Równania różniczkowe liniowe wyższych rzędów o stałych współcz

Podobne dokumenty
Równania różniczkowe liniowe rzędu pierwszego

Wykład 3 Równania rózniczkowe cd

Układy równań i równania wyższych rzędów

5 Równania różniczkowe zwyczajne rzędu drugiego

5. Równania różniczkowe zwyczajne pierwszego rzędu

Wykład 14 i 15. Równania różniczkowe. Równanie o zmiennych rozdzielonych. Definicja 1. Równaniem różniczkowym zwyczajnym rzędu n nazywamy równanie

Biotechnologia, Chemia, Chemia Budowlana - Wydział Chemiczny - 1

Matematyka 2. Równania różniczkowe zwyczajne rzędu drugiego

1 Równania różniczkowe zwyczajne

Równania różniczkowe. Notatki z wykładu.

VI. Równania różniczkowe liniowe wyższych rzędów

2. Kombinacja liniowa rozwiązań zeruje się w pewnym punkcie wtedy i tylko wtedy, gdy zeruje się w każdym punkcie.

Analiza matematyczna dla informatyków 3 Zajęcia 14

Równania różniczkowe liniowe II rzędu

ANALIZA MATEMATYCZNA Z ELEMENTAMI STATYSTYKI MATEMATYCZNEJ

1 Równania różniczkowe drugiego rzędu

Liniowe równania ró»niczkowe n tego rz du o staªych wspóªczynnikach

Równania różniczkowe. Równania różniczkowe zwyczajne rzędun,n 2. Małgorzata Wyrwas. Katedra Matematyki Wydział Informatyki Politechnika Białostocka

III. RÓWNANIA RÓŻNICZKOWE ZWYCZAJNE

VII. Elementy teorii stabilności. Funkcja Lapunowa. 1. Stabilność w sensie Lapunowa.

Równania różnicowe. Dodatkowo umawiamy się, że powyższy iloczyn po pustym zbiorze indeksów, czyli na przykład 0

1.1 Przegląd wybranych równań i modeli fizycznych. , u x1 x 2

RÓWNANIA RÓŻNICZKOWE ZWYCZAJNE. Wiele obiektywnych prawidłowości przyrodniczych udaje się zapisać w postaci równości formalnej

RÓWNANIA RÓŻNICZKOWE WYKŁAD 2

jest rozwiązaniem równania jednorodnego oraz dla pewnego to jest toŝsamościowo równe zeru.

Analiza matematyczna i algebra liniowa Elementy równań różniczkowych

Równania różniczkowe wyższych rzędów

Komputerowa analiza zagadnień różniczkowych 1. Równania różniczkowe zwyczajne podstawy teoretyczne. P. F. Góra

Tydzień nr 9-10 (16 maja - 29 maja), Równania różniczkowe, wartości własne, funkcja wykładnicza od operatora - Matematyka II 2010/2011L

Równania różniczkowe zwyczajne. 1 Rozwiązywanie równań różniczkowych pierwszego rzędu

Równania różniczkowe cząstkowe drugiego rzędu

III. Układy liniowe równań różniczkowych. 1. Pojęcie stabilności rozwiązań.

Lista nr 1 - Liczby zespolone

Równania różniczkowe wyższych rzędów

27. RÓWNANIA RÓŻNICZKOWE CZĄSTKOWE

Równania różniczkowe. Analiza Matematyczna. Aleksander Denisiuk

Równanie przewodnictwa cieplnego (I)

1 Równanie różniczkowe pierwszego rzędu

Algebra liniowa II. Lista 1. 1 u w 0 1 v 0 0 1

Matematyka dyskretna dla informatyków

Rozwiązywanie zależności rekurencyjnych metodą równania charakterystycznego

Wykład z równań różnicowych

RÓWNANIA RÓŻNICZKOWE ZWYCZAJNE. Marta Zelmańska

Wektory i wartości własne

Analiza Matematyczna część 5

Komputerowa analiza zagadnień różniczkowych 1. Równania różniczkowe zwyczajne podstawy teoretyczne. P. F. Góra

