8. WIADOMOŚCI WSTĘPNE

Podobne dokumenty
Pytania przygotowujące do egzaminu z Wytrzymałości Materiałów sem. I studia niestacjonarne, rok ak. 2015/16

Podstawowe przypadki (stany) obciążenia elementów : 1. Rozciąganie lub ściskanie 2. Zginanie 3. Skręcanie 4. Ścinanie

Wytrzymałość Materiałów

Pytania przygotowujące do egzaminu z Wytrzymałości Materiałów sem. I studia niestacjonarne, rok ak. 2014/15

CIENKOŚCIENNE KONSTRUKCJE METALOWE

Mechanika teoretyczna

PODSTAWY STATYKI BUDOWLI POJĘCIA PODSTAWOWE

Liczba godzin Liczba tygodni w tygodniu w semestrze

Wprowadzenie do WK1 Stan naprężenia

WYMAGANIA EDUKACYJNE Z PRZEDMIOTU: KONSTRUKCJE BUDOWLANE klasa III Podstawa opracowania: PROGRAM NAUCZANIA DLA ZAWODU TECHNIK BUDOWNICTWA

Mechanika teoretyczna

PODSTAWY MECHANIKI OŚRODKÓW CIĄGŁYCH

Materiały pomocnicze do wykładów z wytrzymałości materiałów 1 i 2 (299 stron)

Spis treści. Wstęp Część I STATYKA

Wyboczenie ściskanego pręta

Dr inż. Janusz Dębiński

MECHANIKA PRĘTÓW CIENKOŚCIENNYCH

9. Mimośrodowe działanie siły

Wytrzymałość Materiałów

Podstawowe pojęcia wytrzymałości materiałów. Statyczna próba rozciągania metali. Warunek nośności i użytkowania. Założenia

Mechanika ogólna Wydział Budownictwa Politechniki Wrocławskiej Strona 1. MECHANIKA OGÓLNA - lista zadań 2016/17

2. Charakterystyki geometryczne przekroju

WSTĘP DO TEORII PLASTYCZNOŚCI

Wytrzymałość materiałów

PaleZbrojenie 5.0. Instrukcja użytkowania

Ścinanie i skręcanie. dr hab. inż. Tadeusz Chyży

Defi f nicja n aprę r żeń

Olga Kopacz, Adam Łodygowski, Krzysztof Tymber, Michał Płotkowiak, Wojciech Pawłowski Poznań 2002/2003 MECHANIKA BUDOWLI 1

Mechanika i wytrzymałość materiałów instrukcja do ćwiczenia laboratoryjnego

Przykład 4.1. Ściag stalowy. L200x100x cm 10 cm I120. Obliczyć dopuszczalną siłę P rozciagającą ściąg stalowy o przekroju pokazanym na poniższym

Al.Politechniki 6, Łódź, Poland, Tel/Fax (48) (42) Mechanika Budowli. Inżynieria Środowiska, sem. III

Zestaw pytań z konstrukcji i mechaniki

Wewnętrzny stan bryły

Wytrzymałość Materiałów

ROZCIĄGANIE I ŚCISKANIE OSIOWE. Pojęcia podstawowe. Zasada de Saint Venanta

2. Charakterystyki geometryczne przekroju

Opis efektów kształcenia dla modułu zajęć

700 [kg/m 3 ] * 0,012 [m] = 8,4. Suma (g): 0,138 Ze względu na ciężar wykończenia obciążenie stałe powiększono o 1%:

[ P ] T PODSTAWY I ZASTOSOWANIA INŻYNIERSKIE MES. [ u v u v u v ] T. wykład 4. Element trójkątny płaski stan (naprężenia lub odkształcenia)

Ć w i c z e n i e K 3

WIADOMOŚCI WSTĘPNE, PRACA SIŁ NA PRZEMIESZCZENIACH

TARCZE PROSTOKĄTNE Charakterystyczne wielkości i równania

Informacje ogólne. Rys. 1. Rozkłady odkształceń, które mogą powstać w stanie granicznym nośności

STAN NAPRĘŻENIA. dr hab. inż. Tadeusz Chyży

SKRĘCANIE WAŁÓW OKRĄGŁYCH

wiczenie 15 ZGINANIE UKO Wprowadzenie Zginanie płaskie Zginanie uko nie Cel wiczenia Okre lenia podstawowe

