Pomiar efektywności kosztowej banków: zarys metodologii i



Podobne dokumenty
Modelowanie procesu produkcji banków i badanie ich efektywności kosztowej 1

Produkty i czynniki produkcji w badaniach efektywności kosztowej banków 1

Zarządzanie ryzykiem w przedsiębiorstwie i jego wpływ na analizę opłacalności przedsięwzięć inwestycyjnych

STATYSTYKA MATEMATYCZNA WYKŁAD 5 WERYFIKACJA HIPOTEZ NIEPARAMETRYCZNYCH

Modele wieloczynnikowe. Modele wieloczynnikowe. Modele wieloczynnikowe ogólne. α β β β ε. Analiza i Zarządzanie Portfelem cz. 4.

SZACOWANIE NIEPEWNOŚCI POMIARU METODĄ PROPAGACJI ROZKŁADÓW

Natalia Nehrebecka. Wykład 2

dy dx stąd w przybliżeniu: y

Stanisław Cichocki. Natalia Nehrebecka. Wykład 6

W y d ział Za r ządzania. J e r zy Marzec. Praca doktorska napisana pod kierunkiem Prof. AE dra hab. Jacka Osiewalskiego

ANALIZA PREFERENCJI SŁUCHACZY UNIWERSYTETU TRZECIEGO WIEKU Z WYKORZYSTANIEM WYBRANYCH METOD NIESYMETRYCZNEGO SKALOWANIA WIELOWYMIAROWEGO

Stanisław Cichocki Natalia Nehrebecka. Zajęcia 4

Analiza rodzajów skutków i krytyczności uszkodzeń FMECA/FMEA według MIL STD A

Natalia Nehrebecka. Zajęcia 3

Zaawansowane metody numeryczne Komputerowa analiza zagadnień różniczkowych 1. Układy równań liniowych

Plan wykładu: Typowe dane. Jednoczynnikowa Analiza wariancji. Zasada: porównać zmienność pomiędzy i wewnątrz grup

Weryfikacja hipotez dla wielu populacji

W praktyce często zdarza się, że wyniki obu prób możemy traktować jako. wyniki pomiarów na tym samym elemencie populacji np.

Podstawy teorii falek (Wavelets)

Analiza ryzyka jako instrument zarządzania środowiskiem

GRANICZNA FUNKCJA KOSZTU DLA ODDZIAŁÓW

Natalia Nehrebecka. Zajęcia 4

Wykład 2: Uczenie nadzorowane sieci neuronowych - I

ANALIZA PORÓWNAWCZA WYNIKÓW UZYSKANYCH ZA POMOCĄ MIAR SYNTETYCZNYCH: M ORAZ PRZY ZASTOSOWANIU METODY UNITARYZACJI ZEROWANEJ

Stanisław Cichocki. Natalia Nehrebecka. Wykład 6

Stanisław Cichocki. Natalia Nehrebecka. Wykład 7

Portfele zawierające walor pozbawiony ryzyka. Elementy teorii rynku kapitałowego

Definicje ogólne

Zaawansowane metody numeryczne

BADANIA OPERACYJNE. Podejmowanie decyzji w warunkach niepewności. dr Adam Sojda

ZASTOSOWANIE METODY DEA W KLASYFIKACJI FUNDUSZY INWESTYCYJNYCH

KURS STATYSTYKA. Lekcja 6 Regresja i linie regresji ZADANIE DOMOWE. Strona 1

Stanisław Cichocki. Natalia Nehrebecka. Wykład 6

Stanisław Cichocki. Natalia Nehrebecka Katarzyna Rosiak-Lada. Zajęcia 3

Stanisław Cichocki. Natalia Nehrebecka. Wykład 11

Problemy jednoczesnego testowania wielu hipotez statystycznych i ich zastosowania w analizie mikromacierzy DNA

Model ASAD. ceny i płace mogą ulegać zmianom (w odróżnieniu od poprzednio omawianych modeli)

I. Elementy analizy matematycznej

Modelowanie procesu produkcji banków i badanie ich efektywności kosztowej 1

Wykład 2: Uczenie nadzorowane sieci neuronowych - I

Kształtowanie się firm informatycznych jako nowych elementów struktury przestrzennej przemysłu

Statystyka. Zmienne losowe

BADANIE STABILNOŚCI WSPÓŁCZYNNIKA BETA AKCJI INDEKSU WIG20

Hipotezy o istotności oszacowao parametrów zmiennych objaśniających ˆ ) ˆ

Mikroekonometria 13. Mikołaj Czajkowski Wiktor Budziński

System Przeciwdziałania Powstawaniu Bezrobocia na Terenach Słabo Zurbanizowanych SPRAWOZDANIE Z BADAŃ Autor: Joanna Wójcik

Minister Edukacji Narodowej Pani Katarzyna HALL Ministerstwo Edukacji Narodowej al. J. Ch. Szucha Warszawa Dnia 03 czerwca 2009 r.

OPTYMALNE STRATEGIE INWESTYCYJNE PODEJŚCIE FUNDAMENTALNE OPTIMAL INVESTMENT STRATEGY FUNDAMENTAL ANALYSIS

65120/ / / /200


Badania operacyjne w logistyce i zarządzaniu produkcją

Pattern Classification

Badanie współzależności dwóch cech ilościowych X i Y. Analiza korelacji prostej

OeconomiA copernicana 2013 Nr 3. Modele ekonometryczne w opisie wartości rezydualnej inwestycji

ZASTOSOWANIE ANALIZY HARMONICZNEJ DO OKREŚLENIA SIŁY I DŁUGOŚCI CYKLI GIEŁDOWYCH

Projekt 6 6. ROZWIĄZYWANIE RÓWNAŃ NIELINIOWYCH CAŁKOWANIE NUMERYCZNE

Proces narodzin i śmierci

MIKROEKONOMIA Prof. nadzw. dr hab. Jacek Prokop

Problem plecakowy (KNAPSACK PROBLEM).

Regulacje i sądownictwo przeszkody w konkurencji między firmami w Europie Środkowej i Wschodniej

11/22/2014. Jeśli stała c jest równa zero to takie gry nazywamy grami o sumie zerowej.

