Równania różniczkowe liniowe wyższych rzędów o stałych współczynnikach Katedra Matematyki i Ekonomii Matematycznej SGH 12 maja 2016
Równanie liniowe n-tego rzędu Definicja Równaniem różniczkowym liniowym n-tego rzędu o stałych współczynnikach nazywamy równanie a n y (n) + a n 1 y (n 1) + + a 1 y + a 0 y = q(x), (1) gdzie a n 0. Jeśli q(x) 0, to równanie a n y (n) + a n 1 y (n 1) + + a 1 y + a 0 y = 0 (2) nazywamy jednorodnym, w przeciwnym przypadku równanie nazywamy niejednorodnym. Zagadnieniem Cauchy ego dla równania (1) nazywamy problem wyznaczenia takiego rozwiązania y(x), które spełnia warunki początkowe y (x 0 ) = y (1) 0, y (x 0 ) = y (2) 0,..., y (n 1) (x 0 ) = y (n) 0.
Sprowadzenie do układu równań Stosując podstawienie u 1 = y, u 2 = y, u 3 = y,..., u n = y (n 1) równanie n-tego rzędu sprowadzamy do układu równań liniowych pierwszego rzędu u 1 = u 2, u 2 = u 3,. u n = 1 a n ( a n 1 u n a 1 u 2 a 0 u 1 + q(x)).
Sprowadzenie do układu równań cd Macierz tego układu ma postać 0 1 0... 0 0 0 1... 0 A =..............., 0 0 0 0 1 1 a n a 0 1 a n a 1 1 a n a 2... 1 a n a n 1 a jej wielomian charakterystyczny jest równy det (A λi) = ( 1) n ( λ n + 1 a n a n 1 λ n 1 + + 1 a n a 1 λ + 1 a n a 0 ).
Sprowadzenie do układu równań cd Zauważmy, że ) (λ n + 1 a an n 1 λ n 1 + + 1 a an 1 λ + 1 a an 0 = 0 Definicja Równanie a n λ n + a n 1 λ n 1 + + a 1 λ + a 0 = 0. a n λ n + a n 1 λ n 1 + + a 1 λ + a 0 = 0 nazywamy równaniem charakterystycznym równania różniczkowego (1). Równanie charakterystyczne otrzymujemy z równania różniczkowego (1) podstawiając λ k za y (k).
Sprowadzenie do układu równań cd Zauważmy, że ) (λ n + 1 a an n 1 λ n 1 + + 1 a an 1 λ + 1 a an 0 = 0 Definicja Równanie a n λ n + a n 1 λ n 1 + + a 1 λ + a 0 = 0. a n λ n + a n 1 λ n 1 + + a 1 λ + a 0 = 0 nazywamy równaniem charakterystycznym równania różniczkowego (1). Równanie charakterystyczne otrzymujemy z równania różniczkowego (1) podstawiając λ k za y (k).
Równanie jednorodne postać rozwiązania Twierdzenie Niech a n λ n + a n 1 λ n 1 + + a 1 λ + a 0 = 0, gdzie a n 0, będzie równaniem charakterystycznym równania różniczkowego. Załóżmy, że równanie charakterystyczne ma r pierwiastków rzeczywistych λ j o krotnościach algebraicznych n j (j = 1, 2,..., r) oraz 2s (r + 2s = n) pierwiastków zespolonych λ r+j = α r+j + iβ r+j, λ r+s+j = λ r+j = α r+j iβ r+j o krotnościach algebraicznych n r+s+j = n r+j dla j = 1, 2,..., s.
