniem inii prostej w układzie współrzędnych (, ) i można ją zapisać w postaci (rys. 8.4): kr a. (8.11) gdzie tg α = kr. 3
Rysunek 8.4. Wykres Southwea. Wykres pokazany na rys. 8.4 sporządzamy na podstawie pomiarów siły ściskającej i ugięcia w połowie długości pręta i odczytujemy z niego wartość tg α równą poszukiwanej wartości siły krytycznej kr. 8.4. Wykonanie ćwiczenia Na stanowisku pomiarowym umieszczony jest pręt o przekroju poprzecznym pokazanym na rys. 8.5. odparcie przegubowe zreaizowane jest poprzez umieszczenie końców pręta w specjanych ostrzach. W połowie długości pręta ugięcie mierzone jest zegarowym czujnikiem przemieszczeń o działce eementarnej 0.01 mm. ręt obciążany jest za pomocą szaki, na której umieszczamy koejne obciążniki. Dane pomiarowe stanowiska są następujące: a a = 0,04 m - szerokość przekroju poprzecznego pręta b = 0,003 m - wysokość przekroju poprzecznego pręta = 0,774 m - długość pręta E =,1 10 5 Ma - moduł Younga materiału pręta 0 = 1,3 N - ciężar szaki c = 50 N - ciężar jednostkowego obciążnika b Rysunek 8.5. Stanowisko pomiarowe. 4
Wykonanie ćwiczenia składa się z następujących czynności: 1. Obiczenie smukłości pręta i sprawdzenie, czy obiczona smukłość jest większa od granicznej.. Obiczenie teoretycznej wartości siły krytycznej z wzoru Euera. 3. Wyzerowanie zegarowego czujnika przemieszczeń, a następnie wykonanie kiku deikatnych uderzeń w doną podporę pręta w ceu zimaizowania wpływu siły tarcia. onowne zanotowanie wskazania czujnika i jego zapis. 4. Zawieszenie szaki i zapis wskazania czujnika, odpowiadającego ciężarowi szaki. 5. Obciążanie szaki koejnymi obciążnikami o ciężarze 50 N aż do osiągnięcia wartości całkowitego obciążenia pręta ok. 0,8 kr i zapis koejnych wskazań czujnika. 6. Obiczenie wartości i (na podstawie wykonanych pomiarów). 7. Sporządzenie na papierze miimetrowym wykresu w funkcji 8. Wyznaczenie z wykresu eksperymentanej wartości siły krytycznej. 9. Obiczenie wzgędnego błędu pomiarowego. 8.5. Spis oznaczeń A - poe przekroju poprzecznego pręta I - imany moment bezwładności przekroju poprzecznego pręta w - długość wyboczeniowa s - smukłość pręta s gr = 100 - smukłość graniczna da stai σ prop - granica proporcjonaności σ past - granica pastyczności (R e) Literatura [1] Ćwiczenia aboratoryjne z wytrzymałości materiałów, raca zbiorowa pod red. M. Banasiaka, Wyd. Naukowe WN, Warszawa 000, str. 184-194. [] Laboratorium Wytrzymałości Materiałów, raca zbiorowa pod redakcją R. Grądzkiego, Wyd. Wydziału O. i Z. Ł, str. 119-18. [3] Niezgodziński M.E., Niezgodziński T., Wytrzymałość Materiałów, wyd. XIV WN, Warszawa 1998.. 5