10.1 Płyta wspornikowa schodów górnych wspornikowych w płaszczyźnie prostopadłej.

Przykład 4.2. Sprawdzenie naprężeń normalnych

Mechanika i Budowa Maszyn

1 9% dla belek Strata w wyniku poślizgu w zakotwieniu Psl 1 3% Strata od odkształceń sprężystych betonu i stali Pc 3 5% Przyjęto łącznie: %

PŁYTY OPIS W UKŁADZIE KARTEZJAŃSKIM Charakterystyczne wielkości i równania

Rys. 1. Elementy zginane. KONSTRUKCJE BUDOWLANE PROJEKTOWANIE BELEK DREWNIANYCH BA-DI s.1 WIADOMOŚCI OGÓLNE

gruparectan.pl 1. Silos 2. Ustalenie stopnia statycznej niewyznaczalności układu SSN Strona:1 Dla danego układu wyznaczyć MTN metodą sił

2. Pręt skręcany o przekroju kołowym

AiR_WM_3/11 Wytrzymałość Materiałów Strength of Materials

Karta (sylabus) modułu/przedmiotu MECHANIKA I BUDOWA MASZYN Studia pierwszego stopnia

7.0. Fundament pod słupami od stropu nad piwnicą. Rzut fundamentu. Wymiary:

STATYCZNA PRÓBA SKRĘCANIA

PŁYTY OPIS W UKŁADZIE KARTEZJAŃSKIM Charakterystyczne wielkości i równania

Nieliniowości fizyczne Część 2 : Nieliniowość sprężysta. Teoria nośności granicznej

Mechanika i wytrzymałość materiałów BILET No 1

1. Pojazdy i maszyny robocze 2. Metody komputerowe w projektowaniu maszyn 3. Inżynieria produkcji Jednostka prowadząca

Obliczenia statyczne ustrojów prętowych statycznie wyznaczalnych. Pręty obciążone osiowo Kratownice

Wytrzymałość Konstrukcji I - MEiL część II egzaminu. 1. Omówić wykresy rozciągania typowych materiałów. Podać charakterystyczne punkty wykresów.

Spis treści Rozdział I. Membrany izotropowe Rozdział II. Swobodne skręcanie izotropowych prętów pryzmatycznych oraz analogia membranowa

1 Charakterystyka ustrojów powierzchniowych. Anna Stankiewicz

1. Silos Strona:1 Dla danego układu wyznaczyć MTN metodą sił Rys. Schemat układu ...

Materiały do wykładu na temat Obliczanie sił przekrojowych, naprężeń i zmian geometrycznych prętów rozciąganych iściskanych bez wyboczenia.

Z-LOG-0133 Wytrzymałość materiałów Strength of materials

Naprężenia, przemieszczenia, odkształcenia Właściwości materiałów. dr hab. inż. Tadeusz Chyży Katedra Mechaniki Konstrukcji

I. Wstępne obliczenia

5.1. Kratownice płaskie

PROJEKT NR 1 METODA PRZEMIESZCZEŃ

1. PODSTAWY TEORETYCZNE

Opis efektów kształcenia dla modułu zajęć

1. ANALIZA BELEK I RAM PŁASKICH

Politechnika Białostocka INSTRUKCJA DO ĆWICZEŃ LABORATORYJNYCH

dr inż. Leszek Stachecki

INSTRUKCJA DO ĆWICZEŃ LABORATORYJNYCH

MECHANIKA CIAŁA ODKSZTAŁCALNEGO. 1. Przedmiot i cel wytrzymałości materiałów STATYKA POLSKIE NORMY PODSTAWOWE POJĘCIA, DEFINICJE I ZAŁOŻENIA 1

Mechanika ogólna Kierunek: budownictwo, sem. II studia zaoczne, I stopnia inżynierskie

{H B= 6 kn. Przykład 1. Dana jest belka: Podać wykresy NTM.