Twierdzenie cd Wprowadzenie Wówczas równanie jednorodne (2) ma rozwiązanie ogólne + y(x) = s e α r+j x j=1 gdzie C (j) m r e λ j x j=1 n r+j 1 m=0 n j 1 m=0 ( C (j) m x m + cos (β r+j x) C (r+j) m x m + sin (β r+j x) C m (r+s+j) x m), dla m = 0, 1,..., n j 1, j = 1, 2,..., r, C (r+j) m, C (r+s+j) dla m = 0, 1,..., n r+j 1, j = 1, 2,..., s, są dowolnymi stałymi rzeczywistymi. m
Równanie jednorodne postać rozwiązania cd Z twierdzenia 3 wynika, że rozwiązanie ogólne równania jednorodnego n-tego rzędu można zapisać w postaci y(x) = n C j y j (x), j=1 gdzie C j R, zaś liniowo niezależne funkcje y j (x) są rozwiązaniami szczególnymi tego równania (j = 1, 2,..., n). Definicja Układ n liniowo niezależnych funkcji y j (x) (j = 1, 2,..., n) będących rozwiązaniami równania jednorodnego (2) nazywamy fundamentalnym układem rozwiązań równania (2).
Równanie jednorodne postać rozwiązania cd Z twierdzenia 3 wynika, że rozwiązanie ogólne równania jednorodnego n-tego rzędu można zapisać w postaci y(x) = n C j y j (x), j=1 gdzie C j R, zaś liniowo niezależne funkcje y j (x) są rozwiązaniami szczególnymi tego równania (j = 1, 2,..., n). Definicja Układ n liniowo niezależnych funkcji y j (x) (j = 1, 2,..., n) będących rozwiązaniami równania jednorodnego (2) nazywamy fundamentalnym układem rozwiązań równania (2).
Równanie jednorodne drugiego rzędu W rozważanym przypadku równanie różniczkowe jednorodne o stałych współczynnikach ma postać ay + by + cy = 0, (3) gdzie a 0, a jego równanie charakterystyczne postać aλ 2 + bλ + c = 0. (4)
Równanie jednorodne drugiego rzędu cd 1 Jeśli równanie charakterystyczne ma dwa różne pierwiastki rzeczywiste λ 1, λ 2, to równanie różniczkowe ma rozwiązanie ogólne y(x) = C 1 e λ 1x + C 2 e λ 2x. 2 Jeśli równanie charakterystyczne ma jeden pierwiastek podwójny λ = λ 1 = λ 2, to równanie różniczkowe ma rozwiązanie ogólne y(x) = e λx (C 1 + C 2 x). 3 Jeśli równanie charakterystyczne ma dwa różne pierwiastki zespolone λ 1 = α + iβ, λ 2 = α iβ, to równanie różniczkowe ma rozwiązanie ogólne y(x) = e αx (C 1 cos (βx) + C 2 sin (βx)).
y Wprowadzenie Wyznaczymy rozwiązanie ogólne równania różniczkowego 3y + 5y 2y = 0 i rozwiązanie spełniające warunki początkowe y(0) = 1, y (0) = 1. Wyznaczymy rozwiązanie ogólne równania różniczkowego y 6y + 13y = 0 i rozwiązanie spełniające warunki początkowe y(0) = 1, y (0) = 2.
y Wprowadzenie Wyznaczymy rozwiązanie ogólne równania różniczkowego 3y + 5y 2y = 0 i rozwiązanie spełniające warunki początkowe y(0) = 1, y (0) = 1. Wyznaczymy rozwiązanie ogólne równania różniczkowego y 6y + 13y = 0 i rozwiązanie spełniające warunki początkowe y(0) = 1, y (0) = 2.
Równanie jednorodne trzeciego rzędu Rozpatrujemy równanie ay + by + cy + dy = 0, (5) gdzie a 0, którego równanie charakterystyczne jest postaci aλ 3 + bλ 2 + cλ + d = 0. (6) Równanie (6) ma jeden pierwiastek rzeczywisty λ o krotności algebraicznej 3. Wówczas równanie (5) ma rozwiązanie ogólne y(x) = e λx ( C 1 + C 2 x + C 3 x 2).
