Matematyka licea ogólnokształcące, technika

Podobne dokumenty
FUNKCJA LINIOWA. A) B) C) D) Wskaż, dla którego funkcja liniowa określona wzorem jest stała. A) B) C) D)

FUNKCJA LINIOWA, RÓWNANIA I UKŁADY RÓWNAŃ LINIOWYCH

Funkcja liniowa - podsumowanie

FUNKCJA LINIOWA. Zadanie 1. (1 pkt) Na rysunku przedstawiony jest fragment wykresu pewnej funkcji liniowej y = ax + b.

M10. Własności funkcji liniowej

Funkcja liniowa -zadania. Funkcja liniowa jest to funkcja postaci y = ax + b dla x R gdzie a, b R oraz

FUNKCJA LINIOWA - WYKRES

Kurs ZDAJ MATURĘ Z MATEMATYKI MODUŁ 5 Zadania funkcje cz.1

FUNKCJA LINIOWA - WYKRES. y = ax + b. a i b to współczynniki funkcji, które mają wartości liczbowe

ZAGADNIENIA NA EGZAMIN POPRAWKOWY Z MATEMATYKI W KLASIE II TECHNIKUM.

Funkcja liniowa i prosta podsumowanie

POWTÓRKA ROZDZIAŁU III FUNKCJA LINIOWA

? 14. Dana jest funkcja. Naszkicuj jej wykres. Dla jakich argumentów funkcja przyjmuje wartości dodatnie? 15. Dana jest funkcja f x 2 a x

Funkcje liniowe i wieloliniowe w praktyce szkolnej. Opracowanie : mgr inż. Renata Rzepińska

Funkcje IV. Wymagania egzaminacyjne:

3. FUNKCJA LINIOWA. gdzie ; ół,.

KURS FUNKCJE. LEKCJA 6 PODSTAWOWA Funkcje zadania maturalne ZADANIE DOMOWE. Strona 1

1) 2) 3) 5) 6) 7) 8) 9) 10) 11) 12) 13) 14) 15) 16) 17) 18) 19) 20) 21) 22) 23) 24) 25)

Ostatnia aktualizacja: 30 stycznia 2015 r.

3) Naszkicuj wykres funkcji y=-xdo kwadratu+2x+1 i napisz równanie osi symetrii jej wykresu.

FUNKCJE. Kurs ZDAJ MATURĘ Z MATEMATYKI MODUŁ 5 Teoria funkcje cz.1. Definicja funkcji i wiadomości podstawowe

Funkcja kwadratowa. f(x) = ax 2 + bx + c = a

ZESTAW PRZYKŁADOWYCH ZADAŃ Z MATEMATYKI ZAKRES ROZSZERZONY

Funkcja kwadratowa. f(x) = ax 2 + bx + c,

KONSPEKT FUNKCJE cz. 1.

Pojęcia, wymagania i przykładowe zadania na egzamin poprawkowy dla klas II w roku szkolnym 2016/2017 w Zespole Szkół Ekonomicznych w Zielonej Górze

Projekt Era inżyniera pewna lokata na przyszłość jest współfinansowany przez Unię Europejską w ramach Europejskiego Funduszu Społecznego

Kurs ZDAJ MATURĘ Z MATEMATYKI MODUŁ 6 Teoria funkcje cz. 2

Dwie proste mogą być względem siebie prostopadłe, równoległe albo przecinać się pod kątem innym niż prosty..

Zajęcia nr. 5: Funkcja liniowa

FUNKCJE ELEMENTARNE I ICH WŁASNOŚCI

Wymagania edukacyjne z matematyki

FUNKCJA KWADRATOWA. Wykresem funkcji kwadratowej jest parabola o wierzchołku w punkcie W = (p, q), gdzie

Kształcenie w zakresie podstawowym. Klasa 2

FUNKCJE I RÓWNANIA KWADRATOWE. Lekcja 78. Pojęcie i wykres funkcji kwadratowej str

Zadanie 3. Na prostej o równaniu y = 2x 3 znajdź punkt P, którego odległość od punktu A = ( 2, -1 ) jest najmniejsza. Oblicz AP