Zadania egzaminacyjne

Przestrzeń unitarna. Jacek Kłopotowski. 23 października Katedra Matematyki i Ekonomii Matematycznej SGH

Wektory i wartości własne

= i Ponieważ pierwiastkami stopnia 3 z 1 są (jak łatwo wyliczyć) liczby 1, 1+i 3

Maciej Grzesiak Instytut Matematyki Politechniki Poznańskiej. Całki nieoznaczone

Wielomiany podstawowe wiadomości

ELEKTROTECHNIKA Semestr 1 Rok akad / ZADANIA Z MATEMATYKI Zestaw Przedstaw w postaci algebraicznej liczby zespolone: (3 + 2j)(5 2j),

1. Liczby zespolone i

Wykład z równań różnicowych

Przestrzenie wektorowe

ALGEBRA Z GEOMETRIĄ ANALITYCZNĄ zadania z odpowiedziami

Matematyka dyskretna

Algebra z geometrią analityczną zadania z odpowiedziami

1. Wielomiany Podstawowe definicje i twierdzenia

Matematyka liczby zespolone. Wykład 1

1. Równanie różniczkowe pierwszego rzędu

Algebra z geometrią analityczną zadania z odpowiedziami

Wykład 15. Matematyka 3, semestr zimowy 2011/ listopada 2011

Własności wyznacznika

Równania wielomianowe

Lokalna odwracalność odwzorowań, odwzorowania uwikłane

ALGEBRA Z GEOMETRIĄ ANALITYCZNĄ

Równania różniczkowe

Aby przygotować się do kolokwiów oraz do egzaminów należy ponownie przeanalizować zadania

Dwa równania kwadratowe z częścią całkowitą

CAŁKI NIEOZNACZONE C R}.

a 11 a a 1n a 21 a a 2n... a m1 a m2... a mn x 1 x 2... x m ...

1 Równania różniczkowe zwyczajne o rozdzielonych zmiennych

Zaawansowane metody numeryczne

GAL 80 zadań z liczb zespolonych

ALGEBRA z GEOMETRIA, ANALITYCZNA,

13 Równanie struny drgającej. Równanie przewodnictwa ciepła.

1 Elementy logiki i teorii mnogości

przy warunkach początkowych: 0 = 0, 0 = 0

Wielomiany podstawowe wiadomości

Funkcje charakterystyczne zmiennych losowych, linie regresji 1-go i 2-go rodzaju

Wielomiany. dr Tadeusz Werbiński. Teoria

Równania różniczkowe

RÓWNANIA RÓŻNICZKOWE WYKŁAD 5

Lista zadań nr 2 z Matematyki II

Kryptografia - zastosowanie krzywych eliptycznych

Projekt Era inżyniera pewna lokata na przyszłość jest współfinansowany przez Unię Europejską w ramach Europejskiego Funduszu Społecznego

Marek Zakrzewski Wydział Matematyki Politechnika Wrocławska. Lekarstwo na kłopoty z Cardanem: Róbta co Vieta.

FUNKCJA KWADRATOWA. 1. Definicje i przydatne wzory. lub trójmianem kwadratowym nazywamy funkcję postaci: f(x) = ax 2 + bx + c

Algebra z geometrią analityczną zadania z odpowiedziami

1 Macierze i wyznaczniki

O geometrii semialgebraicznej

Całki nieoznaczone. 1 Własności. 2 Wzory podstawowe. Adam Gregosiewicz 27 maja a) Jeżeli F (x) = f(x), to f(x)dx = F (x) + C,

Analiza kongruencji. Kongruencje Wykład 3. Analiza kongruencji

Wykład z modelowania matematycznego.