Równanie jednorodne trzeciego rzędu Rozpatrujemy równanie ay + by + cy + dy = 0, (5) gdzie a 0, którego równanie charakterystyczne jest postaci aλ 3 + bλ 2 + cλ + d = 0. (6) Równanie (6) ma jeden pierwiastek rzeczywisty λ o krotności algebraicznej 3. Wówczas równanie (5) ma rozwiązanie ogólne y(x) = e λx ( C 1 + C 2 x + C 3 x 2).
Równanie jednorodne trzeciego rzędu cd Równanie (6) ma pierwiastek rzeczywisty λ 1 o krotności algebraicznej n 1 = 1 i pierwiastek rzeczywisty λ 2 o krotności algebraicznej n 2 = 2. W tym przypadku równanie (5) ma rozwiązanie ogólne y(x) = C 1 e λ 1x + e λ 2x (C 2 + C 3 x). Równanie (6) ma trzy różne pierwiastki rzeczywiste λ 1, λ 2, λ 3. Równanie różniczkowe (5) ma wówczas rozwiązanie ogólne y(x) = C 1 e λ 1x + C 2 e λ 2x + C 3 e λ 3x. Równanie (6) ma jeden pierwiastek rzeczywisty λ i dwa sprzężone pierwiastki zespolone µ = α + iβ, µ = α iβ. Równanie różniczkowe (5) ma w tym przypadku rozwiązanie ogólne postaci y(x) = C 1 e λx + e αx (C 2 cos (βx) + C 3 sin (βx)).
y Wprowadzenie Wyznaczymy rozwiązanie ogólne równania różniczkowego y 3y 2y = 0 i rozwiązanie spełniające warunek początkowy y(0) = 1, y (0) = 1, y (0) = 1. Wyznaczymy rozwiązanie ogólne równania różniczkowego y + y 4y + 6y = 0 i rozwiązanie spełniające warunek początkowy y(0) = 1, y (0) = 0, y (0) = 1.
y Wprowadzenie Wyznaczymy rozwiązanie ogólne równania różniczkowego y 3y 2y = 0 i rozwiązanie spełniające warunek początkowy y(0) = 1, y (0) = 1, y (0) = 1. Wyznaczymy rozwiązanie ogólne równania różniczkowego y + y 4y + 6y = 0 i rozwiązanie spełniające warunek początkowy y(0) = 1, y (0) = 0, y (0) = 1.
Równanie niejednorodne a n y (n) + a n 1 y (n 1) + + a 1 y + a 0 y = q(x), gdzie q(x) 0, rozwiązujemy metodą uzmienniania stałych, a w szczególnych przypadkach metodą przewidywania.
Stosując podstawienie u 1 = y, u 2 = y, u 3 = y,..., u n = y (n 1) sprowadziliśmy równanie n-tego rzędu do układu równań liniowych [ T u = Au + q(x), gdzie q(x) = 0... 0 q(x)]. Rozwiązanie ogólne układu jednorodnego możemy zapisać w postaci u(x) = n C j y j (x), j=1 czyli w postaci u 1 (x) y 11 (x) y 12 (x) y 1n (x) u 2 (x). = C y 21 (x) 1. + C y 22 (x) 2. + + C y 2n (x) n.. u n (x) y n1 (x) y n2 (x) y nn (x)
cd Przy rozwiązywaniu równania niejednorodnego n-tego rzędu metodą uzmienniania stałych C 1, C 2,..., C n, układ równań względem pochodnych stałych ma postać C 1 (x)y 1(x) + C 2 (x)y 2(x) + + C n(x)y n (x) = 0, C 1 (x)y 1 (x) + C 2 (x)y 2 (x) + + C n(x)y n(x) = 0,. C 1 (n 1) (x)y 1 (x) + C 2 (n 1) (x)y 2 (x) + + C n(x)y n (n 1) (x) = q(x) a n, (7)
Równanie niejednorodne drugiego rzędu uzmiennianie stałych Układ równań względem pochodnych uzmiennionych stałych dla równania drugiego rzędu ay + by + cy = q(x), gdzie a 0, { C 1 (x)y 1 (x) + C 2 (x)y 2(x) = 0, C 1 (x)y 1 (x) + C 2 (x)y 2 q(x) (x) = a. Rozwiążemy równanie y y = x. Rozwiążemy równanie y 4y = sin x.