Zajęcia nr 1 (1h) Dwumian Newtona. Indukcja. Zajęcia nr 2 i 3 (4h) Trygonometria

Technikum Nr 2 im. gen. Mieczysława Smorawińskiego w Zespole Szkół Ekonomicznych w Kaliszu

Zadania do samodzielnego rozwiązania zestaw 11

ZADANIA ZAMKNIETE W zadaniach 1-25 wybierz i zaznacz na karcie odpowiedzi poprawna

ZADANIE 1. ZADANIE 2 Wyznacz wzór funkcji f (x) = 2x 2 + bx + c w postaci kanonicznej wiedzac, że jej miejsca zerowe sa niami równania x 3 = ZADANIE 3

. Funkcja ta maleje dla ( ) Zadanie 1 str. 180 b) i c) Zadanie 2 str. 180 a) i b)

Przygotowanie do poprawki klasa 1li

Klasa 1 technikum. Poniżej przedstawiony został podział wymagań na poszczególne oceny szkolne:

Wymagania edukacyjne matematyka klasa 1 zakres podstawowy 1. LICZBY RZECZYWISTE

PRZEDMIOTOWY SYSTEM OCENIANIA PROSTO DO MATURY KLASA 1 ZAKRES PODSTAWOWY

CIEKAWOSTKI. Terminu funkcja użył po raz pierwszy Leibniz w pracy Odwrotna metoda stycznych lub o funkcjach.

WYMAGANIA EDUKACYJNE Z MATEMATYKI dla klasy I ba Rok szk. 2012/2013

Zad. 8(3pkt) Na podstawie definicji wykaż, że funkcja y=

Zadanie 3 Oblicz jeżeli wiadomo, że liczby 8 2,, 1, , tworzą ciąg arytmetyczny. Wyznacz różnicę ciągu. Rozwiązanie:

Dział I FUNKCJE I ICH WŁASNOŚCI

MATeMAtyka 1. Przedmiotowy system oceniania wraz z określeniem wymagań edukacyjnych. Zakres podstawowy i rozszerzony Klasa pierwsza

x+h=10 zatem h=10-x gdzie x>0 i h>0

. c) do jej wykresu należą punkty A ( 3,2 3 3) oraz

AUTORKA: ELŻBIETA SZUMIŃSKA NAUCZYCIELKA ZESPOŁU SZKÓŁ OGÓLNOKSZTAŁCĄCYCH SCHOLASTICUS W ŁODZI ZNANE RÓWNANIA PROSTEJ NA PŁASZCZYŹNIE I W PRZESTRZENI

Geometria analityczna

Technikum Nr 2 im. gen. Mieczysława Smorawińskiego w Zespole Szkół Ekonomicznych w Kaliszu

Wymagania na egzamin poprawkowy z matematyki w roku szkolnym 2018/2019 klasa 1 TLog

PLAN WYNIKOWY PROSTO DO MATURY KLASA 1 ZAKRES PODSTAWOWY

Lekcja 2. Pojęcie równania kwadratowego. Str Teoria 1. Równaniem wielomianowym nazywamy równanie postaci: n

========================= Zapisujemy naszą funkcję kwadratową w postaci kanonicznej: 2

Matura z matematyki?- MATURALNIE, Ŝe ZDAM! Zadania treningowe klasa I III ETAP

ZADANIA ZAMKNIETE W zadaniach 1-25 wybierz i zaznacz na karcie odpowiedzi poprawna

Egzamin ustny z matematyki semestr II Zakres wymaganych wiadomości i umiejętności

Repetytorium z matematyki ćwiczenia

Funkcje Andrzej Musielak 1. Funkcje

Wymagania na egzamin poprawkowy z matematyki w roku szkolnym 2018/2019 klasa 1 TŻiUG

Skrypt 12. Funkcja kwadratowa:

Na rysunku przedstawiony jest wykres funkcji f(x) określonej dla x [-7, 8].

