Funkcje trygonometryczne Sinus kąta ostrego α stosunek długości przyprostokątnej leżącej naprzeciw kąta α do długości przeciwprostokątnej: sin α = a : c = a/c Cosinus kąta ostrego α stosunek długości przyprostokątnej przyległej do kąta α do długości przeciwprostokątnej: cos α = b : c = b / c Tangens kąta ostrego α stosunek długości przyprostokątnej leżącej naprzeciw kąta α do długości przyprostokątnej przyległej do tego kąta: tg α = a : b = a / b = tan α Cotangens kąta ostrego α stosunek długości przyprostokątnej przyległej do tego kąta do długości przyprostokątnej leżącej naprzeciw kąta α: ctg α = b : a = b / a b / a = ctg α = 1 : (a/b) = 1 : tg α = 1 / tg α Kąt skierowany kąt płaski z ustalonym uporządkowaniem ramion. Pierwsze ramię kąta nazywamy ramieniem początkowym, drugie ramieniem końcowym. Kąt skierowany oznaczamy łukiem zakończonym strzałką, wskazującą ramię końcowe.
Kąt skierowany umieszczony w układzie współrzędnych Kąt skierowany jest umieszczony w układzie współrzędnych, jeśli jego wierzchołek znajduje się w początku układu współrzędnych
Kąt skierowany zerowy kąt 0 o Kąt skierowany pełny 360 o Kąt α o dowolnej mierze stopniowej można przedstawić w postaci: γ = k*360 o + α, gdzie 0 α < 360 o oraz k C Wartości funkcji trygonometrycznych kątów 30 o, 45 o, 60 o Kąt α [ o ] 30 o 45 o 60 o sin α ½ 2 / 2 3 / 2 cos α 3 / 2 2 / 2 ½ tg α 3 / 3 1 3 ctg α 3 1 3 / 3 Związki między funkcjami trygonometrycznymi sin 2 α + cos 2 α = 1 (jedynka trygonometryczna) 1/tg α = ctg α sin α / cos α = tg α cos α / sin α = ctg α sin α = cos (90 o α) cos α = sin (90 o α) tg α = 1 / (tg 90 o α) tg α = sin α / cos α sin (180 o α ) = sin α cos (180 o α) = -cos α tg (180 o α) = -tg α ctg (180 o α) = -ctg α sin α = (1 cos 2 α) = tg α / ( (1 + tg 2 α) = 1/ ( (1 +ctg 2 α) cos α = (1 sin 2 α) = 1 / ( (1 + tg 2 α) = ctg/ ( (1 +ctg 2 α) tg α = sin α / (1 sin 2 α) = (1 sin 2 α) / cos α = 1 / ctg α) ctg α = (1 sin 2 α)/ sin α = cos α / (1 cos 2 α) = 1 / tg α) sin α = y/r, cos α = x/r, gdzie r = (x 2 + y 2 ) tg α = y/x, gdy x 0 ctg α = x/y, gdy y 0 Podstawowe tożsamości trygonometryczne
sin α = cos (90 o α) cos α = sin (90 o α) tg α = ctg (90 o α) ctg α = tg (90 o α) tg α = 1 / tg(90 o α) ctg α = 1/ tg (90 o α) sin 2 α + cos 2 α = 1 tg α = sin α / cos α sin (90º + α) = cos α tg (90 + α) = - 1/tg α sin (180 α) = sin α tg (180 α) = - tg α jedynka trygonometryczna tg (90 o α) = cos α / sin α cos (90 + α ) = - sin α cos (180 α) = - cos α ctg (180 α) = - ctg α sin (α + 360 o ) = sin α cos (α + 360 o ) = cos (α + 360 o ) tg (α + 360 o ) = tg α ctg (α + 360 o ) = ctg α sin(-α) = -sin α cos (-α) = cos α tg(-α) = -tg α ctg (-α) = -ctg α Funkcje trygonometryczne kątów 30 0, 45 0, 60 0 wartości na wykresach Funkcje sinus i cosinus kątów 30 o i 60 o - bezpośrednio z wykresu sin 30 o = ½ : 1 = ½ cos 30 o = 3/2 sin 60 o = 3/2 cos 60 o = ½ : 1 = ½ Funkcje tangens i cotangens kątów 30 o i 60 o z obliczeń tg 30 o = ½ : 3/2 = 1/ 3 = 3/3 ctg 30 o = 3/2 : ½ = 3 tg 60 o = 3/2 : ½ = 3 ctg 60 o = ½ : 3/2 = 1/ 3 = 3/3 Wartości funkcji tg 30 o i ctg 60 o - bezpośrednio z wykresu tg 30 o = 3/3/1 = 3/3 ctg 60 o = 3/3/1 = 3/3 Wartości funkcji tg 60 o i ctg 30 o - bezpośrednio z wykresu tg 60 o = 3/1 = 3 ctg 30 o = 3/1 = 3/3