Równanie niejednorodne drugiego rzędu uzmiennianie stałych Układ równań względem pochodnych uzmiennionych stałych dla równania drugiego rzędu ay + by + cy = q(x), gdzie a 0, { C 1 (x)y 1 (x) + C 2 (x)y 2(x) = 0, C 1 (x)y 1 (x) + C 2 (x)y 2 q(x) (x) = a. Rozwiążemy równanie y y = x. Rozwiążemy równanie y 4y = sin x.
Równanie niejednorodne drugiego rzędu uzmiennianie stałych Układ równań względem pochodnych uzmiennionych stałych dla równania drugiego rzędu ay + by + cy = q(x), gdzie a 0, { C 1 (x)y 1 (x) + C 2 (x)y 2(x) = 0, C 1 (x)y 1 (x) + C 2 (x)y 2 q(x) (x) = a. Rozwiążemy równanie y y = x. Rozwiążemy równanie y 4y = sin x.
Równanie niejednorodne trzeciego rzędu uzmiennianie stałych Układ równań względem pochodnych uzmiennionych stałych dla równania trzeciego rzędu ay + by + cy + dy = q(x), gdzie a 0, C 1 (x)y 1(x) + C 2 (x)y 2(x) + C 3 (x)y 3(x) = 0, C 1 (x)y 1 (x) + C 2 (x)y 2 (x) + C 3 (x)y 3 (x) = 0, C 1 (x)y 1 (x) + C 2 (x)y 2 (x) + C 3 (x)y q(x) 3 (x) = a. Rozwiążemy równanie y 2y y + 2y = x.
Równanie niejednorodne trzeciego rzędu uzmiennianie stałych Układ równań względem pochodnych uzmiennionych stałych dla równania trzeciego rzędu ay + by + cy + dy = q(x), gdzie a 0, C 1 (x)y 1(x) + C 2 (x)y 2(x) + C 3 (x)y 3(x) = 0, C 1 (x)y 1 (x) + C 2 (x)y 2 (x) + C 3 (x)y 3 (x) = 0, C 1 (x)y 1 (x) + C 2 (x)y 2 (x) + C 3 (x)y q(x) 3 (x) = a. Rozwiążemy równanie y 2y y + 2y = x.
postaci rozwiązania szczególnego równania liniowego niejednorodnego n-tego rzędu a n y (n) + a n 1 y (n 1) + + a 1 y + a 0 y = q(x), gdzie n > 1, jest uogólnieniem metody przewidywania postaci rozwiązania równania niejednorodnego pierwszego rzędu. Analogicznie jak w przypadku układów równań różniczkowych korzystamy z twierdzenia o postaci rozwiązania ogólnego równania niejednorodnego. Twierdzenie Rozwiązanie ogólne równania niejednorodnego jest sumą rozwiązania ogólnego równania jednorodnego i rozwiązania szczególnego równania niejednorodnego.
postaci rozwiązania szczególnego równania liniowego niejednorodnego n-tego rzędu a n y (n) + a n 1 y (n 1) + + a 1 y + a 0 y = q(x), gdzie n > 1, jest uogólnieniem metody przewidywania postaci rozwiązania równania niejednorodnego pierwszego rzędu. Analogicznie jak w przypadku układów równań różniczkowych korzystamy z twierdzenia o postaci rozwiązania ogólnego równania niejednorodnego. Twierdzenie Rozwiązanie ogólne równania niejednorodnego jest sumą rozwiązania ogólnego równania jednorodnego i rozwiązania szczególnego równania niejednorodnego.