Wstęp do analizy matematycznej

KONSPEKT LEKCJI MATEMATYKI (2 LEKCJE) W III KLASIE GIMNAZJUM OPRACOWAŁA RENATA WOŁCZYŃSKA

ZBIÓR ZADAŃ. Matematyczne ABC maturzysty na poziomie podstawowym

Wymagania na egzamin poprawkowy z matematyki w roku szkolnym 2017/2018 klasa pierwsza Branżowa Szkoła

PODKARPACKI SPRAWDZIAN PRZEDMATURALNY Z MATEMATYKI DLA KLAS DRUGICH POZIOM PODSTAWOWY

Wymagania na egzamin poprawkowy z matematyki w roku szkolnym 2018/2019 klasa 1 b BS

NAJWIEKSZY INTERNETOWY ZBIÓR ZADAŃ Z MATEMATYKI FUNKCJE KWADRATOWE PARAMETRY

WYMAGANIA EDUKACYJNE KLASA I Pogrubieniem oznaczono wymagania, które wykraczają poza podstawę programową dla zakresu podstawowego.

WYMAGANIA EDUKACYJNE Z MATEMATYKI DLA KLASY DRUGIEJ LICEUM OGÓLNOKSZTAŁCĄCEGO ZAKRES PODSTAWOWY

Próbny egzamin z matematyki dla uczniów klas II LO i III Technikum. w roku szkolnym 2012/2013

Wymagania edukacyjne, kontrola i ocena. w nauczaniu matematyki w zakresie. podstawowym dla uczniów technikum. część II

Z HISTORII MATEMATYKI

Zakres materiału obowiązujący do egzaminu poprawkowego z matematyki klasa 1 d LO

Po zapoznaniu się z funkcją liniową możemy przyjśd do badania funkcji kwadratowej.

Definicja i własności wartości bezwzględnej.

1 S t r o n a ZDASZ MATURĘ! Cz.1. Do każdego zadania dodano film z rozwiązaniem

ZAGADNIENIA NA EGZAMIN POPRAWKOWY Z MATEMATYKI W KLASIE II TECHNIKUM.

PRZEDMIOTOWY SYSTEM OCENIANIA PROSTO DO MATURY KLASA 1 ZAKRES PODSTAWOWY I ROZSZERZONY

1. Proporcjonalnością prostą jest zależność opisana wzorem: x 5

Uniwersytet Mikołaja Kopernika w Toruniu. Egzamin wstępny z matematyki

FUNKCJA KWADRATOWA. 1. Definicje i przydatne wzory. lub trójmianem kwadratowym nazywamy funkcję postaci: f(x) = ax 2 + bx + c

Funkcje wymierne. Jerzy Rutkowski. Działania dodawania i mnożenia funkcji wymiernych określa się wzorami: g h + k l g h k.

WYMAGANIA EDUKACYJNE - matematyka - poziom rozszerzony Dariusz Drabczyk

Arkusz maturalny nr 2 poziom podstawowy ZADANIA ZAMKNIĘTE. Rozwiązania. Wartość bezwzględna jest odległością na osi liczbowej.

Skrypt 23. Geometria analityczna. Opracowanie L7

Wymagania edukacyjne z matematyki w XVIII Liceum Ogólnokształcącym w Krakowie, zakres podstawowy. Klasa druga.

Wykresy i własności funkcji

Wymagania edukacyjne z matematyki klasa II technikum

Projekt Era inżyniera pewna lokata na przyszłość jest współfinansowany przez Unię Europejską w ramach Europejskiego Funduszu Społecznego

KLASA III LO Poziom podstawowy (wrzesień/październik)

PRÓBNA MATURA ZADANIA PRZYKŁADOWE

Transkrypt:

Matematyka licea ogólnokształcące, technika Opracowano m.in. na podstawie podręcznika MATEMATYKA w otaczającym nas świecie zakres podstawowy i rozszerzony Funkcja liniowa Funkcję f: R R określoną wzorem f(x) = ax+b, gdzie x R, a R i b R nazywamy funkcją liniową. Litery a i b oznaczają liczby dane: a współczynnik kierunkowy, b wyraz wolny Funkcja liniowa określona jest wzorem: f(x) = ax + b, gdzie a i b są liczbami rzeczywistymi Wzory: y = ax + b i f(x) = ax + b - używane zamiennie. Zmienną x nazywamy zmienną niezależną, a y zmienną zależną. Wykresem funkcji liniowej f(x) = ax + b jest prosta o równaniu y = ax + b. Prosta ta przecina oś rzędnych y w punkcie (0, b) i nachylona jest do osi odciętych pod kątem a, takim, że tg α = a Współczynnik kierunkowy a we wzorze y = ax + b opisuje nachylenie prostej względem osi x.