ANALIZA MATEMATYCZNA Z ELEMENTAMI STATYSTYKI MATEMATYCZNEJ

O MACIERZACH I UKŁADACH RÓWNAŃ

Funkcja kwadratowa. f(x) = ax 2 + bx + c,

Kolorowa płaszczyzna zespolona

Transkrypt:

Równania różniczkowe liniowe wyższych rzędów o stałych współczynnikach Katedra Matematyki i Ekonomii Matematycznej SGH 12 maja 2016

Równanie liniowe n-tego rzędu Definicja Równaniem różniczkowym liniowym n-tego rzędu o stałych współczynnikach nazywamy równanie a n y (n) + a n 1 y (n 1) + + a 1 y + a 0 y = q(x), (1) gdzie a n 0. Jeśli q(x) 0, to równanie a n y (n) + a n 1 y (n 1) + + a 1 y + a 0 y = 0 (2) nazywamy jednorodnym, w przeciwnym przypadku równanie nazywamy niejednorodnym. Zagadnieniem Cauchy ego dla równania (1) nazywamy problem wyznaczenia takiego rozwiązania y(x), które spełnia warunki początkowe y (x 0 ) = y (1) 0, y (x 0 ) = y (2) 0,..., y (n 1) (x 0 ) = y (n) 0.

Sprowadzenie do układu równań Stosując podstawienie u 1 = y, u 2 = y, u 3 = y,..., u n = y (n 1) równanie n-tego rzędu sprowadzamy do układu równań liniowych pierwszego rzędu u 1 = u 2, u 2 = u 3,. u n = 1 a n ( a n 1 u n a 1 u 2 a 0 u 1 + q(x)).

Sprowadzenie do układu równań cd Macierz tego układu ma postać 0 1 0... 0 0 0 1... 0 A =..............., 0 0 0 0 1 1 a n a 0 1 a n a 1 1 a n a 2... 1 a n a n 1 a jej wielomian charakterystyczny jest równy det (A λi) = ( 1) n ( λ n + 1 a n a n 1 λ n 1 + + 1 a n a 1 λ + 1 a n a 0 ).

Sprowadzenie do układu równań cd Zauważmy, że ) (λ n + 1 a an n 1 λ n 1 + + 1 a an 1 λ + 1 a an 0 = 0 Definicja Równanie a n λ n + a n 1 λ n 1 + + a 1 λ + a 0 = 0. a n λ n + a n 1 λ n 1 + + a 1 λ + a 0 = 0 nazywamy równaniem charakterystycznym równania różniczkowego (1). Równanie charakterystyczne otrzymujemy z równania różniczkowego (1) podstawiając λ k za y (k).

Sprowadzenie do układu równań cd Zauważmy, że ) (λ n + 1 a an n 1 λ n 1 + + 1 a an 1 λ + 1 a an 0 = 0 Definicja Równanie a n λ n + a n 1 λ n 1 + + a 1 λ + a 0 = 0. a n λ n + a n 1 λ n 1 + + a 1 λ + a 0 = 0 nazywamy równaniem charakterystycznym równania różniczkowego (1). Równanie charakterystyczne otrzymujemy z równania różniczkowego (1) podstawiając λ k za y (k).

Równanie jednorodne postać rozwiązania Twierdzenie Niech a n λ n + a n 1 λ n 1 + + a 1 λ + a 0 = 0, gdzie a n 0, będzie równaniem charakterystycznym równania różniczkowego. Załóżmy, że równanie charakterystyczne ma r pierwiastków rzeczywistych λ j o krotnościach algebraicznych n j (j = 1, 2,..., r) oraz 2s (r + 2s = n) pierwiastków zespolonych λ r+j = α r+j + iβ r+j, λ r+s+j = λ r+j = α r+j iβ r+j o krotnościach algebraicznych n r+s+j = n r+j dla j = 1, 2,..., s.

