Równania różniczkowe drugiego rzędu Najpierw zajmiemy się równaniami różniczkowymi rzędu drugiego, w których y nie występuje w sposób jawny, tzn. F (x, y, y ) = 0 (.) Równanie takie rozwiązujemy poprzez podstawienie y = p(x) (.) więc y = p (.3) stąd otrzymujemy równanie różniczkowe rzędu pierwszego Zadanie. Rozwiązać równanie różniczkowe drugie rzędu F (x, p, p ) = 0 (.4) y = y (.5) Robimy podstawienie y = p, co nam daje y = p, więc równanie przybiera formę rozdzielając zmienne i całkując p = p (.6) dp p = całkę po lewej stronie rozwiązujemy poprzez ułamki proste dx (.7) p = A p + B + p (.8) A B = 0 (.9) A + B = (.0) więc A = B = /, całka dp p = ( dp p + dp + p ) = p ln + p + C (.) więc p ln + p = x + C (.)
wyliczając p mamy wiedząc, że p + p = C e x p = C e x + pc e x p = C e x + C e x (.3) p = dy dx = C e x + C e x (.4) rozdzielamy zmienne i otrzymujemy dwie całki dx + C e x C e x dx + C e x (.5) druga z nich rozwiązywana jest przez podstawienie + C e x = t, więc C e x dx = dt natomiast pierwszą musimy trochę przekształcić dt t = ln + C e x + C (.6) + C e x = e x (e x C ) = e x (e x C (.7) teraz wykonujemy podstawienie t = e x C co nas sprowadza do całki postaci naszym rezultatem jest dx + C e = x Zadanie. Rozwiąż równanie różniczkowe dt t = ln e x + C + C 3 (.8) y = ln e x + C ln + C e x + C (.9) y = + x (.0) y = y + e x (.) y = x + sin x (.) xy + y = x + (.3) Pierwsze zadanie nie posiada w jawny sposób y i y, ale tak czy inaczej zamieniamy to równanie z drugiego rzędu na równanie pierwszego rzędu. y = p, więc y = p, stąd p = + x (.4)
rozdzielając zmienne otrzymujemy równanie całkowe pdp = dx + x (.5) p = arctan x + C, pamiętając, że p = y, to ydy = arctan xdx + C dx (.6) całkę z arctan x liśmy przez części, co nam dawało rozwiązaniem jest Zadanie (.) po podstawieniu p = y przechodzi w arctan xdx = x arctan x ln + x + C (.7) y = x(arctan x + C ) ln + x + C (.8) y = y + e x (.9) p = p + e x (.30) jest to równanie niejednorodne. Najpierw rozwiązujemy zagadnienie jednorodne postaci Równanie to sprowadza się do całki postaci teraz uzmienniamy stałą, dp p = i wstawiamy do równania (.30), p p = 0 p = p (.3) dx ln p = x + C p = C e x (.3) p = u(x)e x (.33) du dx ex = e x (.34) skracając przez e x mamy równanie całkowe du = dx u = x + C (.35) p = xe x + C e x (.36) 3
wiedząc, że p = y to dy dx = xex + C e x dy = xe x dx + C e x dx (.37) pierwszą całkę po lewej stronie rozwiązujemy przez części (kilkukrotnie mieliśmy z nią kontakt, więc nie będziemy w tym miejscu jej po raz kolejny rozwiązywać) Zadanie y = xe x e x + C e x + C (.38) y = x + sin x (.39) tutaj również nie posiadamy w jawny sposób y i y, nie mniej jednak y = p, p = x + sin x dp = xdx + sin xdx p = x cos x + C (.40) p = y = x cos x + C dy = x dx cos xdx + C dx (.4) więc rozwiązaniem równania jest Kolejny przykład przekształca się do równania y = 6 x3 sin x + C x + C (.4) xy + y = x + (.43) xp + p = x + (.44) jest to znowu równanie niejednorodne, najpierw radzimy sobie z zagadnieniem jednorodnym xp + p = 0 dp dx = p dp dx x p = x ln p = ln x + C (.45) uzmieniając stałą p = u(x) (.46) x i wstawiając do równania niejednorodnego otrzymujemy u = x + du = x dx + dx u = 3 x3 + x + C (.47) stąd wyliczamy y dy = p = 3 x + + C x (.48) pdx = 9 x3 + x + C ln x + C (.49) 4