Przeliczenie wartości funkcji trygonometrycznych kąta 0-90 o podana wartość jednej funkcji, obliczenie pozostałych Obliczenie wartości funkcji trygonometrycznych, gdy dana wartość jednej funkcji
Dana wartość jednej funkcji w postaci ilorazu lub jednej liczby zastąpienie ilorazem liczby przez 1
Znaki funkcji trygonometrycznych Ćwiartka układu sin α cos α tg α ctg α I (0 o - 90 o ) + + + + II (90 o -180 o ) + - - - III (180 o -270 o ) - - + + IV (270 o -360 o ) - + - - Wierszyk dotyczący znaków funkcji trygonometrycznych: W pierwszej wszystkie są dodatnie w drugiej tylko sinus w trzeciej tangens i cotangens a w czwartej cosinus
Wartości funkcji trygonometrycznych dla wielokrotności kata 90 o 0 o 90 o 180 o 270 o 360 o sin α 0 1 0-1 0 cos α 1 0-1 0 1 tg α 0 - ( ) 0 - ( ) 0 ctg α - ( ) 0 - ( ) 0 - ( ) Wzory redukcyjne φ 90 o - α 90 + α 180 - α 180 + α 270 - α 270 + α 360 - α sin φ cos α cos α sin α -sin α -cos α -cos α -sin α cos φ sin α -sin α -cos α -cos α -sin α sin α cos α tg φ ctg α -ctg α -tg α tg α ctg α -ctg α -tg α ctg φ tg α -tg α -ctg α ctg α tg α -tg α -ctg α Wzory trygonometryczne Podstawowe wzory sin 2 α + cos 2 α =1 - jedynka trygonometryczna tg α = sin α / cos α dla α π/2 + kπ i k C ctg α = cos α / sin α dla α kπ i k C tg α = 1/ ctg α dla α kπ/2 i k C ctg α = 1/ tg α dla α kπ/2 i k C tg α * ctg α = 1 Funkcje trygonometryczne sumy i różnicy kątów sin (α + β) = sin α * cos β + cos α * sin β cos (α + β) = cos α *cos β sinα * sin β tg (α + β) = (tg α + tgβ) / (1 tgα * tgβ) ctg (α + β) = ( ctg α * ctg β - 1) / (ctg α + ctg β) sin (α - β) = sin α * cos β cos α * sin β cos (α - β) = cos α * cos β + sin α * sin β tg (α - β) = (tg α tg β) / (1 + tg α * tg β) ctg(α-β) = (ctg α * ctgβ + 1) / (ctg β ctg α) Funkcje trygonometryczne kąta podwojonego sin2α = 2* sin α * cosα = 2*tgα / (1+tg 2 α) cos2α = cos 2 α - sin 2 α = 1-2*sin 2 α = (1-tg 2 α)/(1+tg 2 α) tg2α = 2* tgα / (1 - tg 2 α) = 2/(ctgα tgα) ctg2α = (ctg 2 α -1/(2*ctgα) = (ctgα tgα).2 Funkcje trygonometryczne połowy kąta sin(α/2) = ± ((1-cosα)/2) cos(α/2) = ± ((1+cosα)/2) (bierzemy znak + lub - w zależności od tego, do której ćwiartki należy α/2) tg(α/2) = ±(1-cosα)/sinα = sinα/(1+cosα) = (1-cosα)/sinα
ctg(α/2) =± (1+cosα)/sinα = (1+cosα)/sinα = sinα/(1-cosα) Sumy funkcji trygonometrycznych sinα+sinβ = 2 * sin((α+β)/2) * cos(α-β)/2) cosα+cosβ = 2*cos((α+β)/2) * cos(α-β)/2) tgα+tgβ = sin(α+β) / (cosα*cosβ) ctgα+ctgβ = sin(α+β) / (sinα*sinβ) Różnice funkcji trygonometrycznych sinα - sinβ = 2 * sin((α-β)/2) * cos(α+β)/2) cosα - cosβ = -2*sin((α-β)/2) * sin(α+β)/2) tgα - tgβ = sin(α-β) / (cosα*cosβ) ctgα - ctgβ = sin(β-α) / (sinα*sinβ) Parzystość i nieparzystość funkcji cos(-x) = cos(x) sin(-x) = -sin(x) tg(-x) = -tg(x) ctg(-x) = -ct(x) Miara łukowa kata długość łuku wyciętego przez kąt o promieniu 1 i środku w wierzchołku kąta Miarą łukową kąta środkowego nazywamy liczbę α, równą stosunkowi długości łuku L okręgu, na którym jest oparty ten kąt, do długości promienia r tego okręgu, czyli