Twierdzenie cd Wprowadzenie Wówczas równanie jednorodne (2) ma rozwiązanie ogólne + y(x) = s e α r+j x j=1 gdzie C (j) m r e λ j x j=1 n r+j 1 m=0 n j 1 m=0 ( C (j) m x m + cos (β r+j x) C (r+j) m x m + sin (β r+j x) C m (r+s+j) x m), dla m = 0, 1,..., n j 1, j = 1, 2,..., r, C (r+j) m, C (r+s+j) dla m = 0, 1,..., n r+j 1, j = 1, 2,..., s, są dowolnymi stałymi rzeczywistymi. m

Równanie jednorodne postać rozwiązania cd Z twierdzenia 3 wynika, że rozwiązanie ogólne równania jednorodnego n-tego rzędu można zapisać w postaci y(x) = n C j y j (x), j=1 gdzie C j R, zaś liniowo niezależne funkcje y j (x) są rozwiązaniami szczególnymi tego równania (j = 1, 2,..., n). Definicja Układ n liniowo niezależnych funkcji y j (x) (j = 1, 2,..., n) będących rozwiązaniami równania jednorodnego (2) nazywamy fundamentalnym układem rozwiązań równania (2).

Równanie jednorodne postać rozwiązania cd Z twierdzenia 3 wynika, że rozwiązanie ogólne równania jednorodnego n-tego rzędu można zapisać w postaci y(x) = n C j y j (x), j=1 gdzie C j R, zaś liniowo niezależne funkcje y j (x) są rozwiązaniami szczególnymi tego równania (j = 1, 2,..., n). Definicja Układ n liniowo niezależnych funkcji y j (x) (j = 1, 2,..., n) będących rozwiązaniami równania jednorodnego (2) nazywamy fundamentalnym układem rozwiązań równania (2).

Równanie jednorodne drugiego rzędu W rozważanym przypadku równanie różniczkowe jednorodne o stałych współczynnikach ma postać ay + by + cy = 0, (3) gdzie a 0, a jego równanie charakterystyczne postać aλ 2 + bλ + c = 0. (4)

Równanie jednorodne drugiego rzędu cd 1 Jeśli równanie charakterystyczne ma dwa różne pierwiastki rzeczywiste λ 1, λ 2, to równanie różniczkowe ma rozwiązanie ogólne y(x) = C 1 e λ 1x + C 2 e λ 2x. 2 Jeśli równanie charakterystyczne ma jeden pierwiastek podwójny λ = λ 1 = λ 2, to równanie różniczkowe ma rozwiązanie ogólne y(x) = e λx (C 1 + C 2 x). 3 Jeśli równanie charakterystyczne ma dwa różne pierwiastki zespolone λ 1 = α + iβ, λ 2 = α iβ, to równanie różniczkowe ma rozwiązanie ogólne y(x) = e αx (C 1 cos (βx) + C 2 sin (βx)).

y Wprowadzenie Wyznaczymy rozwiązanie ogólne równania różniczkowego 3y + 5y 2y = 0 i rozwiązanie spełniające warunki początkowe y(0) = 1, y (0) = 1. Wyznaczymy rozwiązanie ogólne równania różniczkowego y 6y + 13y = 0 i rozwiązanie spełniające warunki początkowe y(0) = 1, y (0) = 2.

y Wprowadzenie Wyznaczymy rozwiązanie ogólne równania różniczkowego 3y + 5y 2y = 0 i rozwiązanie spełniające warunki początkowe y(0) = 1, y (0) = 1. Wyznaczymy rozwiązanie ogólne równania różniczkowego y 6y + 13y = 0 i rozwiązanie spełniające warunki początkowe y(0) = 1, y (0) = 2.

Równanie jednorodne trzeciego rzędu Rozpatrujemy równanie ay + by + cy + dy = 0, (5) gdzie a 0, którego równanie charakterystyczne jest postaci aλ 3 + bλ 2 + cλ + d = 0. (6) Równanie (6) ma jeden pierwiastek rzeczywisty λ o krotności algebraicznej 3. Wówczas równanie (5) ma rozwiązanie ogólne y(x) = e λx ( C 1 + C 2 x + C 3 x 2).