Z1/7. ANALIZA RAM PŁASKICH ZADANIE 3

Linie wpływu w belce statycznie niewyznaczalnej

FUNDAMENTY ZASADY KSZTAŁTOWANIA I ZBROJENIA FUNDAMENTY

Z1/1. ANALIZA BELEK ZADANIE 1

Część DZIAŁANIE MOMENTU SKRĘCAJĄCEGO 1 DZIAŁANIE MOMENTU SKRĘCAJĄCEGO ZALEŻNOŚCI PODSTAWOWE

Politechnika Białostocka INSTRUKCJA DO ĆWICZEŃ LABORATORYJNYCH. Doświadczalne sprawdzenie zasady superpozycji

Modele materiałów

ZGINANIE PŁASKIE BELEK PROSTYCH

9.0. Wspornik podtrzymujący schody górne płytowe

Politechnika Białostocka

Zadanie 1. Wektor naprężenia. Tensor naprężenia. Zależność wektor-tensor.

Drgania poprzeczne belki numeryczna analiza modalna za pomocą Metody Elementów Skończonych dr inż. Piotr Lichota mgr inż.

Zadanie 3. Belki statycznie wyznaczalne. Dla belek statycznie wyznaczalnych przedstawionych. na rysunkach rys.a, rys.b, wyznaczyć:

15. Przedmiot: WYTRZYMAŁOŚĆ MATERIAŁÓW Kierunek: Mechatronika Specjalność: Elektroautomatyka okrętowa Rozkład zajęć w czasie studiów Liczba godzin

Laboratorium wytrzymałości materiałów

Zbigniew Mikulski - zginanie belek z uwzględnieniem ściskania

Karta (sylabus) przedmiotu Mechanika i Budowa Maszyn Studia I stopnia o profilu: A P

Transkrypt:

Część 2 8. MECHNIK ELEMENTÓW PRĘTOWYCH WIDOMOŚCI WSTĘPNE 1 8. WIDOMOŚCI WSTĘPNE 8.1. KLSYFIKCJ ZSDNICZYCH ELEMENTÓW KONSTRUKCJI Podstawą klasyfikacji zasadniczych elementów konstrukcji jest kształt geometryczny ciała. Rys. 8.1 Pręt to bryła geometryczna wypełniona materiałem, której jeden wymiar (długość) jest zdecydowanie większy od dwóch pozostałych. Po linii regularnej ograniczonej punktami B 1 i B 2 przemieszcza się środek ciężkości pola figury płaskiej *) o powierzchni (stałej lub zmiennej) w ten sposób, że płaszczyzna figury jest prostopadła do linii B 1 B 2. Wtedy kontur figury opisuje bryłę geometryczną, która wypełniona materiałem tworzy pręt (rys. 8.1). Linia B 1 B 2 nazywa się osią pręta. Jeśli linia ta jest prostą, to mówimy, że pręt jest prostoliniowy. Gdy linia B 1 B 2 jest krzywą płaską, to pręt nazywamy płaskim. Symbolem oznaczamy pole przekroju poprzecznego pręta (przekrój pręta). Przekrój pręta może być stały lub zmienny. Pręt prostoliniowy o stałym przekroju nazywamy prętem pryzmatycznym (rys. 8.1b). Powłoka to bryła geometryczna wypełniona materiałem, której jeden wymiar (grubość) jest zdecydowanie mniejszy od dwóch pozostałych. Po ograniczonej powierzchni regularnej S przemieszcza się środek prostoliniowego odcinka o długości h (stałej lub zmiennej) w ten sposób, że odcinek ten jest zawsze prostopadły do powierzchni S. Wtedy jego końce wyznaczają dwie powierzchnie S g i S d ograniczone powierzchnią brzegową C. Bryłę ograniczoną powierzchniami S g, S d i C nazywamy powłoką (rys. 8.2a). Powierzchnię S nazywamy powierzchnią środkową, a długość odcinka h grubością powłoki (stałą lub zmienną). Jeśli powierzchnia S jest płaszczyzną, to taką powłokę nazywamy płytą lub tarczą (rys. 8.2b, c). Nazwę tarcza rezerwuje się dla płyt obciążonych w swej płaszczyźnie środkowej. *) Środek ciężkości figury płaskiej zdefiniowano w dodatku. ndrzej Gawęcki - Mechanika materiałów i konstrukcji prętowych 2003r.

Część 2 8. MECHNIK ELEMENTÓW PRĘTOWYCH WIDOMOŚCI WSTĘPNE 2 Rys. 8.2 Blok to bryła geometryczna wypełniona materiałem, której trzy wymiary są tego samego rzędu (rys. 8.3a). Jeżeli wymiary bloku są nieskończenie duże, to otrzymujemy pewną przestrzeń fizyczną wypełnioną materią. Półprzestrzeń to bryła o wymiarach nieskończenie dużych ograniczona powierzchnią lub płaszczyzną (rys. 8.3b). Rys. 8.3 ndrzej Gawęcki - Mechanika materiałów i konstrukcji prętowych 2003r.