α = l / r Jeśli r = 1 to α = L / 1 = L Miara łukowa kąta miara kąta wyrażona przez stosunek długości łuku okręgu opartego na tym kącie do długości promienia okręgu Gdzie α rozpatrywany kąt, l długość łuku, r promień okręgu, którego wycinkiem jest łuk. Jednostką miary łukowej kąta jest radian (1 rad). Radian miara kata środkowego opartego na łuku równym promieniowi r okręgu Wymiarem radiana jest jedność [rad] = 1 1 rad = 180º / π =~ 57 o 17 44,81 Zamiana kątów α = α [rad] = α [ o ] * π / 180 o α [ o ] = α * 180 o / π Wykresy funkcji trygonometrycznych: sin(x), cos(x), tg(x), cos(x)
Sinusoida Dziedzina : D f = R Zbiór wartości: Y f = [-1; 1] Miejsca zerowe: f(x) = 0 dla x = k* π, k C Funkcja nieparzysta: cos(-x) = cos(x) Funkcja okresowa o okresie T=2π = 360 o Funkcja rośnie w przedziałach (-π/2 + 2kπ, 3/2*π + 2kπ), k C Cosinusoida Dziedzina : D f = R Zbiór wartości: Y f = [-1; 1] Miejsca zerowe: f(x) = 0 dla x = π/2 + k* π, k C Funkcja parzysta: cos(-x) = cos(x) Funkcja okresowa o okresie T=2π = 360 o Funkcja rośnie w przedziałach (π + 2k π, 2π + 2kπ), k C
Tangensoida Dziedzina : D f = R \ {x: x = π/2 + k* π, k C} Zbiór wartości: R Miejsca zerowe: f(x) = 0 dla x = k* π, k C Funkcja nieparzysta: tg(-x) = -tg(x) Funkcja okresowa o okresie T = π = 180 o Funkcja rośnie przedziałami w (-π/2 + kπ, π/2 +kπ) k C Cotangensoida Dziedzina : Df = R \ {x: x = k* π, k C} Zbiór wartości: R Miejsca zerowe: f(x) = 0 dla x = π/2 + k* π, k C
Funkcja nieparzysta: ctg(-x) = -ctg(x) Funkcja okresowa o okresie T = π = 180 o Funkcja rośnie przedziałami w (kπ, π+kπ) k C Zależności między funkcjami trygonometrycznymi Pole trójkąta gdy dane 2 boki i kąt między nimi Funkcje trygonometryczne dowolnego kata
Obliczenie długości łuku Ł/(2 πr) = α o /360 o Ł = πrα/180 o = α o / (180/π) * r = α o *(π / 180) * r = α ł * r Miara łukowa kąta
Miarą łukową kąta środkowego nazywamy liczbę α, równą stosunkowi długości łuku L okręgu, na którym jest oparty ten kąt, do długości promienia r tego okręgu, czyli α = l / r Jednostką miary łukowej kąta jest radian (1 rad). Radian miara kata środkowego opartego na łuku równym promieniowi r okręgu rad symbol radiana 1 rad = 180º / π =~ 57 o 17 44,81 = 200[grad]/ π = 63.6619772368 Kąt ma miarę 1 radiana (1 rad), jeśli łuk wyznaczony przez ten kąt na okręgu jednostkowym ma długość 1 Zamiana katów z miary stopniowej na łukową i odwrotnie α = α [rad] = α [ o ] * π / 180 o α [ o ] = α * 180 o / π Wyprowadzenie wzorów na zamianę kątów α o / 360º = α /(2* π) α o / 180º = α / π α o = α * (180 o / π) = α * ρ o α o kąt w stopniach, α kat w mierze łukowej =~ α * 57,29577951 o