Równanie jednorodne trzeciego rzędu Rozpatrujemy równanie ay + by + cy + dy = 0, (5) gdzie a 0, którego równanie charakterystyczne jest postaci aλ 3 + bλ 2 + cλ + d = 0. (6) Równanie (6) ma jeden pierwiastek rzeczywisty λ o krotności algebraicznej 3. Wówczas równanie (5) ma rozwiązanie ogólne y(x) = e λx ( C 1 + C 2 x + C 3 x 2).

Równanie jednorodne trzeciego rzędu cd Równanie (6) ma pierwiastek rzeczywisty λ 1 o krotności algebraicznej n 1 = 1 i pierwiastek rzeczywisty λ 2 o krotności algebraicznej n 2 = 2. W tym przypadku równanie (5) ma rozwiązanie ogólne y(x) = C 1 e λ 1x + e λ 2x (C 2 + C 3 x). Równanie (6) ma trzy różne pierwiastki rzeczywiste λ 1, λ 2, λ 3. Równanie różniczkowe (5) ma wówczas rozwiązanie ogólne y(x) = C 1 e λ 1x + C 2 e λ 2x + C 3 e λ 3x. Równanie (6) ma jeden pierwiastek rzeczywisty λ i dwa sprzężone pierwiastki zespolone µ = α + iβ, µ = α iβ. Równanie różniczkowe (5) ma w tym przypadku rozwiązanie ogólne postaci y(x) = C 1 e λx + e αx (C 2 cos (βx) + C 3 sin (βx)).

y Wprowadzenie Wyznaczymy rozwiązanie ogólne równania różniczkowego y 3y 2y = 0 i rozwiązanie spełniające warunek początkowy y(0) = 1, y (0) = 1, y (0) = 1. Wyznaczymy rozwiązanie ogólne równania różniczkowego y + y 4y + 6y = 0 i rozwiązanie spełniające warunek początkowy y(0) = 1, y (0) = 0, y (0) = 1.

y Wprowadzenie Wyznaczymy rozwiązanie ogólne równania różniczkowego y 3y 2y = 0 i rozwiązanie spełniające warunek początkowy y(0) = 1, y (0) = 1, y (0) = 1. Wyznaczymy rozwiązanie ogólne równania różniczkowego y + y 4y + 6y = 0 i rozwiązanie spełniające warunek początkowy y(0) = 1, y (0) = 0, y (0) = 1.

Równanie niejednorodne a n y (n) + a n 1 y (n 1) + + a 1 y + a 0 y = q(x), gdzie q(x) 0, rozwiązujemy metodą uzmienniania stałych, a w szczególnych przypadkach metodą przewidywania.

Stosując podstawienie u 1 = y, u 2 = y, u 3 = y,..., u n = y (n 1) sprowadziliśmy równanie n-tego rzędu do układu równań liniowych [ T u = Au + q(x), gdzie q(x) = 0... 0 q(x)]. Rozwiązanie ogólne układu jednorodnego możemy zapisać w postaci u(x) = n C j y j (x), j=1 czyli w postaci u 1 (x) y 11 (x) y 12 (x) y 1n (x) u 2 (x). = C y 21 (x) 1. + C y 22 (x) 2. + + C y 2n (x) n.. u n (x) y n1 (x) y n2 (x) y nn (x)

cd Przy rozwiązywaniu równania niejednorodnego n-tego rzędu metodą uzmienniania stałych C 1, C 2,..., C n, układ równań względem pochodnych stałych ma postać C 1 (x)y 1(x) + C 2 (x)y 2(x) + + C n(x)y n (x) = 0, C 1 (x)y 1 (x) + C 2 (x)y 2 (x) + + C n(x)y n(x) = 0,. C 1 (n 1) (x)y 1 (x) + C 2 (n 1) (x)y 2 (x) + + C n(x)y n (n 1) (x) = q(x) a n, (7)

Równanie niejednorodne drugiego rzędu uzmiennianie stałych Układ równań względem pochodnych uzmiennionych stałych dla równania drugiego rzędu ay + by + cy = q(x), gdzie a 0, { C 1 (x)y 1 (x) + C 2 (x)y 2(x) = 0, C 1 (x)y 1 (x) + C 2 (x)y 2 q(x) (x) = a. Rozwiążemy równanie y y = x. Rozwiążemy równanie y 4y = sin x.