Dziedziną każdej funkcji liniowej jest zbiór liczb rzeczywistych R, czyli przedział D f = (-, + ) Zbiorem wartości funkcji liniowej określonej wzorem y = ax+b jest: - zbiór liczb rzeczywistych, gdy a 0 - zbiór jednoelementowy {b}, gdy a = 0 Funkcja liniowa f(x) = ax + b jest: rosnąca w R, jeśli współczynnik kierunkowy a >0 malejąca w R, jeśli a <0 stała, jeśli a = 0 Przykłady: y =-3x +4, gdzie a = -3, b = 4 f(x) = -x, a = -1, b = 0; y = 12, a = 0, b = 12 Ćw. 1 y=5x+3 funkcja liniowa, a=5, b=3 y = 2x -1 funkcja liniowa a = 2, b = -1 y = 7x 2, funkcja kwadratowa (to nie jest funkcja liniowa) y = -x + 1 funkcja liniowa, a=-1, b=1 y = x 1 funkcja wymierna (to nie jest funkcja liniowa) y = x 3-1 wielomian stopnia trzeciego (to nie jest funkcja liniowa) y = 2 funkcja liniowa, a=-0, b=2 Ćw. 2 Napisz wzór funkcji liniowej w postaci y = ax + b, jeśli: a) a=2 i b =-1 b) a = -1 i b = 0, c) a = 0 i b = 4 Ad a) y = 2x-1 Ad b) y = -x Ad c) y = 4 Przykład 1. Liczbie rzeczywistej x przyporządkowano liczbę y, która jest wielokrotnością liczby y, pomniejszoną o 4. a) Napisz wzór określający to przyporządkowanie. Czy jest ono funkcją liniową? Jeśli tak to podaj wartości współczynników liczbowych b) Sporządź częściową tabelę wartości funkcji c) Sporządź wykres funkcji. Rozwiązanie a) f(x) = 2x -4 lub y = 2x 4. Funkcja liniowa. a = 2, b = -4 b) Tabelka wartości funkcji

x -1 0 1 2 3 y = 2x-4-6 -4-2 0 2 y(-1) = 2*(-1) -4 = -2-4 = -6 y(0) = 2*0 4 = -4 itd. Można tez podstawić za y wartość 0 i obliczyć wartość x: 0 = 2x-4 2x=4 x=2 miejsce zerowe funkcji liniowej y = 2x-4 c) Wykres funkcji y=2x-4 Metody sporządzenia wykresu 1) Nanosimy na wykresie punkty z tabelki (min. 3 dla kontroli) i łączymy prostą 2) Zaznaczamy na osi y wartość b = -4, czyli oznaczamy punkt (0, -4) oraz miejsce zerowe x=2, czyli punkt (2, 0) i łączymy te punkty prostą 3) Zaznaczamy punkt (0, -4) jak wyżej a następnie z tego punktu odkładamy wektor [1, 2], ponieważ a = 2 czyli 2/1 po osi x wartość Dx=1, a po osy y wartość Dy=2 Współrzędne początku wektora: x=0, y = b Współrzędne końca wektora: x = 0 + 1 = 1, y = -4 + 2 = -2. Ogólnie: x = 1, y = b+a Czyli współrzędne początku wektora: (0, b) a końca: (1, b+a). Tutaj odpowiednio: (0, -4) oraz (1, -2). Wektor ten określa prostą y=2x-4 Ćw.3 Liczbie rzeczywistej x przyporządkowano liczbę y, która jest połową liczby x powiększoną o 2. a) Napisz wzór funkcji liniowej określającej to przyporządkowanie b) Sporządź wykres tej funkcji. Ad a) y = 0,5x + 2 Ad b) y = = ½ x + 2 Przecięcie z osią y: (0, 2) b = 2, a = ½ Dx = 2. Dy=1 Wektor leżący na prostej [2, 1] Odkładamy z punktu (0, 2) i otrzymujemy punkt (0+2, 2+1), czyli punkt (2, 3) 0 = 0,5x +2 0,5x = -2 x = -4 Miejsce zerowe (-4, 0) Zaznaczamy punkty (-4, 0), (0,2), (2, 3) - te punkty wyznaczają prostą (jeden kontrolny) Tabela