Badanie optymalnego poziomu kapitału i zatrudnienia w polskich przedsiębiorstwach - ocena i klasyfikacja

Zestaw zadań 4: Przestrzenie wektorowe i podprzestrzenie. Liniowa niezależność. Sumy i sumy proste podprzestrzeni.

PODSTAWA WYMIARU ORAZ WYSOKOŚĆ EMERYTURY USTALANEJ NA DOTYCHCZASOWYCH ZASADACH

Analiza rezerw na niewypłacone odszkodowania i świadczenia z tytułu ubezpieczeń pozostałych osobowych i majątkowych w oparciu o trójkąty szkód

Dr inż. Robert Smusz Politechnika Rzeszowska im. I. Łukasiewicza Wydział Budowy Maszyn i Lotnictwa Katedra Termodynamiki

5. Pochodna funkcji. lim. x c x c. (x c) = lim. g(c + h) g(c) = lim

Bayesowskie testowanie modeli tobitowych w analizie spłaty kredytów detalicznych

Przykład 5.1. Kratownica dwukrotnie statycznie niewyznaczalna

1. Komfort cieplny pomieszczeń

Zjawiska masowe takie, które mogą wystąpid nieograniczoną ilośd razy. Wyrazów Obcych)

u u u( x) u, x METODA RÓŻNIC SKOŃCZONYCH, METODA ELEMENTÓW BRZEGOWYCH i METODA ELEMENTÓW SKOŃCZONYCH

) będą niezależnymi zmiennymi losowymi o tym samym rozkładzie normalnym z następującymi parametrami: nieznaną wartością 1 4

Wpływ płynności obrotu na kształtowanie się stopy zwrotu z akcji notowanych na Giełdzie Papierów Wartościowych w Warszawie

EKONOMETRIA I Spotkanie 1, dn

banków detalicznych Metody oceny efektywnoœci operacyjnej

XXX OLIMPIADA FIZYCZNA ETAP III Zadanie doświadczalne

Zapis informacji, systemy pozycyjne 1. Literatura Jerzy Grębosz, Symfonia C++ standard. Harvey M. Deitl, Paul J. Deitl, Arkana C++. Programowanie.

ANALIZA WARIANCJI (ANOVA) Spis treści

ANALIZA HARMONOGRAMÓW POWYKONAWCZYCH W BUDOWNICTWIE

7. Wykład VII: Warunki Kuhna-Tuckera

Analiza alternatywnych systemów zaopatrzenia w energię budynków na etapie przygotowania inwestycji zgodnie z wymaganiami art. 5 Dyrektywy UE/91/2002

PROSTO O DOPASOWANIU PROSTYCH, CZYLI ANALIZA REGRESJI LINIOWEJ W PRAKTYCE

Natalia Nehrebecka. Dariusz Szymański

CAPM i APT. Ekonometria finansowa

Metody predykcji analiza regresji

ZASTOSOWANIE KLASYCZNEGO ALGORYTMU GENETYCZNEGO DO ROZWIĄZANIA ZBILANSOWANEGO ZAGADNIENIA TRANSPORTOWEGO

Evaluation of estimation accuracy of correlation functions with use of virtual correlator model

ZAJĘCIA X. Zasada największej wiarygodności

Krzysztof Borowski Zastosowanie metody wideł cenowych w analizie technicznej

MODELOWANIE LICZBY SZKÓD W UBEZPIECZENIACH KOMUNIKACYJNYCH W PRZYPADKU WYSTĘPOWANIA DUŻEJ LICZBY ZER, Z WYKORZYSTANIEM PROCEDURY KROSWALIDACJI

Próba wyjaśnienia regionalnego zróżnicowania międzypłciowej luki płacowej w Polsce

STATECZNOŚĆ SKARP. α - kąt nachylenia skarpy [ o ], φ - kąt tarcia wewnętrznego gruntu [ o ],

Analiza danych OGÓLNY SCHEMAT. Dane treningowe (znana decyzja) Klasyfikator. Dane testowe (znana decyzja)


8. Optymalizacja decyzji inwestycyjnych

Analiza porównawcza rozwoju wybranych banków komercyjnych w latach

MODEL NADWYŻKI FINANSOWEJ PRZEDSIĘBIORSTWA DEWELOPERSKIEGO. SYMULACYJNE STUDIUM PRZYPADKU

Ocena jakościowo-cenowych strategii konkurowania w polskim handlu produktami rolno-spożywczymi. dr Iwona Szczepaniak

Model oceny ryzyka w działalności firmy logistycznej - uwagi metodyczne

Transkrypt:

Maszynops artykułu: Marzec J., J. Osewalsk, 996-97, Pomar efektywnośc kosztowe banków: zarys Jerzy Marzec, Jacek Osewalsk (Katedra Ekonometr Akadem Ekonomczne w Krakowe) Pomar efektywnośc kosztowe banków: zarys metodolog Kraków, paźdzernk 997