Równanie niejednorodne drugiego rzędu uzmiennianie stałych Układ równań względem pochodnych uzmiennionych stałych dla równania drugiego rzędu ay + by + cy = q(x), gdzie a 0, { C 1 (x)y 1 (x) + C 2 (x)y 2(x) = 0, C 1 (x)y 1 (x) + C 2 (x)y 2 q(x) (x) = a. Rozwiążemy równanie y y = x. Rozwiążemy równanie y 4y = sin x.

Równanie niejednorodne drugiego rzędu uzmiennianie stałych Układ równań względem pochodnych uzmiennionych stałych dla równania drugiego rzędu ay + by + cy = q(x), gdzie a 0, { C 1 (x)y 1 (x) + C 2 (x)y 2(x) = 0, C 1 (x)y 1 (x) + C 2 (x)y 2 q(x) (x) = a. Rozwiążemy równanie y y = x. Rozwiążemy równanie y 4y = sin x.

Równanie niejednorodne trzeciego rzędu uzmiennianie stałych Układ równań względem pochodnych uzmiennionych stałych dla równania trzeciego rzędu ay + by + cy + dy = q(x), gdzie a 0, C 1 (x)y 1(x) + C 2 (x)y 2(x) + C 3 (x)y 3(x) = 0, C 1 (x)y 1 (x) + C 2 (x)y 2 (x) + C 3 (x)y 3 (x) = 0, C 1 (x)y 1 (x) + C 2 (x)y 2 (x) + C 3 (x)y q(x) 3 (x) = a. Rozwiążemy równanie y 2y y + 2y = x.

Równanie niejednorodne trzeciego rzędu uzmiennianie stałych Układ równań względem pochodnych uzmiennionych stałych dla równania trzeciego rzędu ay + by + cy + dy = q(x), gdzie a 0, C 1 (x)y 1(x) + C 2 (x)y 2(x) + C 3 (x)y 3(x) = 0, C 1 (x)y 1 (x) + C 2 (x)y 2 (x) + C 3 (x)y 3 (x) = 0, C 1 (x)y 1 (x) + C 2 (x)y 2 (x) + C 3 (x)y q(x) 3 (x) = a. Rozwiążemy równanie y 2y y + 2y = x.

postaci rozwiązania szczególnego równania liniowego niejednorodnego n-tego rzędu a n y (n) + a n 1 y (n 1) + + a 1 y + a 0 y = q(x), gdzie n > 1, jest uogólnieniem metody przewidywania postaci rozwiązania równania niejednorodnego pierwszego rzędu. Analogicznie jak w przypadku układów równań różniczkowych korzystamy z twierdzenia o postaci rozwiązania ogólnego równania niejednorodnego. Twierdzenie Rozwiązanie ogólne równania niejednorodnego jest sumą rozwiązania ogólnego równania jednorodnego i rozwiązania szczególnego równania niejednorodnego.

postaci rozwiązania szczególnego równania liniowego niejednorodnego n-tego rzędu a n y (n) + a n 1 y (n 1) + + a 1 y + a 0 y = q(x), gdzie n > 1, jest uogólnieniem metody przewidywania postaci rozwiązania równania niejednorodnego pierwszego rzędu. Analogicznie jak w przypadku układów równań różniczkowych korzystamy z twierdzenia o postaci rozwiązania ogólnego równania niejednorodnego. Twierdzenie Rozwiązanie ogólne równania niejednorodnego jest sumą rozwiązania ogólnego równania jednorodnego i rozwiązania szczególnego równania niejednorodnego.