Część 2 8. MECHNIK ELEMENTÓW PRĘTOWYCH WIDOMOŚCI WSTĘPNE 3 8.2. ZSD DE SINT-VENNT Jedną z podstawowych zasad, którą przyjmujemy w obliczeniach konstrukcji, jest zasada de Saint- Venanta (1855 rok): Jeżeli dany układ sił działających na niewielki obszar ciała będącego w równowadze zastąpimy innym układem sił statycznie równoważnym *) i działającym bezpośrednio na ten obszar, to w odległości większej od jego wymiarów powstają jednakowe stany naprężenia, odkształcenia i przemieszczenia. Rys. 8.4 Sens tej zasady objaśnia rys. 8.4. Przedstawiono na nim trzy identyczne słupy ściskane osiowo trzema statycznie równoważnymi układami sił: wypadkowa obciążeń we wszystkich przypadkach jest taka sama. Naprężenia normalne w odległości (1,0 1,5)a od płaszczyzny przyłożenia obciążenia są jednakowe i wynoszą P/ (a wymiar poprzeczny przekroju, przekrój słupa, P wypadkowa siła ściskająca). Zasada de Saint-Venanta wynika z przesłanek intuicyjnych i jest potwierdzona wieloma doświadczeniami. Jak dotąd nie znalazła jednak ogólnego uzasadnienia teoretycznego. Przydatność praktyczna tej zasady jest niewątpliwa, pozwala bowiem na pewne idealizacje i uproszczenia w rozwiązywaniu konkretnych zadań. Obliczenia obszaru zaburzeń w uzasadnionych przypadkach (np. strefa zakotwienia kabli w konstrukcjach wstępnie sprężonych, punkty podparcia belek) traktuje się zazwyczaj jako oddzielne zadanie. 8.3. SIŁY WEWNĘTRZNE Rozważmy pręt będący w równowadze i przetnijmy go myślowo płaszczyzną α α prostopadłą do osi pręta (rys. 8.5). Na płaszczyźnie przekroju wystąpią rozłożone w sposób ciągły wektory naprężenia, które zastąpimy w środku ciężkości przekroju wypadkową siłą i wypadkowym momentem. Obie części pręta muszą być również w równowadze. Jeśli znamy wszystkie siły powierzchniowe i masowe, to z sześciu równań równowagi ułożonych dla jednej z odciętych części pręta można wy- *) Układy statycznie równoważne to układy, które mają takie same wypadkowe wektory siły i momentu. ndrzej Gawęcki - Mechanika materiałów i konstrukcji prętowych 2003r.

Część 2 8. MECHNIK ELEMENTÓW PRĘTOWYCH WIDOMOŚCI WSTĘPNE 4 znaczyć sześć współrzędnych wektorów siły i momentu. Siły T 1, T 2, T 3 i momenty M 1, M 2, M 3 nazywamy siłami wewnętrznymi (przekrojowymi) lub uogólnionymi naprężeniami. Rys. 8.5 Jeżeli oś x 1 pokrywa się z normalną do płaszczyzny α α, to poszczególne siły wewnętrzne nazywamy następująco: T 1 = N siła normalna, T 2 = Q 2 siła poprzeczna w kierunku osi x 2, T 3 = Q 3 siła poprzeczna w kierunku osi x 3, M 1 = M moment skręcający, M 2 moment zginający względem osi x 2, M 3 moment zginający względem osi x 3. Rys. 8.6 ndrzej Gawęcki - Mechanika materiałów i konstrukcji prętowych 2003r.