. Wprowadzene Przedsęborstwo ponos koszty wększe nż nezbędne (est neefektywne kosztowo; ang. cost neffcent) eżel o est neefektywne tecnczne, t. angażue zbyt duże (w stosunku do wymagań tecnologcznyc) nakłady czynnków produkc w celu osągnęca dane welkośc produkc, lub 2 o est neefektywne alokacyne, t. proporce nakładów czynnków ne odpowadaą relac c cen rynkowyc (dla zastosowane kombnac nakładów krańcowe stopy substytuc ne są równe odpowednm lorazom cen czynnków). Przez efektywność kosztową rozume sę loraz mnmalnego kosztu nezbędnego do wytworzena dane welkośc produkc (przy danyc cenac czynnków) kosztu rzeczywśce ponesonego. Pomar analza efektywnośc kosztowe może być ważnym narzędzem pomocnczym w zarządzanu poltyce ekonomczne, gdyż nformue ak est rząd welkośc możlwyc do uzyskana oszczędnośc (możlwego zwększena zysku) przy zacowanu dane skal dzałalnośc frm czy całe branży. Podstawy obecne stosowane ekonometryczne metodolog badana efektywnośc (tecnczne lub kosztowe) stworzyły przed dwudzestu laty dwa zespoły badawcze: Agner, Lovell Scmdt [] oraz Meeusen van den Broeck [30], którzy zaproponowal tzw. stocastyczne modele granczne (ang. stocastc fronter models). Są to modele ednorównanowe, składaące sę z odpowedno wyspecyfkowane mkroekonomczne funkc produkc lub kosztów (dla logarytmów tyc zmennyc) oraz dwóc składnków losowyc, z któryc eden (symetryczny względem zera) odzwercedla efekt czynnków przypadkowyc błędu pomaru, zaś drug (asymetryczny stałego znaku) modelue potencalną neefektywność. Dalszego rozwou te metodolog, prezentowane główne na łamac Journal of Econometrcs, dokonal m. n. Stevenson [40], Ptt Lee [36], Jondrow, Lovell, Materov Scmdt [22], Scmdt Sckles [38], Beckers Hammond [4], reene [7], van den Broeck, Koop, Osewalsk Steel [4] oraz Koop, Osewalsk Steel [24], [25]. Obecne, w końcu lat 90-tyc, ekonoma śwatowa zna wele obszarów zastosowana stocastycznyc model grancznyc. Jednym z nc est zagadnene efektywnośc kosztowe banków, analzowane od klku lat w czołowe specalstyczne lteraturze zacodne, główne na łamac Journal of Bankng and Fnance, Journal of Money, Credt and Bankng oraz Journal of Productvty Analyss (zob. [3],[7],[9],[4],[23],[29],[3], [43]). Podkreślć należy, ż bank est przedsęborstwem bardzo specyfcznym, w przypadku którego ścsłe określene

produktów oraz czynnków produkc c cen - a tym samym budowa funkc kosztów - est zagadnenem subtelnym budzącym kontrowerse (por. Sealey Lndley [39] oraz Humprey [20]). W nnesze pracy zostaną pokazane podstawowe metody pomaru efektywnośc kosztowe w sektorze bankowym oparte na tecnkac ekonometrycznyc. Naszym celem est przygotowane podstaw dla emprycznyc badań efektywnośc kosztowe banków polskc. Część następna (druga) przedstawa mkroekonomczną motywacę rozważanyc model efektywnoścowyc (grancznyc). Część trzeca omawa naprostsze tecnk stosowane w przypadku danyc przekroowyc. Część czwarta prezentue prosty model dla danyc przekroowo-czasowyc, które umożlwaą bardze precyzyny szacunek efektywnośc nż dane przekroowe. Część pąta omawa specyfkacę funkc kosztów dla sektora bankowego, zwracaąc szczególną uwagę na problemy z defnowanem produktów czynnków produkc. Część szósta zawera uwag końcowe. 2. Mkroekonomczne podstawy analzy efektywnośc kosztowe Jednym z podstawowyc problemów rozważanyc w teor mkroekonom est problem maksymalzac zysku frmy rozumanego ako różnca mędzy uzyskanym przycodem a ponesonym kosztem. W celu rozwązana problemu maksymalzac zysku (przy danyc cenac czynnków produkc produktów) można naperw rozpatrywać zagadnene mnmalzac kosztów produkc, a następne zagadnene wyboru takego pozomu produkc, który est nabardze zyskowny. Mnmalzaca kosztów produkc est warunkem konecznym dla maksymalzac zysku. Rozwązane problemu mnmalzac kosztu formułue sę w ęzyku mkroekonom następuąco: poszukue sę takego punktu na zokwance (powerzcn ednakowe produkc), któremu odpowada możlwe nanższa zokosta (płaszczyzna ednakowego kosztu) z nm zwązana (por. [42]). Jeżel przedsęborstwo ponos wększy koszt nż wynka on z mkroekonomczne (granczne) funkc kosztu (ang. fronter cost functon), to przyczyną te sytuac est neefektywność kosztowa - alokacyna lub tecnczna. Można pokazać, że odcylene rzeczywśce ponesonego kosztu od granczne funkc kosztu est rezultatem błędu alokac lub neefektywnośc tecnczne. Rysunek przedstawa grafczną dekompozycę efektywnośc kosztowe na tecnczną alokacyną (poczynone założena: eden produkt, dwa czynnk produkc, ceny są na ustalonym 2

pozome). Przez Z opt = (x opt, x 2 opt ) oznaczono optymalne nakłady obu czynnków produkc, które przy danyc cenac czynnków gwarantuą uzyskane produkc na pozome y obs po nanższym koszce C mn. Natomast Z obs =(x obs, x 2 obs ) oznacza obserwowane nakłady, przy któryc uzyskano produkcę y obs, ponosząc koszt C obs. Przypomnmy, że zokwanta {(x,x 2 ): f(x,x 2 )=y obs, f-funkca produkc} est zborem takc kombnac nakładów, które są tecnczne nezbędne do uzyskana produkc y obs. Wdoczna na rysunku nefektywność tecnczna polega na tym, że Z obs leży powyże zokwanty y obs. Można węc tę samą produkcę y obs uzyskać przez proporconalną (t. ne zmenaącą struktury) redukcę nakładów do punktu Z tec obnżene kosztu do C tec. Różnca mędzy C obs C tec est kosztem neefektywnośc tecnczne. Neefektywność alokacyna polega na tym, że struktura nakładów Z obs Z tec ne odpowada relac cen czynnków produkc; produkcę y obs można uzyskać tane (po koszce C mn <C tec ) przez zastosowane optymalne kombnac Z opt. Podsumowuąc, marą efektywnośc alokacyne est węc stosunek odcnków OA/OB, a tecnczne OB/OC. Efektywność kosztowa to OA/OC = (OA/OB) (OB/OC), czyl loczyn obu mernków cząstkowyc; por. Kopp Dewert [26]. Na przykład: efektywność tecnczna rzędu 0.8 efektywność alokacyna rzędu 0.9 prowadz do efektywnośc kosztowe 0.72 (koszt nezbędny stanow 72% kosztu ponesonego). Analza efektywnośc kosztowe frm pozwala zbadać czy frma przy danyc cenac czynnków produkc ponos mnmalny koszt całkowty wytworzena określonego pozomu produkc. Innym słowy, badamy czy dana welkość produkc została osągnęta przy odpowedne skal strukturze tyc czynnków. Jeżel ten warunek est spełnony, to frma wytwarzaąc optymalną welkość produkc (gwarantuącą maksymalny zysk) osąga ą przy odpowednc nakładac czynnków produkc (po nanższym koszce). założeń, tak: W klasyczne analze efektywnośc kosztowe frm przymue sę klka podstawowyc zakłada sę często (por. np. Scmdt Sckles [38]), że edna z badanyc frm est w pełn efektywna, węc merzy sę neefektywność nnyc w relac do te wyróżnone frmy; każda z frm ma swobodny dostęp do nanowsze myśl tecnczne, lub ogólne formułuąc, do te same tecnolog. Założene to pozwala przyąć dla każde z frm dentyczną postać mkroekonomczne funkc produkc, a w konsekwenc także funkc kosztów. Koszt granczny przy swobodnym dostępe wszystkc frm do te same tecnolog reprezentue mnmalny koszt ponoszony przy danyc cenac czynnków danym 3