x -4 0 2 4 y 0 2 3 4 http://www.jogle.pl/wykresy/ Przykład 2 Sporządź wykres funkcji liniowej f i odczytaj z wykresu jej dziedzinę i zbiór wartości, gdy a) f(x) = 2x + 1 b) f(x) = -3x c) f(x) = -2 Rozwiązanie: Obliczamy współrzędne 2 punktów należących do wykresu funkcji. Ad a) x y = 2x Ad b) x y=-2x Ad c) x y = -2 +1 0 1 0 0 0-2 1 3 1-3 1-2 Punkty wykresu (0, 1) (1, 3) (0, 0) (1, -3) (0, -2) (1, -2) Do wykresu funkcji y = 2x+1 należą punkty: (0, 1) I (1, 3) Do wykresu y= 2x należą punkty: (0, 0) i (1,

Dziedziną każdej z tych funkcji jest zbiór liczb rzeczywistych R, czyli przedział D f = (-, + ) Zbiorem wartości jest: dla a) zbiór R czyli Z w = Y f = (-, + ) (a <>0) ; dla b) zbiór R czyli Zw = Y f = (-, + ) ( a <> 0 ) dla c) zbiór mający tylko jeden element: Zw = Y f = {-2} ( a = 0 ) Ćw. 4. Sporządź wykres funkcji określonej wzorem: a) y = -3x + 2 b) y = - ½ x c) y = 3 b) Ad a) x y = -3x Ad b) x y- ½ x Ad c) x y = 3 +2 0 2 0 0 0 3 1-1 1-0,5 1 3 Punkty wykresu (0, 2) (1, -1) (0, 0) (1, 0,5) (0, 3) (1, 3)

Przykład 3 Sprawdź, które spośród punktów o współrzędnych: (0, 0), (-1, 1), (100, 102) należą do wykresu funkcji f, określonej wzorem: f(x) = x + 2. Rozwiązanie: Punkt (x 0, y 0 ) należy do wykresu funkcji f gdy f(x 0 ) = y 0 f(0) = 0+2 =2 Punkt (0, 0) nie należy do wykresu funkcji f, bo f(0) = 2 i f(0) 0 f(x 0 ) y 0 f(-1) = -1 + 2 = 1 Punkt (-1, 1) należy do wykresu funkcji f, bo f(-1) = 1 f(x 0 ) = y 0 f(100) = 100 + 2 = 102 Punkt (100, 102) należy do wykresu funkcji f, bo f(100) = 102 f(x 0 ) = y 0 Ćw. 5 Sprawdź, które spośród punktów: (-8, 45), (-1, 8), (307, 619), (-3215, 6435) należą do wykresu funkcji f określonej wzorem f(x) = -2x+ 5 f(-8) = -2*(-8) + 5 = 21 21 45 Punkt (-8, 45) nie należy do wykresu funkcji f, bo f(-8) y 0, gdzie y 0 = 45 f(307) = -2*(307) + 5 = -614 + 5 = -609 619 Punkt (307, 619), nie należy do wykresu funkcji f, f(-3215) = -2*(-3215) + 5 = 6430 + 5 = 6435 Punkt (-3215, 6435) należy do wykresu funkcji f, bo f(x 0 ) = y 0 Zadania utrwalające 14.1 Funkcje określone są wzorami: 1) y = 2x + 3 2) y = x, 3) y=1/x 4) y = -x 2 5) y = -x +1 6) y = ( 2x) y = 2 8) y = 3 x Wskaż, które z nich są wzorami funkcji liniowych. Odp. Funkcje liniowe: 1), 2), 5), 7), 8) 14.2 Podaj wartości współczynników liczbowych a i b funkcji liniowej określonej wzorem postaci y = ax + b, gdy: a) y = 3x - 2 b) y = ½ x + 1, c) y = x + 3, d) y = -x + 4 ½ e) y = 2 x 1 f) y = 4x g) y = 3 ½ h) 2x + y -3 = 0 Odp. a) a =3, b=-2 ; b) a=½, b=1, c) a=1, b=3, d) a=-1, b=4 ½ e) a= 2, b=-1 f) a = 4, b=0, g) a=0, b=3 ½ h) a= -2, b=3