Część 2 8. MECHNIK ELEMENTÓW PRĘTOWYCH WIDOMOŚCI WSTĘPNE 5 Siły wewnętrzne można wyrazić przez współrzędne wektora naprężenia za pomocą następujących wzorów definicyjnych (rys. 8.6): N = d = x x d σ11, M ( σ13 2 σ12 3), Q2 = σ12d, M2 = σ11x3 d, (8.1) Q3 = d M = x d σ13, 3 σ11 2. nalogiczne wzory obowiązują również dla płyt i powłok o małej krzywiźnie, przy czym siły wewnętrzne odnosi się do przekroju o jednostkowej szerokości, mierzonej wzdłuż śladu powierzchni środkowej (rys. 8.6b). 8.4. ZKRES OBLICZEŃ KONSTRUKCJI Celem obliczeń konstrukcji jest wyznaczenie w każdym punkcie współrzędnych tensorów naprężenia i odkształcenia oraz wektora przemieszczenia. Ścisłe obliczenie tych wielkości na podstawie równań równowagi, równań geometrycznych i równań fizycznych przy danych warunkach brzegowych w większości przypadków natrafia jednak na duże trudności natury matematycznej. W wytrzymałości materiałów, której zadaniem jest podanie rozwiązań do bezpośredniego wykorzystania w praktyce, wprowadza się wiele założeń upraszczających, ograniczających zakres stosowania gotowych wzorów bądź przybliżających poszukiwane wartości. W zależności od przyjętych równań fizycznych ścisłe rozwiązania podają: teoria sprężystości, teoria plastyczności i reologia. Każda poprawnie zaprojektowana konstrukcja musi spełniać warunki wytrzymałościowe i sztywnościowe. Najprostszą koncepcją projektowania jest metoda naprężeń dopuszczalnych, w której oprócz znanego już warunku wytrzymałościowego σ red (x 1, x 2, x 3 ) σ dop (8.2) wprowadza się ograniczenie wartości przemieszczeń: u( x1, x2, x3) u dop. (8.3) Warunek (8.3) jest warunkiem sztywnościowym. Ostatecznym efektem obliczeń konstrukcji jest podanie takich wymiarów elementów (przekroje prętów, grubości płyt, ilości zbrojenia itp.), które gwarantują bezpieczne przeniesienie obciążeń zewnętrznych. Proces obierania wymiarów konstrukcji nazywa się wymiarowaniem. W zakres obliczeń konstrukcji wchodzą następujące czynności: 1 wyznaczenie sił wewnętrznych, 2 obliczenie naprężeń na podstawie znanych już sił wewnętrznych, 3 obliczenie odkształceń ze związków fizycznych, 4 obliczenie przemieszczeń ze związków geometrycznych, 5 sprawdzenie warunków wytrzymałościowych i sztywnościowych oraz ewentualna korekta wymiarów. W dalszym ciągu tej części skryptu omówimy szczegółowo etapy 2 4, przyjmując, że siły wewnętrzne są znane. Problem wymiarowania zawarty w etapie 5 jest tematem zajęć z przedmiotów konstrukcyjnych (konstrukcje metalowe, betonowe, murowe, drewniane itd.). Tutaj omówimy tylko pewne zasadnicze elementy projektowania konstrukcji. Możemy jednak już w tym miejscu stwierdzić, że wymiarowanie konstrukcji jest na ogół procesem kolejnych przybliżeń, gdyż trudno jest za pierwszym razem obrać takie wymiary elementów konstrukcji, by były spełnione jednocześnie wymagania bezpieczeństwa (warunki wytrzymałościowe i sztywnościowe) oraz wymagania ekonomiczne. Względy bezpieczeństwa ndrzej Gawęcki - Mechanika materiałów i konstrukcji prętowych 2003r.

Część 2 8. MECHNIK ELEMENTÓW PRĘTOWYCH WIDOMOŚCI WSTĘPNE 6 skłaniają na ogół do powiększania wymiarów (tzw. przewymiarowania), natomiast racje ekonomiczne wymagają, by wymiary elementów konstrukcji (koszty) były możliwe najmniejsze. Dalsze szczegółowe rozważania będą dotyczyć prętów liniowo-sprężystych. Warunki uzyskane dla konstrukcji prętowych mają charakter podstawowy, w teorii płyt i powłok przyjmuje się bowiem analogiczne założenia i przybliżenia jak w teorii prętów; zwiększa się jedynie liczba zmiennych i wydłużają wzory. Z uwagi na liniowy model fizyczny w etapach 2 4 można stosować zasadę superpozycji skutków. Wobec tego w dalszych rozdziałach omówimy kolejno skutki działania poszczególnych sił wewnętrznych: siły normalnej, momentu zginającego, siły poprzecznej i momentu skręcającego. ndrzej Gawęcki - Mechanika materiałów i konstrukcji prętowych 2003r.