(zrealzowanym) pozome produkc. Odcylene n plus od granczne funkc kosztów nterpretowane może być ako błąd pomaru, który ze swe stoty może być dowolnego znaku (est zmenną symetryczną względem zera), lub neefektywność, która est zawsze zmenną neuemną. łówny problem w ekonometryczne analze efektywnośc kosztowe frm sprowadza sę do oszacowane parametrów granczne funkc kosztów oraz wskaźnka merzącego neefektywność (bądź efektywność). Rodza posadanyc danyc -przekroowo czasowe (panelowe) czy tylko przekroowe - specyfkaca neefektywnośc są podstawowym czynnkam decyduącym o wyborze typu modelu sposobu estymac (por. np. Fernández, Osewalsk Steel [3]). Jeżel występuą odpowedne przesłank merytoryczne, to zakłada sę, że efektywność każde z frm est albo stała albo zmenna w czase. Modele bardze rozbudowane pozwalaą na uwzględnene testowane systematycznyc różnc w efektywnośc, spowodowanyc przez czynnk zewnętrzne. Zakłada sę w nc, że składnk reprezentuące neefektywność ne maą dentycznyc rozkładów dla różnyc frm, tzn. maą ten sam typ rozkładu, lecz o różnyc parametrac będącyc funkcą pewnyc zmennyc egzogencznyc (por. Kumbakar, os Mcuckn [28] oraz Koop, Osewalsk Steel [25]). Zagadnene modelowana egzogenczne uwarunkowanyc różnc efektywnośc kosztowe wykracza poza ramy te pracy. Prezentowane w następnyc częścac pracy metody (oparte na modelac ednorównanowyc) umożlwaą dokonane pomaru efektywnośc kosztowe frm, ne prowadzą ednak do e dekompozyc na składową tecnczną alokacyną. 3. Model dla danyc przekroowyc Naprostszy ednorównanowy model stocastyczne granczne funkc kosztów frmy może być w przypadku danyc przekroowyc zapsany w postac (por. np. [32] str. 254, [9]): TC ( Q W ) exp( ε ) = f, (), gdze: =,..,N - lczba frm, TC (Total Cost) - obserwowany koszt całkowty -te frmy, Q - wektor produktów -te frmy, W - wektor H cen czynnków produkc dla frmy, f(q,w ) - granczna funkca kosztów. 4

Zakłada sę, że ε =u +ν oraz że u ν są nezależnym zmennym losowym, przy czym: u są to składnk wyrażaące neefektywność badanyc frm, o rozkładac nezależnyc o wartoścac wyłączne neuemnyc (u 0, a zatem E(u )>0); ν są to symetryczne składnk losowe wyrażaące wpływ czynnków przypadkowyc bądź błędów w pomarze kosztów; zakłada sę, że posadaą nezależne, dentyczne rozkłady o zerowe wartośc oczekwane, np. ν ~N(0,σ ν 2 ). Podstawową formą funkcyną wykorzystywaną w analze empryczne est obecne translogarytmczna funkca kosztów (ang. translog cost functon). Otrzymue sę ą - dla logarytmu kosztów (lntc) - poprzez aproksymacę II rzędu dowolne funkc przynamne 3- krotne różnczkowalne w otoczenu pewnego (dobranego arbtralne) punktu. Je postać est następuąca: lntc + + g = = H H H = = = α + β β o (3) g, (5), g= β lnq lnw () g, g, lnq lnw lnw, g,, + + + ε H = g = = β (2) β lnw (4) g,, lnq +, g lnq, (2) gdze o ε czyn sę założena dentyczne ak w równanu (). Własność ednorodnośc funkc kosztów ze względu na ceny czynnków produkc nakłada następuące restrykce na parametry równana (2): H = H = H = β β β ( 2) ( 3) g, ( 5), = = 0 = 0 dla g =, K, dla =, K, H Ponadto, zgodne z twerdzenem Younga β (4) g,= β (4),g, β (5),= β (5),, co dodatkowo ograncza lczbę swobodnyc parametrów. Jeżel w równanu (2) uwzględnmy powyższe symetre oraz koszt całkowty (TC) ceny W (=,,H) wydzelmy przez edną z nc (np. W H ), to własność ednorodnośc względem cen est automatyczne spełnona. Model przymue wówczas postać równoważną: 5