cd Funkcja q(x) jest wielomianem stopnia m. 1 Jeśli 0 nie jest pierwiastkiem wielomianu charakterystycznego, to jednym z rozwiązań szczególnych równania niejednorodnego jest wielomian w m (x) stopnia m. 2 Jeśli 0 jest pierwiastkiem krotności k wielomianu charakterystycznego, to jednym z rozwiązań szczególnych równania niejednorodnego jest wielomian w m+k (x) = x k w m (x) stopnia m + k. 1 1. 1 Oczywiście przyjmując k = 0 otrzymujemy przypadek rozważany w punkcie
y Wprowadzenie Rozwiążemy równanie niejednorodne y 4y = 2x z warunkami początkowymi y (0) = 0, y (0) = 1. Wyznaczymy rozwiązanie ogólne równania niejednorodnego y + y 2y = x 2 + 1. (8) Wyznaczymy rozwiązanie ogólne równania niejednorodnego y y = x.
y Wprowadzenie Rozwiążemy równanie niejednorodne y 4y = 2x z warunkami początkowymi y (0) = 0, y (0) = 1. Wyznaczymy rozwiązanie ogólne równania niejednorodnego y + y 2y = x 2 + 1. (8) Wyznaczymy rozwiązanie ogólne równania niejednorodnego y y = x.
y Wprowadzenie Rozwiążemy równanie niejednorodne y 4y = 2x z warunkami początkowymi y (0) = 0, y (0) = 1. Wyznaczymy rozwiązanie ogólne równania niejednorodnego y + y 2y = x 2 + 1. (8) Wyznaczymy rozwiązanie ogólne równania niejednorodnego y y = x.
cd Funkcja q(x) jest kombinacją liniową funkcji sin (ωx) i cos (ωx), gdzie ω R. 1 Jeśli iω nie jest pierwiastkiem wielomianu charakterystycznego, to rozwiązaniem szczególnym jest funkcja postaci a sin (ωx) + b cos (ωx). 2 Jeśli iω jest pierwiastkiem krotności k wielomianu charakterystycznego, rozwiązaniem szczególnym jest funkcja postaci ax k sin (ωx) + bx k cos (ωx).
y Wprowadzenie Wyznaczymy rozwiązanie ogólne równania niejednorodnego y 4y = sin x + 2 cos x. Rozwiążemy równanie y + 2y + y = 2 cos x + sin x.
y Wprowadzenie Wyznaczymy rozwiązanie ogólne równania niejednorodnego y 4y = sin x + 2 cos x. Rozwiążemy równanie y + 2y + y = 2 cos x + sin x.
cd Funkcja q(x) jest postaci αe ωx. 1 Jeśli ω nie jest pierwiastkiem wielomianu charakterystycznego, to jednym z rozwiązań szczególnych jest funkcja g(x) = ae ωx. 2 Jeśli ω jest pierwiastkiem krotności k wielomianu charakterystycznego, to jednym z rozwiązań szczególnych jest funkcja g(x) = ax k e ωx. 2 2 Przyjmując k = 0 otrzymujemy przypadek rozważany w punkcie 1.
y Wprowadzenie Wyznaczymy rozwiązanie ogólne równania niejednorodnego y 4y + 3y = 4e 2x. Wyznaczymy rozwiązanie ogólne równania y + 2y 4y 8y = e 2x.
y Wprowadzenie Wyznaczymy rozwiązanie ogólne równania niejednorodnego y 4y + 3y = 4e 2x. Wyznaczymy rozwiązanie ogólne równania y + 2y 4y 8y = e 2x.
cd Jeśli funkcja q(x) jest sumą lub iloczynem omówionych powyżej funkcji, to rozwiązania szczególnego poszukujemy również w postaci sumy lub iloczynu odpowiednich funkcji.