14.3 Napisz wzór funkcji liniowej w postaci f(x) = ax+b, gdy: a) a = 2, b = 5 b) a = -1, b = 7, c) a = 0, b = -4, d) a = ½, b = 0 Odp. a) y =2x + 5, b) y = -x+ 7, c) y = -4 d) y = ½ x 14.4 Sporządź wykres funkcji funkcji liniowej określonej wzorem : a) y = -x + 3 b) y = 3x 1 c) y = 4x + 2 a) c)

14.5. Sprawdź czy do wykresu funkcji liniowej f należą punkty A lub B, gdy: a) f(x) = - ¼ x + 20, A=(80, 0), B=(0, -80)

A: f(x A ) = f(80) = ¼ * 80 + 20 = 0, f(x A ) = y A = 0 Punkt A należy do wykresu prostej f(x) B: f(x B ) = f(0) = ¼ * 0 + 20 = 20, f(x B ) = f(0) y B Punkt B nie należy do wykresu prostej f(x) Podstawiamy współrzędną x danego punktu P do równania prostej i obliczamy współrzędną y punktu na prostej, odpowiadającemu współrzędnej x. Jeśli obliczona współrzędna pokrywa się ze współrzędną y punktu P, to ten punkt należy fo wykresu funkcji (lezy na prostej). Analogicznie rozwiązujemy inne przypadki. Ogólnie - sprawdzenie czy punkt o danych współrzędnych należy do prostej (leży na prostej) Dane równanie y = ax+b oraz punkt P(x P, y P ). Obliczamy y(x P ) = a* x P + b Jeśli x P = y P to punkt P leży na prostej. W przypadku równania prostej o innej postaci, np. ogólnej: Ax + By + C = 0, podstawiamy obie współrzędne punktu P (x P i y P ) do równania. Jeśli spełnione jest równanie, to punkt P leży na prostej. 14.6 Sprawdź, czy punkt T = (0, -1) należy do wykresu funkcji, gdy jest nim prosta określona równaniem: a) y = x -1 y(0) = 0 1 = -1-1 = -1 y(0) = y T Punkt T należy do wykresu funkcji b) x y = -1 0 (-1) = 1 1-1 Punkt T nie należy do wykresu funkcji c) x = y -1 L = 0, P = -1 1 = -2 L P bo 0-2 Punkt T nie należy do wykresu funkcji (obliczamy wartość lewej i prawej strony równania) d) 2x + y + 1 = 0 2*0- + (-1) + 1 = 0 0 = 0 Punkt T należy do wykresu funkcji (podstawiamy współrzędne do równania) Interpretacja współczynników liczbowych funkcji liniowej Dla dowolnej funkcji liniowej f(x) = ax + b, dla argumentu x=0, f(0) = a*0 + b = b, czyli punkt (0, b) leży na prostej, będącej wykresem funkcji. Proste o tej samej wartości b, tworzą pęk prostych y = a 1 x + b, y = a 2 x + b, y = a 3 x + b, itd. Pęk prostych zbiór wszystkich prostych, przechodzących przez ustalony punkt, który nazywamy środkiem pęku,

Wykres funkcji liniowej y = ax + b, przechodzi przez punkt (0, b). Współczynnik b, to tzw. wartość funkcji dla argumentu zero. W praktyce może odpowiadać kapitałowi początkowemu, temperaturze na poziomie 0 nad poziomem morza, zapłacie za przejazd pierwszego kilometra itp. Jeżeli funkcja liniowa określona jest wzorem y = ax + b, to gdy zwiększamy wartość argumentu x o 1, to wartość funkcji zmienia się o a. Wykres funkcji liniowej y = ax + b przechodzi przez punkty (0, b) i (1, a+b) Funkcja linowa f(x) = ax + b jest: rosnąca, gdy a > 0, malejąca, gdy a < 0, stała, gdy a = 0