Równania różniczkowe o współczynnikach stałych Równanie różniczkowe o współczynnikach stałych ma postać. Równania jednorodne gdy f(x) = 0, a d y dx + bdy + cy = f(x) (.) dx a d y dx + bdy + cy = 0 (.) dx zakładamy rozwiązanie postaci y = e rx, więc wstawiając do równania ogólnego mamy y = e rx (.3) y = re rx (.4) y = r e rx (.5) ar e rx + bre rx + ce rx = 0 (.6) dzieląc przez e rx dochodzimy do równania charakterystycznego postaci ar + br + c = 0 (.7) Liczymy teraz deltę i gdy > 0, równanie ma dwa pierwiastki, to rozwiązaniem naszego równania różniczkowego jest funkcja y = C e r x + C e r x (.8) gdzie r i r to pierwiastki równania (.7). Gdy = 0, r = r to równanie ma rozwiązanie postaci (C x + C )e r x (.9) Jeśli natomiast < 0, pierwiastki są zespolone r = α iβ (.0) r = α + iβ (.) gdzie to rozwiązanie jest postaci α = b a, β = a (.) y = e αx (C cos βx + C sin βx) (.3) 5
Zadanie 3. Rozwiąż równanie różniczkowe y y = 0 (.4) Czyli równanie to sprowadza się do rozważenia równania charakterystycznego postaci x x = 0 x(x ) = 0 x = 0 x = (.5) ponieważ są dwa pierwiastki, więc rozwiązanie będzie postaci y = C e 0x + C e x = C + C e x (.6) sprawdźmy, czy nasze rozwiązanie spełnia wyjściowe równanie różniczkowe y = C () e x, y = C e x (.7) więc 4C e x C e x = 0 (.8) Zadanie 4. Rozwiąż równania różniczkowe y + y + 4 y = 0 (.9) y y y = 0 (.0) y y + y = 0 (.) y + y + 5y = 0 (.) (.3) Pierwsze zadanie sprowadza się do rozważenie równania charakterystycznego postaci x + x + 4 = 0 (x + ) = 0 (.4) są dwa pierwiastki równe sobie x =, więc rozwiązanie jest postaci (C x + C )e x (.5) Przykład y y y = 0 (.6) ma równanie charakterystyczne dane x x = 0 = + 8 = 9 (.7) 6
są dwa pierwiastki więc rozwiązanie jest postaci Zadanie x, = ± 3 jeden pierwiastek, więc rozwiązanie postaci Następny przykład to równanie charakterystyczne postaci = { (.8) y = C e x + C e x (.9) y y + y = 0 (x ) x = (.30) (C x + C )e x (.3) y + y + 5y = 0 (.3) x + x + 5 = 0 = 4 0 = 6 (.33) pierwiastki są zespolone. Współczynnik α = b a a rozwiązanie jest postaci =, e x (C cos x + C sin x) (.34). Równania niejedonorodne Tym razem f(x) 0, a d y dx + bdy + cy = f(x) (.35) dx Rozwiązaniem tego typu równania jest funkcja postaci y = y (x; C, C ) + y (x) (.36) gdzie y jest rozwiązaniem równania jednorodnego, a y jakimś szczególnym rozwiązaniem powyższego równania. Najczęściej znajdujemy y metodą przewidywania, lub poprzez uzmiennienie stałej. Zadanie 5. Rozwiązać równanie różniczkowe Najpierw rozwiązujemy równanie jednorodne postaci y 7y + y = x (.37) y 7y + y = 0 = 49 48 = x, = 7 ± 7 = { 4 3 (.38)
Czyli rozwiązanie równania jednorodnego jest postaci y = C e 4x + C e 3x (.39) teraz przewidujemy rozwiązanie szczególne jako wielomian stopnia pierwszego, ponieważ funkcja f(x) jest wielomianem stopnia pierwszego, y = ax+b, stąd y = a, y = 0, wstawiając te wielkości do równania (.37) znajdujemy współczynniki a i b, więc a = a =, natomiast drugie równanie to 7a + ax + b = x (.40) 7 + b = 0 b = 7 44 (.4) ostatecznie mamy rozwiązanie postaci y = C e 4x + C e 3x + x + 7 44 (.4) Zadanie 6. Rozwiąż równanie Równanie jednorodne jest postaci y y = sin x (.43) y y = 0 (.44) więc równanie charakterystyczne x = 0 (x )(x + ) = 0 x = x = (.45) to rozwiązanie jest postaci y = C e x + C e x (.46) Równanie niejednorodne staramy się przewidzieć w postaci kombinacji funkcji trygonometrycznych y = a sin x + b cos x (.47) stąd podstawiając do naszego równania niejednorodnego otrzymamy y = a cos x b sin x (.48) y = a sin x b cos x (.49) a sin x = sin x a = (.50) 8
