27. RÓWNANIA RÓŻNICZKOWE CZĄSTKOWE 27.1. Wiadomości wstępne Równaniem różniczkowym cząstkowym nazywamy związek w którym występuje funkcja niewiadoma u dwóch lub większej liczby zmiennych niezależnych i jej pochodne cząstkowe. Rzędem równania różniczkowego cząstkowego nazywamy najwyższy rząd pochodnej funkcji niewiadomej występującej w danym równaniu. Na przykład równanie jest rzędu pierwszego, a równanie jest rzędu drugiego. Całką szczególną lub rozwiązaniem szczególnym równania różniczkowego cząstkowego rzędu n w obszarze Ω nazywamy funkcję o n zmiennych niezależnych klasy C n w obszarze Ω spełniającą dane równanie różniczkowe cząstkowe w każdym punkcie obszaru Ω. Całką ogólną lub rozwiązaniem ogólnym równania różniczkowego cząstkowego nazywamy zbiór wszystkich całek szczególnych tego równania w obszarze Ω. Wiadomo z teorii równań różniczkowych zwyczajnych, że 27.1
całka ogólna równania różniczkowego zwyczajnego rzędu n zależy od n stałych dowolnych. Okazuje się, że całka ogólna równania różniczkowego cząstkowego rzędu n zależy od n dowolnych funkcji, z których każda jest funkcją tej samej liczby argumentów o jeden mniejszej od liczby argumentów rozwiązania. Równanie różniczkowe cząstkowe nazywamy liniowym w obszarze Ω, jeżeli funkcja f jest liniowa względem funkcji niewiadomej u i jej pochodnych, a współczynniki równania zależą tylko od zmiennych niezależnych, np. Równanie różniczkowe cząstkowe nazywamy ąuasi-liniowym w obszarze Ω, jeżeli funkcja f jest liniowa względem funkcji niewiadomej u i jej pochodnych do rzędu n-tego włącznie, a jej współczynniki zależą nie tylko od zmiennych niezależnych, lecz od funkcji niewiadomej u i jej pochodnych do rzędu (n 1)-go, np.: Zagadnienie Cauchy'ego dla równania różniczkowego cząstkowego rzędu n polega na znalezieniu takiego rozwiązania szczególnego tego równania w obszarze Ω, które spełnia z góry zadane warunki początkowe. 27.2
Przykład Sprawdzimy, czy funkcja jest rozwiązaniem równania Różniczkując tę funkcję otrzymujemy Podobnie Wstawiając do równania mamy 27.2. Równania różniczkowe cząstkowe rzędu pierwszego Zajmiemy się tu równaniami różniczkowymi cząstkowymi rzędu pierwszego z dwiema zmiennymi niezależnymi postaci gdzie x, y są zmiennymi niezależnymi, u=u(x, y) jest funkcją tych u zmiennych, a x i u y są pochodnymi cząstkowymi funkcji u. Całką szczególną (rozwiązaniem) tego równania nazywamy funkcję 27.3
u = φ(x, y) klasy C 1 w obszarze płaskim D spełniającą to równanie w tym obszarze. Jeżeli x, y, u traktować będziemy jako współrzędne prostokątne punktów w przestrzeni trójwymiarowej, to powierzchnia odpowiadająca całce u = φ(x, y) równania nazywa się powierzchnią całkową tego równania. Równanie ustala pewien związek między punktem (x, y, u) przestrzeni trójwymiarowej a położeniem płaszczyzny stycznej do powierzchni u = φ(x, y), tzn. takiej, że wektor jest do niej normalny. Zachodzi pytanie, czy istnieje dla tego równania taka powierzchnia całkowa, która w każdym swoim punkcie ma płaszczyznę styczną spełniającą dany związek. Dla równania różniczkowego zwyczajnego rzędu pierwszego można, jak wiemy, obrać z góry dany punkt ( punkt początkowy"), przez który ma przechodzić linia całkowa. Obecnie można żądać, aby powierzchnia całkowa równania różniczkowego cząstkowego przechodziła przez z góry obraną linię ( linię początkową") w przestrzeni trójwymiarowej. Wyznaczenie powierzchni całkowej przez daną linię początkową nazywa się zagadnieniem Cauchy ego. 27.4