H TC ( ) ( 2) W, ( W ) α ( ) ( ), H o β g Q, g β W, H ln = + ln + ln + H W, ( W ), H ( 3) ( 4) + β lnq ln + β lnq lnq g,, g g,, g, g= = g= = g H H W, W, ( W ) ln( ), H W, H ( 5) + β ln + ε = =, g= = W efekce lczba estymowanyc parametrów z wyątkem wyrazu wolnego α 0 wynos k=(+h-)(+h+2)/2. (3) W przypadku danyc przekroowyc, naprostszą metodą estymac modelu (3) wydae sę Metoda Namneszyc Kwadratów (MNK). Należy ednak pamętać, że ε ma rozkład, który ne est rozkładem normalnym, an nawet rozkładem symetrycznym. Co naważnesze, wartość oczekwana złożonego składnka losowego est nezerowa: E(ε )=E(ν )+E(u )=E(u )>0. Jeżel ednak wartośc oczekwane zmennyc u są dentyczne, to przymuąc oznaczena E(u )=µ, α µ =α 0 +µ oraz ε µ, =ε -µ, otrzymuemy równoważny modelow (3) zaps, w którym wyrazem wolnym est α µ zaś składnkem losowym ε µ,. Poneważ E(ε µ, )=E(ε )-µ=e(u )-µ=0, węc - przy standardowyc założenac o zmennyc obaśnaącyc - estymator MNK wektora zaweraącego α µ wszystke współczynnk β (l) funkc translogarytmczne (l=,,5) est estymatorem (przynamne) zgodnym. Uzasadnone est węc wykorzystane MNK do estymac modelu (3), przy czym nezbędna est korekta oceny wyrazu wolnego, gdyż w sposób zgodny szacuemy α µ =α 0 +µ, ne α 0. Zgodność estymatora MNK wszystkc współczynnków funkc kosztów poza wyrazem wolnym est podstawą różnyc warantów estymac granczne funkc kosztów wskaźnków efektywnośc kosztowe. Waranty te nazywane są ogólne skorygowaną MNK (ang. corrected ordnary least squares; COLS). Omówmy edyne warant naprostszy. Po zastosowanu MNK wyznacza sę reszty ^ ˆ ε = ln CT - lnct. Frmę, dla które reszta ε ˆµ, est mnmalna przymue sę ako w pełn efektywną (ako wzorzec efektywnośc). Z uwag na rozważane logarytmu funkc kosztów, efektywność te frmy na skal (0,] merzy sę następuąco (wektor βˆ zawera wszystke oszacowana parametrów łączne z oceną wyrazu wolnego α µ ): µ, 6

( Q, w, K, wh, ˆ β ) f ( Q, w, K, w, ˆ β ) f exp(mn( ˆ ε µ, )) = = exp mn( ˆ ε µ, ) ε, exp( ˆ ε ) rˆ ˆ ef, µ H rafczną lustracę te metody przedstawa Rysunek 2 (przyęte założena: eden produkt Q; ceny czynnków produkc są ustalone dla wszystkc frm, mamy węc do czynena z krzywą kosztu całkowtego). Oszacowana przy pomocy MNK na podstawe punktów emprycznyc krzywa kosztów, tzw. przecętna krzywa kosztów (lna gruba) po przesunęcu wzdłuż os rzędnyc o wektor (0; mn ( ˆ ε µ, ) ) tworzy granczną funkcę kosztów (lna przerywana) z wyrazem wolnym ˆ α 0 = ˆ α µ + mn( ˆ ε, ) µ. Efektywność kosztową można przedstawć ako stosunek mnmalnego kosztu nezbędnego (wynkaącego z granczne funkc kosztów) do kosztu rzeczywśce ponesonego przy tym samym pozome produkc. Przedstawona metoda estymac wskaźnków efektywnośc est wrażlwa na obserwace netypowe ntucyne pownna dawać tym lepsze wynk m mnesze są symetryczne zakłócena losowe (błąd pomaru); perwotne była ona zaproponowana dla tzw. determnstycznyc funkc grancznyc gdze ν 0; por. reene [6]. Metoda ta ne wykorzystue w sposób awny nformac o złożonym składnku ε = ν +u, a zwłaszcza o rozkładze ego składowe u. Ne są znane własnośc stocastyczne oszacowań efektywnośc uzyskanyc tym uproszczonym sposobem, można węc traktować go edyne ako podeśce wstępne. Jondrow, Lovell, Materov Scmdt [22] opracowal bardze zaawansowaną metodę oceny wskaźnków efektywnośc, w które wykorzystue sę warunkową wartość oczekwaną E(u ε ) przy założenu normalnośc ν określonego typu rozkładu u (np. ucęty normalny lub wykładnczy). Pełne wnoskowane o ndywdualne efektywnośc frm est ednak możlwe dopero na grunce bayesowskm, co przedstawaą van den Broeck, Koop, Osewalsk Steel [4]. W przypadku danyc przekroowyc ne można oczywśce badać zman efektywnośc (neefektywnośc) frm w czase, co est teoretyczne możlwe (coć rzadko praktykowane) w przypadku danyc przekroowo czasowyc, omawanym w następne częśc. µ,. 4. Model dla danyc przekroowo czasowyc W przypadku danyc przekroowo czasowyc (panelowyc; ang. panel data) w równanu (2) należy przyąć, że TC, W,, Q,g są wektoram T obserwac dla -te frmy. 7