α = α o * (π/180º) = α o / ρ o = α o / 57,29577951 o 1 rad = 180º / π =~ 57 o 17 44,81 1 o = π / 180 o 2π [rad] = 360º π [rad] = 180º π/2 [rad] = 90º π/3 [rad] = 60º π/4 [rad] = 45º π/6 [rad] = 30º α [grad] = α * 200/ π = α * 63.6619772368 α = α [grad]* π / 200 = α [grad]* 0.01570796326 Miara stopniowa 360 o 180 o 90 o 60 o 45 o 30 o Miara gradowa 400 g 200 g 100 g 66,(6) 50 g 33,(3) g Miara łukowa 2π π π/2 π/3 π /4 π/6 Kąt jako miara obrotu Jeśli określimy kolejność ramion kąta α, czyli wyróżnimy ramię początkowe i końcowe, to kąt taki nazywamy skierowanym. Kąt skierowany oznaczamy łukiem zakończonym strzałką. Kąt skierowany wskazany łukiem o zwrocie przeciwnym do ruchu wskazówek zegara nazywamy kątem skierowanym dodatnio. Kąt skierowany wskazany łukiem o zwrocie zgodnym z ruchem wskazówek zegara jest kątem skierowanym ujemnie. Miarę każdego kąta skierowanego można przedstawić w postaci: k*360 0 + α, gdzie 0 0 <= α < 360 0 k jest pewną ustaloną liczbą całkowitą
k*2π + α, gdzie 0 <= α < 2π czyli α < 0; 2π) i k jest ustaloną liczbą całkowitą Miara α jest nazywana miarą główną kąta skierowanego. Jeżeli ramiona kątów skierowanych się pokrywają, to ich miary główne są równe. Kąty przeciwne to kąty, których miary są liczbami przeciwnymi. Kąty w ćwiartkach układu współrzędnych Ćwiartka I II III IV Kąt w stopniach 0 o < α < 90 o 90 o < α < 180 o 180 o < α < 270 o 270 o < α < 360 o Kąt w radianach 0 < α < π/2 π/2 < α < π π < α < 3/2 *π 3/2*π < α < 2 *π Kąt w gradach 0 g < α < 100 g 100 g < α < 200 g 200 g < α < 300 g 300 g < α < 400 g Funkcje trygonometryczne dowolnego kąta sin α = y/r cos α = x/r tg α = y/x x 0 ctg α = x/y y 0
ctg α = 1/ (y/x) = 1/tg α x 0, y 0 Wyznaczenie współrzędnych punktu i narysowanie końcowego ramienia kata Jeśli punkt P leży na końcowym ramieniu kata α i jego promień wodzący jest równy 1 to P = (1*cos α, 1*sin α) = (cos α, sin α) Wyznaczenie punktu P i kąta α, gdy dany jest kąt α. - nanosimy wartości współrzędnych punktu P: x P = cos α oraz y P = sin α i kreślimy ramię kąta OP α = 30 o cos α = 3/2 ~= 0,8660 = x P sin α = 1/2 = y p Wyznaczenie ramienia kąta α, gdy dany jest tg α tg α = y/x = t/1 = 2t/2 = 3t/3 itd. Przyjmujemy za współrzędne punktu P wartości (t, 1) lub (2t, 2) itp. Wyznaczamy punkty na podstawie współrzędnych i rysujemy ramię kata OP Przykład: dany tg α = 4
tg α = -4 = y/x = -4/1 = -1/4 Przyjmujemy P1 = A = (1, -4) lub P2 = B = (-1, 4) α = 104,04 o lub α = 284.04 o Gdy dany jest tg α w postaci a/b to można przyjąć za x wartość b, a za y wartość a lub ich wielokrotności. Dany cos α Przykład: cos α = -2/3 Dany sin α
Przykład: sin α = -1/3 sin α = -1/3 = y/r y/r = -1/3 = -2/6 Przyjmujemy: y = -1, r = 3 α1 = 160.53 o α2 = 340,52 o Wartości funkcji trygonometrycznych wielokrotności kata π/2 0 o 90 o = π/2 180 o =π 270 o =3/2*π 360 0 =2 sin α 0 1 0-1 0 cos α 1 0-1 0 1 tg α 0 (nie istnieje) 0 (nie istnieje) 0 ctg α = 1/tg α (nie istnieje) 0 (nie istnieje) 0 (nie istnieje) Znaki wartości funkcji trygonometrycznych dowolnego kąta Punkt P = (x, y) leży w ćwiartce: I gdy x >0 i y > 0 sin α > 0, cos α > 0, tg α > 0, ctg α > 0 II gdy x < 0 i y > 0 sin α > 0, cos α < 0, tg α < 0, ctg α < 0 III gdy x < 0 i y > 0 sin α < 0, cos α < 0, tg α > 0, ctg α > 0 IV gdy x > 0 i y < 0 sin α < 0, cos α > 0, tg α < 0, ctg α < 0 Parzystość funkcji trygonometrycznych Funkcje nieparzyste: sinus, tangens i cotangens Funkcja parzysta: cosinus sin (-α) = -sin α cos (-α) = cos α tg (-α) = -tg α ctg (-α) = -ctg α Wzory redukcyjne sin (180 o α) = sin α sin (π α) = sin α II ćwiartka cos (180 o α) = -cos α cos (π α) = -sin α