1. Najprostsze przypadki równań różniczkowych cząstkowych rzędu pierwszego. Do najprostszych równań różniczkowych cząstkowych rzędu pierwszego należą równania oraz Każde z tych równań rozwiązujemy drogą bezpośredniego całkowania: oraz u = F(x, y) + ψ(y), u = G(x, y) + φ(x) gdzie ψ(y) i φ(x) są dowolnymi różniczkowalnymi funkcjami jednej zmiennej. Przykład Znajdziemy całkę ogólną równania Całkując stronami dane równanie mamy gdzie φ(x) jest dowolną funkcją zmiennej x. Przykład Znaleźć całkę szczególną równania spełniającą warunki początkowe 27.5
x = x 0, u(x 0, y) = f(y). gdzie x 0 jest daną wartością liczbową, a f(y) funkcją z góry daną. Warunki wskazują krzywą, przez którą ma przechodzić powierzchnia całkowa. Poszukujemy najpierw całki ogólnej: u = x 2 + ψ(y) (u = u(x, y)) gdzie ψ(y) jest dowolną funkcją zmiennej y. Całka ta przedstawia nieskończenie wiele powierzchni całkowych w przestrzeni trójwymiarowej Oxyu. Uwzględniając warunki początkowe x = x 0, u(x 0, y) = f(y) w całce ogólnej mamy skąd u = x 2 + ψ(y) więc f(y) = x 0 2 + ψ(y) ψ(y)= f(y) - x 0 2 Ostatecznie otrzymujemy całkę szczególną równania w postaci u = x 2 x 0 2 + f(y) 27.6
2. Równanie różniczkowe cząstkowe liniowe rzędu pierwszego. Równanie różniczkowe cząstkowe gdzie P, Q, f są danymi funkcjami klasy C 1 zmiennych x, y w pewnym obszarze D, nazywamy równaniem różniczkowym cząstkowym liniowym rzędu pierwszego z funkcją niewiadomą u = u(x, y). Jeżeli f(x,y)=o, to równanie powyższe nazywamy równaniem liniowym jednorodnym w obszarze D, w przeciwnym przypadku niejednorodnym. Zajmiemy się równaniem liniowym jednorodnym w którym P, Q nie są jednocześnie zerami w obszarze D. Równanie to rozwiązujemy opierając się na następujących twierdzeniach: Tw. 1 Jeżeli funkcja u = F(x, y) jest rozwiązaniem powyższego równania w obszarze D, to funkcja F(x, y) jest całką pierwszą równania tzn. ma tę własność, że pozostaje stała, gdy za zmienne x, y podstawimy funkcje spełniające dane równanie. Tw. 2 Jeżeli funkcja F(x,y) klasy C 1 jest całką pierwszą równania z tw. 1, to funkcja u = F(x, y) jest rozwiązaniem rozważanego równania liniowego jednorodnego. 27.7
Tw. 3 Jeżeli funkcja F (x, y) jest klasy C 1 w obszarze D, to funkcja u = G[F(x, y)] (u = G(C)) gdzie G jest funkcją klasy C 1 w odpowiednim przedziale, jest całką ogólną rozważanego równania liniowego jednorodnego. Znajomość całki ogólnej równania różniczkowego zwyczajnego z tw. 1 pozwala rozwiązać zagadnienie Cauchy'ego dla równania liniowego jednorodnego, tzn. zagadnienie wyznaczenia powierzchni całkowej przechodzącej przez z góry daną linię. Aby otrzymać powierzchnię całkową przechodzącą przez z góry daną linię L o równaniach parametrycznych x = x 0 (t), y = y 0 (t), u = u 0 (t), t α, β, prowadzimy przez każdy punkt (x 0, y 0, u 0 ) linii L linię o równaniach F(x, y) = F(x 0, y 0 ), u = u 0 Otrzymana rodzina linii F(x, y) = F[x 0 (t), y 0 (t)], u = u 0 (t), t α, β, tworzy powierzchnię całkową równania liniowego jednorodnego przy założeniu, że funkcje x = x 0 (t), y = y 0 (t), u = u 0 (t), t α, β, są klasy C 1 i że linia L nie jest charakterystyką równania różniczkowego z tw. 1 (por. rysunek poniżej). Rugując parametr t ze związków F(x, y) = F[x 0 (t), y 0 (t)], u = u 0 (t), otrzymujemy równanie powierzchni przechodzącej przez linię L. Otrzymane rozwiązanie zagadnienia Cauchy'ego jest jedyne, gdyż przez każdy punkt linii L przechodzi tylko jedna charakterystyka. 27.8
Przykład Znaleźć całkę ogólną równania Równanie różniczkowe charakterystyk ma postać skąd C = y 2 2x Jest to całka pierwsza rozważanego równania, więc zgodnie z twierdzeniem 2 funkcja u= y 2 2x jest całką szczególną tego równania, a funkcja u = G(y 2 2x), zgodnie z twierdzeniem 3, jest całką ogólną tego równania. 27.9
Zadania 27.1. Wykazać, że funkcja u spełnia odpowiednie równanie różniczkowe: 27.10
27.11