Natomast ε o wymarze T est (nacze nż zostało to uęte w równanac ()-(3)), sumą składnków ν z, gdze z est wektorem losowym o neuemnyc współrzędnyc z,t (odzwercedlaącyc neefektywność frm w kolenyc okresac czasu t=,,t), a ν ~N(0,σ ν 2 Ι Τ ) dla =,,N. Częstym założenem (przymowanym zwłaszcza przy małym T) est ne tylko stałość tecnolog, ale stałość efektywnośc frmy w czase. Umożlwa to bardze precyzyny szacunek przecętne efektywnośc każde frmy, gdyż mamy dla ne T obserwac, a ne tylko edną. Wygodne est węc w celu omówena naprostszyc metod estymac dla danyc przekroowo-czasowyc ogranczyć sę do założena stałośc efektywnośc frmy w czase (z t =u dla t=,,t) Można wtedy zapsać translogarytmczną funkcę kosztów w forme: H TC, t ( ) ( 2) W,, t ( W ) α ( ) ( ), H, t o β g Q, g, t β W, H, t ln = + ln + ln + H g= = W,, t ( 4) ( Q, g, t ) ( W ) β g, ( Q, g, t ) ( Q,, t ) ( 3) + β ln ln + ln ln g,, H, t g= = g= = g H H = = ε W,, t W,, t ( W ) ln( ), H, t W, H, t, t, t ( 5) + β, ln + ε, t, gdze = u + ν. (4) rupuąc obserwace dla poszczególnyc frm (po czase) otrzymue sę model lnowy: ( ) y = α + u ι + X β + ν T 0 (=,,N) gdze y est wektorem T obserwowanyc wartośc logarytmu kosztu dla -te frmy, X est macerzą T k zmennyc obaśnaącyc, ι T est wektorem T złożonym z edynek. (5) Naprostszy sposób estymac równana (5) przedstawl Scmdt Sckles w pracy [38]. Zauważyl, że skoro E(u )=µ>0 w modelu y t =α 0 +X t β+u +ν t, to dla modelu y t =(α 0 +µ)+x t β+(u -µ+ν t ) składnk losowy u µ+ν t ma wartość oczekwaną zero. Ne zalecaą ednak estymac tego modelu zwykłą MNK. Estymator MNK parametrów α µ =α 0 +µ β est co prawda zgodny (eżel N dąży do eżel u są neskorelowane z regresoram X t ), ale stneą metody efektywnesze. W konsekwenc autorzy c proponuą traktować u ako neznaną stałą (tzw. efekt ndywdualny) estymować w równanu (5) obok k parametrów przy regresorac także N wyrazów wolnyc α zdefnowanyc ako α =α 0 +u, które rozróżnaą ndywdualną efektywność kosztową frm. Szacowane k+n parametrów odbywa sę na podstawe TN obserwac. Estymaca modelu, w którym występuą wyrazy wolne (α ) 8

różne dla każde z frm, polega na zastosowanu MNK z uwzględnenem w zborze zmennyc obaśnaącyc dodatkowyc N- zmennyc zero edynkowyc obok stałe α 0. Równoważną algebraczne est procedura estymac równana, w którym wartość każde ze zmennyc: obaśnane obaśnaącyc (np. y,t ) zastępue sę odcylenem od średne po czase (wyrażenem y T, t y, t T t = ). W lteraturze estymator ten est znany ako wtn estmator. Dla wektora β, est on zgodny w obu przypadkac: N->, T->. Natomast dla wyrazów wolnyc α estymator ten est zgodny wraz ze wzrostem lczby obserwac po czase dla każde frmy (a węc tylko przy T-> ). Poneważ proponowany model ma być wykorzystywany edyne przy małym T, węc własnośc asymptotyczne zwązane ze wzrostem lczby okresów czasu ne maą dla nas praktycznego znaczena. Po dokonanu estymac parametrów przymue sę oszacowanem stałe odpowadaące -te frme a ˆ α = mn( ˆ α ) u ˆ = ˆ α ˆ α, gdze αˆ est, ako ocenę wskaźnka neefektywnośc u (określonego na skal [0,+ )). Mernkem efektywnośc na skal (0,] est: rˆ = ( Q ˆ, w, K, wh, β ) ( Q, w, K, w, ˆ β ) exp( ˆ α + ˆ ν ) = exp( uˆ ) exp( ˆ α + ˆ ν ) ef, f f Tak zdefnowany mernk zakłada, że frma o namneszym H. αˆ est w pełn efektywna a neefektywność pozostałyc frm est merzona w relac do ne. Dla estymatora wskaźnka neefektywnośc, określene ego błędu oszacowana na grunce teor klasyczne est bardzo trudne (możlwe edyne poprzez symulace komputerowe). rafczne tę metodę estymac wskaźnków efektywnośc opsue Rysunek 3. Koop, Osewalsk Steel [25] wykazal, że estymaca wskaźnka efektywnośc dla danyc przekroowo-czasowyc za pomocą wtn estmator odpowada wnoskowanu bayesowskemu, w którym przymue sę bardzo slną wedzę wstępną o wysoke względne neefektywnośc frm (merzone względem frmy naefektywnesze). Wedzę tę można opsać formalne za pomocą newłaścwego rozkładu a pror postac p(r ) /r gdze r =exp( α +mn (α )), a zatem r (0,]. Rozkład ten ma następuące własnośc: szansa a pror, że frmy są bardzo neefektywne (r blske 0) est neskończene welka, natomast że są bardzo efektywne (r blske ) est tylko skończona. Należy sę węc spodzewać, że zaprezentowana metoda ne doszacowue w skończonyc próbac względne efektywnośc frm (rozrzut efektywnośc mędzy frmą wzorcem a pozostałym frmam est zbyt duży). Stosuąc wtn estmator ne wykorzystuemy założena o postac rozkładu u ; dla 9

konkretnyc typów rozkładów neefektywnośc przy założenu normalnośc błędu symetrycznego ν proponue sę w lteraturze metodę nawększe warygodnośc (zob. Ptt Lee [36] oraz Scmdt Sckles [38]) oraz wnoskowane bayesowske (zob. Koop, Osewalsk Steel [25]). Szczególne to ostatne podeśce wydae sę naturalne w przypadku szacowana efektywnośc; wymaga ono ednak nowoczesnyc tecnk Monte Carlo do oblczana gęstośc brzegowyc momentów rozkładu a posteror (zob. Osewalsk Steel [35]). Posadane danyc panelowyc o dużym nterwale czasowym, np. eden rok, dłuższym oryzonce T pozwala założyć, że efektywność frm est zmenna w czase (por. Cornwell, Scmdt Sckles [0] oraz Kumbakar [27]). Jeżel przymemy dodatkowe założene, że z t są nezależnym zmennym losowym dla =,,N, t=,,t, to ne nakładamy na dane żadne struktury przekroowo czasowe naprostszy sposób estymac wskaźnków efektywnośc est dentyczny ak w przypadku danyc przekroowyc, czyl dla równana (3). Wskaźnk w lczbe TN, oszacowane na podstawe TN obserwac, carakteryzuą efektywność każde z frm w kolenyc badanyc okresac. rupuąc e po frmac można ponadto uzyskać dodatkowe nformace o średne efektywnośc frm w okrese, z którego pocodz próba. Oczywśce, do tego sposobu estymac należy odneść te same uwag krytyczne co w przypadku estymac w oparcu o dane przekroowe: szacunek poedynczego wskaźnka efektywnośc oparty est w zasadze na edne obserwac. Fernández, Osewalsk Steel [3] omawaą typy struktur możlwyc do rozważana w przypadku danyc przekroo czasowyc podstawowe problemy wnoskowana bayesowskego na podstawe takc model grancznyc. 5. Funkca kosztów w przypadku sektora bankowego Przedstawoną metodologę badana efektywnośc kosztowe frm można stosować w odnesenu do banków nnyc nstytuc fnansowyc. Jednym z problemów poawaącyc sę na etape budowy funkc kosztów est określene zmennyc wcodzącyc do modelu, czyl czynnków produkc c cen oraz produktów frmy aką est bank. Czynnk produkc poawaą sę w modelu pośredno: c zaangażowane określa koszt całkowty. Rozwó badań emprycznyc z zakresu analzy efektywnośc kosztowe sektora bankowego (od początku lat 90-tyc) poprzedzony był pracam teoretycznym podemuącym problem określena (zdefnowana) czynnków produkc produktów nstytuc fnansowyc w śwetle mkroekonomczne teor produkc (np. Sealey Lndley [39]). W efekce, badacze zamuący sę tą problematyką zgodne przymuą za czynnk produkc (np. 0