Jeżeli funkcja liniowa określona wzorem y = ax + b i jej wykres tworzy z osią x kąt α, to a = tg α oraz kat α jest ostry gdy a > 0 (I i III ćwiartka układu współrzędnych) kat α jest rozwarty gdy a > 0 (I i III ćwiartka układu współrzędnych) kat α = 0, gdy a =0 (prosta do osi x)

Proste równoległe i proste przecinające się Jeśli a 1 = a 2 proste równoległe jeśli a 1 a 2 proste się przecinają Funkcje liniowe f i g określone wzorami f(x) = a 1 x + b1 i g(x) = a 2 x + b2 Jeżeli: a 1 = a 2, to wykresy funkcji f i g są równoległe a 1 a 2, to wykresy funkcji f i g się przecinają

Miejsce zerowe funkcji liniowej Miejscem zerowym funkcji liniowej f(x) = ax + b nazywamy taki argument x0, dla którego wartość funkcji f jest równa zero. x 0 miejsce zerowe, to f(x 0 ) = 0 Obliczyć miejsce zerowe funkcji y = f(x) to znaczy rozwiązać równanie f(x) = 0 Funkcja liniowa y = ax + b - ma miejsce zerowe x 0 = -b/a, gdy a 0, - nie ma miejsc zerowych, gdy a = 0 i b 0, - ma nieskończenie miejsc zerowych, gdy a =0 i b = 0 Wyznaczenie wzoru funkcji liniowej Aby wyznaczyć wzór funkcji f(x) = ax + b, wystarczy znać współczynniki a i b. Jeśli jeden ze współczynników jest nieznany, to potrzebna jest jeszcze inna informacji, która pozwoli obliczyć drugi współczynnik. Przykłady:

1 Dana funkcja o znanym współczynniku a i znane miejsce zerowe x 0, szukane b Przykład: y = 2x + b i jej miejsce zerowe 6. I sposób: a = 2, b =? x 0 = 6, więc f(6) = 0, 2*6 + b = 0 b = -12 y = 2x 12 Ogólnie: a*x0 + b = 0 b = -a*x0 w tym przykładzie: b = -2*6 = -12 II sposób: x0 = -b/a, więc b/a = 6, -b/2 = 6, b = 12 Ogólnie b = -a*x0 2. Dana funkcja o znanym współczynniku b i znane miejsce zerowe x 0, szukane a y = a*x + b 0 = a*x 0 +b a = -b/x0 3. Dana jest funkcja o znanym b i wykres jest równoległy do prostej o znanym równaniu y = a 2 *x + b 2 Szukane a y = a 1 *x + b a1 = a2 (proste równoległe) y = a 2 *x + b Przykład: Dana funkcja określona wzorem y = ax -3, wykres równoległy do prostej y = -8x + 4 Rozwiązanie: a = -8 (proste równoległe, a2 = a1) y = -8x 3 4. Dana jest funkcja o znanym b i wykres przechodzi przez punkt o znanych współrzędnych P1=(x1, y1) Szukane a. y1 = a*x1 + b a = y1 b)/x1 Przykład: Funkcja liniowa jest określona wzorem y = ax - 3 Prosta przechodzi przez punkt P = (-2, 5) Podstawiamy do równania prostej współrzędne punktu P 5 = a*(-2) 3-2a = 8 a = -4 a = (5 +3)/(-2) = 8/(-2) = -4 y = -4x 3 5. Wykres funkcji przechodzi przez punkty P1=(x1, y1) i P2 = (x2, y2) Współrzędne punktów spełniają równanie y = f(x) = ax + b Układ równań: { y1 = x1 * a + b { y2 = x2* a + b

stąd y2 y1 = a(x2 x1) a = (y2 y1)/(x2-x1); b = y1 a*x1 lub b = y2 a*x2; Podstawiamy do równania obliczone współczynniki a i b: y = a*x + b Przykład: A = (3, 0), B = (-1, 8) Rozwiązanie: a = (8-0)/(-1-3) = 8/-4 = -2 b = 0 (-2)*3 = 6; b = 8 (-2)*(-1) = 8-2 = 6 y = -2*x + 6