cd Funkcja q(x) jest wielomianem stopnia m. 1 Jeśli 0 nie jest pierwiastkiem wielomianu charakterystycznego, to jednym z rozwiązań szczególnych równania niejednorodnego jest wielomian w m (x) stopnia m. 2 Jeśli 0 jest pierwiastkiem krotności k wielomianu charakterystycznego, to jednym z rozwiązań szczególnych równania niejednorodnego jest wielomian w m+k (x) = x k w m (x) stopnia m + k. 1 1. 1 Oczywiście przyjmując k = 0 otrzymujemy przypadek rozważany w punkcie

y Wprowadzenie Rozwiążemy równanie niejednorodne y 4y = 2x z warunkami początkowymi y (0) = 0, y (0) = 1. Wyznaczymy rozwiązanie ogólne równania niejednorodnego y + y 2y = x 2 + 1. (8) Wyznaczymy rozwiązanie ogólne równania niejednorodnego y y = x.

y Wprowadzenie Rozwiążemy równanie niejednorodne y 4y = 2x z warunkami początkowymi y (0) = 0, y (0) = 1. Wyznaczymy rozwiązanie ogólne równania niejednorodnego y + y 2y = x 2 + 1. (8) Wyznaczymy rozwiązanie ogólne równania niejednorodnego y y = x.

y Wprowadzenie Rozwiążemy równanie niejednorodne y 4y = 2x z warunkami początkowymi y (0) = 0, y (0) = 1. Wyznaczymy rozwiązanie ogólne równania niejednorodnego y + y 2y = x 2 + 1. (8) Wyznaczymy rozwiązanie ogólne równania niejednorodnego y y = x.

cd Funkcja q(x) jest kombinacją liniową funkcji sin (ωx) i cos (ωx), gdzie ω R. 1 Jeśli iω nie jest pierwiastkiem wielomianu charakterystycznego, to rozwiązaniem szczególnym jest funkcja postaci a sin (ωx) + b cos (ωx). 2 Jeśli iω jest pierwiastkiem krotności k wielomianu charakterystycznego, rozwiązaniem szczególnym jest funkcja postaci ax k sin (ωx) + bx k cos (ωx).

y Wprowadzenie Wyznaczymy rozwiązanie ogólne równania niejednorodnego y 4y = sin x + 2 cos x. Rozwiążemy równanie y + 2y + y = 2 cos x + sin x.

y Wprowadzenie Wyznaczymy rozwiązanie ogólne równania niejednorodnego y 4y = sin x + 2 cos x. Rozwiążemy równanie y + 2y + y = 2 cos x + sin x.

cd Funkcja q(x) jest postaci αe ωx. 1 Jeśli ω nie jest pierwiastkiem wielomianu charakterystycznego, to jednym z rozwiązań szczególnych jest funkcja g(x) = ae ωx. 2 Jeśli ω jest pierwiastkiem krotności k wielomianu charakterystycznego, to jednym z rozwiązań szczególnych jest funkcja g(x) = ax k e ωx. 2 2 Przyjmując k = 0 otrzymujemy przypadek rozważany w punkcie 1.

y Wprowadzenie Wyznaczymy rozwiązanie ogólne równania niejednorodnego y 4y + 3y = 4e 2x. Wyznaczymy rozwiązanie ogólne równania y + 2y 4y 8y = e 2x.

y Wprowadzenie Wyznaczymy rozwiązanie ogólne równania niejednorodnego y 4y + 3y = 4e 2x. Wyznaczymy rozwiązanie ogólne równania y + 2y 4y 8y = e 2x.

cd Jeśli funkcja q(x) jest sumą lub iloczynem omówionych powyżej funkcji, to rozwiązania szczególnego poszukujemy również w postaci sumy lub iloczynu odpowiednich funkcji.