[2],[6],[7],[9],[],[2],[5],[9],[2],[23], [3],[33]): kaptał fzyczny (pyscal captal)-maątek trwały, kaptał ludzk (labor), kaptał fnansowy (fnancal captal)-depozyty nne pożyczone penądze. Cenę czynnka produkc wyznacza sę w ten sposób, że est ona lorazem kosztu zwązanego z danym czynnkem welkośc ego zaangażowana. Zgodne z tą koncepcą, cenę kaptału ludzkego wyznacza sę ako stosunek wynagrodzena (wraz z narzutam) pracownków banku do lczby zatrudnonyc (w przelczenu na pełne etaty). Cena kaptału fnansowego to stosunek kosztów odsetkowyc od depozytów ( nnyc pożyczonyc penędzy) do welkośc tyc depozytów. Pomar ceny kaptału fzycznego est uż trudneszy; w welu pracac autorzy ne przytaczaą przyęte defnc ceny tego czynnka. W nnyc pracac z tego zakresu cenę kaptału fzycznego proponue sę merzyć ako np. średn koszt wynamu powerzcn burowe w geografcznym sąsedztwe banku (np. [8], [2]). Jednak naczęśce w praktyce przymue sę loraz wydatków zwązanyc z kaptałem fzycznym albo wartośc tego kaptału (np. [6], [9],[5],[9],[23],[33]), albo welkośc udzelonyc depozytów nnyc pożyczonyc penędzy (np. [4],[]). Koszt całkowty (TC) est sumą ponesonyc kosztów zwązanyc z zaangażowanem każdego z czynnków produkc: kaptału fzycznego, ludzkego fnansowego. Jak dotąd badacze ne wypracowal wspólnego podeśca do problemu określena produktów bankowyc. Istneą dwa główne podeśca różnące sę generalne uęcem rol depozytów. W perwszym z nc (tzw. real approac), traktuącym bank ako frmę produkcyną, za produkty uważa sę kredyty nne należnośc generuące docód (earnng assets), a depozyty nne zobowązana traktue sę tylko ako czynnk produkc (np. [2],[9],[2],[9],[23],[3],[33],[34]). Alternatywne podeśce (tzw. portfolo approac) zakłada, że depozyty podobne ak earnng assets muszą być defnowane ako produkty (np. [5],[6],[7],[8],[],[5],[8],[2],[29], [37],[43]). Nezależne od przyęte rol depozytów badacze dokonuą różnyc klasyfkac produktów (przede wszystkm kredytów), zwykle agreguąc e tak, że c lczba ne przekracza pęć. Można zauważyć, że rozważaąc 5 produktów 3 ceny czynnków produkc dla translogarytmczne funkc kosztów estymowana lczba parametrów wynos 35 (bez stałyc). Prezentuąc różne klasyfkace produktów wprowadzone w pracac emprycznyc z

zakresu analzy kosztowe sektora bankowego można zauważyć, że np. Mester [3] oraz Engls, rosskopf, Hayes Yaswarng [2], za pracą Sealeya Lndleya [39] zgodne przymuąc podeśce real approac, rozważaą ako produkty: kredyty poteczne (real estate mortgage loans), kredyty konsumpcyne kredyty kasowe dla przedsęborstw (consumer and commercal loans), gwarance, poręczena nne należnośc od podmotów fnansowyc (securtes and oter nvestments, assets n tradng accounts). Noulas, Subas Mller [34] oraz Kaparaks, Mller Noulas [23] wyodrębnaą dodatkowo z wyże wymenonyc produktów kredyty dla ndywdualnyc gospodarstw domowyc osób fzycznyc, traktuąc e ako odrębną kategorę. Natomast Akaven, Swamy, Taubman Sngamsett [2] agreguą produkty bankowe do dwóc: kredytów ratalnyc (nstallment loans) oraz nnyc, zaweraącyc m. n. kredyty kasowe dla przedsęborstw, kredyty poteczne, faktorng kredyt z tytułu leasngu (ndustral loans). Stosuąc alternatywne podeśce (portfolo approac), Berger Humprey [7] oraz McAllster McManus [29] traktuą depozyty na żądane (demand deposts), depozyty termnowe wkłady oszczędnoścowe (tme and savngs deposts) ak produkty bankowe tak samo ak kredyty ratalne, kredyty poteczne, faktorng kredyt z tytułu leasngu oraz kredyty kasowe dla przedsęborstw. Podobny podzał stosuą Rangan, rabowsk, Aly Pasurka [37], lecz ne wyodrębnaą kredytów ratalnyc, a osobną kategorą produktów są dla nc kredyty konsumpcyne. Kredyty poteczne, kredyty kasowe, z tytułu leasngu faktorng dla przedsęborstw, kredyt konsumpcyny, gwarance, poręczena nne należnośc od podmotów fnansowyc oraz depozyty na żądane stanową produkty dla takc autorów ak Hassan, rabowsk, Pasurka Ragan [8] oraz rabowsk, Ragan Rezvanan [5]. Dostęp do danyc porównywalnyc mędzy badanym obektam ma wpływ na klasyfkacę produktów; tak w pracy z zakresu badań efektywnośc skandynawskego sektora bankowego Berg, Forsund, Halmarsson Soumnen [5] dokonal klasyfkac produktów umożlwaące c porównywalność, wyróżnaąc: lczbę oddzałów poszczególnyc banków, wartość kredytów ogółem (z wyłączenem udzelonyc nstytucom fnansowym) oraz depozyty ogółem (z wyłączenem udzelonyc nstytucom fnansowym). Zardokoo Kolar [43] równeż używaą ako produktów welkośc zagregowanyc, a manowce: kredytów depozytów ogółem. Inacze nż nn badacze, Ferrer Lovell [4] oraz Berger, Hanweck Humprey [8] zaproponowal, żeby produkt bankowy merzyć za pomocą lośc lokat na żądane, lokat termnowyc, lośc udzelonyc kredytów potecznyc, ratalnyc kasowyc. 2