tg (180 o α) = -tg α ctg (180 o α) = -ctg α tg (π α) = - sin α ctg (π α) = tg α sin (180 o + α) = -sin α 180 0 = π III ćwiartka cos (180 o + α) = -cos α tg (180 o + α) = tg α ctg (180 o + α) = ctg α sin (360 o - α) = -sin α π = 180 0 IV ćwiartka cos (360 o - α) = cos α tg (360 o - α) = -tg α ctg (360 o - α) = -ctg α sin (90 o - α) = cos α 90 0 = π/2 cos (90 o - α) = sin α tg (90 o - α) = ctg α = 1/ (tg α) ctg (90 o - α) = tg α Analogicznie dla funkcji 90º + α oraz 270 0 +- α funkcje zmieniają się w kofunkcje (sin cos, tg ctg) W osi x (0, 180, 360) we wzorach redukcyjnych funkcje się nie zmieniają w kofunkcje, a ewentualnie zmieniają się znaki, w zależności od ćwiartek. W osy y (90 0, 270 0 ) we wzorach redukcyjnych funkcje zmieniają się w kofunkcje, z uwzględnieniem znaków w zależności od ćwiartki układu współrzędnych. Okresowość funkcji trygonometrycznych sin (k*360 o + α) = sin α cos (k*360 o + α) = cos α k C tg (k*180 o + α) = tg α ctg (k*180 o + α) = ctg α sin (k*2π + α) = sin α cos (k*2π + α) = cos α tg (k*π + α) = tg α ctg (k*π + α) = ctg α Liczbę 360 o = 2π dla funkcji sinus i cosinus nazywa się okresem podstawowym tych funkcji. Liczbę 180 o = π dla funkcji tangens i cotangens nazywa się okresem podstawowym tych funkcji. Okres podstawowy funkcji najmniejsza dodatnia liczba, która dodana do (odjęta od) argumentu funkcji nie zmienia jej wartości, np. sin 1000 o = sin 640 o = sin 280 0 = sin (-80 0 ) Związki między funkcjami trygonometrycznymi tego samego kąta sin 2 α + cos 2 α = 1 - jedynka trygonometryczna tg α = sin α / cos α, gdy cos α 0 ctg α = 1/(tg α = (cos α) / (sin α), gdy sin α 0 Tożsamość trygonometryczna każde równanie wyrażające zależności między funkcjami trygonometrycznymi zachodzące dla wszystkich katów, dla których wartości tych funkcji istnieją. Funkcje trygonometryczne sumy i różnicy kątów sin (α + β) = sin α * cos β + cos α * sin β
cos (α + β) = cos α * cos β sinα * sin β sin (α - β) = sin α * cos β cosα * sin β cos (α - β) = cos α * cos β + sinα * sin β tg (α + β) = (tg α + tg β) / (1 tg α * tg β) ctg (α + β) = (ctg α * ctg β - 1) / (ctg α + ctg β) tg (α - β) = (tg α tg β) / (1 + tg α * tg β) ctg (α - β) = (ctg α * ctg β + 1) / (ctg β ctg α) cos 2 α = cos 2 α sin 2 α cos 2 α = 2 cos 2 α 1 cos 2 α = 1 sin 2 α sin 2 α = 2 * sin α * cos α tg 2 α = 2*tg α / (1 tg 2 α), gdy cos α 0 i cos 2 α 0 Suma i różnica funkcji trygonometrycznych sin α + sin β = 2 * sin (α + β) /2 * cos (α β) /2 cos α + cos β = 2 * cos (α + β) /2 * cos (α β) /2 sin α - sin β = 2 * sin (α - β) /2 * cos (α + β) /2 cos α - cos β = 2 * sin (α + β) /2 * sin (α β) /2