rozwiązaniem równania jest funkcja postaci y = C e x + C e x sin x (.5) Rozwiążmy to samo zadanie poprzez uzmiennienie stałej, dla przejrzystości nazwijmy C = A i C = B. Musi być spełniony warunek A ȳ + B ȳ = 0 (.5) A ȳ + B ȳ = fx (.53) a w naszym przypadku ȳ = e x oraz ȳ = e x równania te przybierają postać A e x + B e x = 0 (.54) A ( e x ) + B e x = sin x (.55) dodając stronami mamy B e x = sin x (.56) B = sin xe x dx (.57) Całkę powyższą rozwiązujemy przez części (dwukrotnie) i otrzymamy B = e x (sin x + cos x) + C (.58) ponieważ B = sin xe x to wstawiając to do pierwszego równania będziemy mogli wyliczyć A A e x + sin x = 0 A = sin xe x (.59) w analogiczny sposób rozwiązujemy to równanie (przez części) i otrzymujmy wstawiając do wyjściowego równania A = ex (sin x cos x) + C (.60) y = A(x)e x + B(x)e x = C e x + C e x sin x (.6) co jest zgodne z naszym wynikiem uzyskanym inna metodą. Zadanie 7. Rozwiąż równania y + y y = 4x (.6) y 3y + y = x (.63) y + y = e x (.64) y y + y = ex x 9 (.65)
We wszystkich przypadkach najpierw rozpoczynamy od równania jednorodnego, które dla pierwszego przypadku jest postaci y + y y = 0 (.66) równanie charakterystyczne x + x = 0 = + 8 = 9 x, = ± 3 więc rozwiązaniem tego zagadnienia jednorodnego jest funkcja = { (.67) y = C e x + C e x (.68) Rozwiązanie równania niejednorodnego zakładamy, że jest postaci wielomianu stopnia pierwszego, tzn. wstawiając to otrzymujemy związek stąd a = i b = więc rozwiązanie ostateczne jest postaci y = ax + b (.69) y = a (.70) y = 0 (.7) a ax b = 4x (.7) a = 4 (.73) a b = 0 (.74) y = C e x + C e x x (.75) Przykład y 3y + y = x (.76) ma równanie charakterystyczne dla problemu jednorodnego w formie x 3x + = 0 = 9 8 = x, = 3 ± = { (.77) y = C e x + C e x (.78) 0
rozwiązanie szczególne postulujemy w postaci wielomianu stopnia drugiego, ponieważ f(x) jest wielomianem stopnia drugiego y = ax + bx + c (.79) y = ax + b (.80) y = a (.8) wstawiając a 6ax 3b + ax + bx + c = x (.8) porównując współczynniki przy tych samych potęgach x otrzymujemy układ równań a =, b = 3 oraz c = 7, rozwiązanie to 4 a = (.83) (a + c) 3b = 0 (.84) 6a + b = 0 (.85) y = C e x + C e x + x + 3 x + 7 4 (.86) Przykład y + y = e x (.87) posiada równanie charakterystyczne x + x = 0 x(x + ) = 0 x = 0 x = (.88) y = C + C e x (.89) Rozwiążmy przez uzmiennianie stałych, y = A(x) + B(x)e x (.90) i musimy mieć spełnione warunki A + B e x = 0 (.9) B e x = e x (.9) z drugiego wyznaczamy B B = e x dx = ex + C (.93) oraz B = e x więc A e x = 0 A = e x + C (.94)
Łącząc wszystkie wyniki mamy y = C + C e x + ex (.95) Ostatni przykład y y + y = ex x To równanie charakterystyczne jest postaci (.96) x x + = 0 (x ) = 0 x = (.97) więc rozwiązanie jest postaci uzeminniając stałą, mamy warunki y = (C x + C )e x (.98) drugie równanie się upraszcza do postaci A (x)xe x + B (x)e x = 0 (.99) A (x)(e x + xe x ) + B (x)e x = ex x (.00) A ( + x) + B = x (.0) pierwsze natomiast do odejmując stronami mamy wstawiając ten wynik do drugiego A x + B = 0 (.0) A = x (.03) A = ln x + C (.04) rezultat to x + + B = x B = B = x + C (.05) y = (ln x xe x xe x ) + (C x + C )e x (.06)