Autorzy wymenonyc prac dokonuąc klasyfkac produktów operaą sę w wększośc na danyc pocodzącyc z sektora banków nstytuc fnansowyc gospodark amerykańske. Dane te gromadzone są przez specalne nstytuce powołane do tego przez bank centralny (Federal Reserve). Pocodzą one z banków o różne welkośc skal dzałana (Kaparaks, Mller Noulas [23] operaą sę na próbe 5 548 banków, z któryc namnesze posadaą aktywa o wartośc 50 mln, a nawększe powyże 0 000 mln dolarów USA), stąd często dokonue sę pomaru efektywnośc kosztowe dla grup ednorodnyc banków, ak to czyną autorzy prac [6],[7],[],[2],[5],[2],[23],[33],[34],[37],[43], dla któryc welkość aktywów banku est kryterum podzału. Hassan, rabowsk, Pasurka Ragan [8] dzelą bank na dwe grupy: posadaące ne posadaące oddzałów. Przy próbe zastosowana przedstawone metodolog pomaru efektywnośc kosztowe w warunkac polskc, zasadnczym problemam wydaą sę być: określene produktów (w zgodze zarówno z naszym realam ak wypracowaną na Zacodze metodologą) oraz dostęp do porównywalnyc danyc o polskc bankac. łównym kryteram decyduącym o klasyfkac produktów kredytowyc mogą być: czas trwana cel umowy fnansowe (kredytowe), typ zabezpeczena, osoba werzycela, sposób oprocentowana lub sposób wypłaty spłaty kredytu. Te czynnk będą podstawą do określena kategor produktów w warunkac polske bankowośc - zwłaszcza, że waclarz usług bankowyc, z któryc korzystaą klenc polskc banków, różn sę od oferty produktowe banków amerykańskc. Zagadnene określena produktów bankowyc, czynnków produkc c cen w przypadku polskego sektora bankowego stanow przedmot odrębnyc studów. 6. Uwag końcowe Przedstawony zarys metodolog wskazue na możlwość podęca perwszyc emprycznyc badań efektywnośc kosztowe w polskm sektorze bankowym. Koneczna będze taka specyfkaca zmennyc w granczne funkc kosztów, która odpowada zarówno edne z koncepc teoretycznyc banku ako frmy, ak polske sprawozdawczośc racunkowośc bankowe. Co do postac analtyczne modelu, to wystarczaąca wydae sę funkca translogarytmczna, stosowana w welu badanac zacodnc. Wykorzystane danyc przekroowo-czasowyc o dość krótkm nterwale czasowym (np. kwartał) newelke lczbe okresów (małe T) pownny umożlwć precyzyny szacunek 3

neefektywnośc traktowane ako stały w czase efekt ndywdualny. Zaprezentowane w te pracy naprostsze tecnk estymac, stanowące modyfkace zwykłe MNK, mogą służyć edyne ako metody wstępne. W dalszyc badanac zamerzamy wykorzystać wnoskowane bayesowske, daące pełny obraz nepewnośc o parametrac funkc kosztów o wskaźnkac efektywnośc, a zastosowane z powodzenem w analze efektywnośc kosztowe szptal amerykańskc (por. [25]). Bblografa [] Agner D., C.A.K. Lovell, P. Scmdt, 977, Formulaton and Estmaton of Stocastc Fronter Producton Functon Models, Journal of Econometrcs, 6. [2] Akaven J., P.A.V.B. Swamy, S.B. Taubman, R.N. Sngamsett, 997, A general metod of dervng te neffcences of bank from a proft functon, Te Journal of Productvty Analyss, 8. [3] Bauer P.W., D. Hancock, 993, Te effcency of te Federal Reserve n provdng ceck processng servces, Journal of Bankng and Fnance, 7. [4] Beckers D.E., C.J. Hammond, 987, A tractable lkelood functon for te normalgamma stocastc fronter model, Economcs Letters, 24. [5] Berg S.A, F.R. Forsund, L. Halmarsson, M. Soumnen, 993, Bankng effcency n te Nordc countres, Journal of Bankng and Fnance, 7. [6] Berger A. N., 993, Dstrbuton-free estmates of effcency n te U.S. bankng ndustry and tests of te standard dstrbutonal assumptons, Te Journal of Productvty Analyss, 4. [7] Berger A. N., D. Humprey, 99, Te domnace of neffcences over scale and product mx economes n bankng, Journal of Monetary Economcs, 28. [8] Berger A. N.,. Hanweck, D. Humprey, 987, Compettve vablty n bankng. Scale, scope, and mx economes, Journal of Monetary Economcs, 20. [9] Cebenoyan A.S., E.S. Cooperman, C.A. Regster, S.C. Hudgns, 993, Te relatve effceny of stock versus Mutual S&Ls: A stocastc cost fronter approac, Journal of Fnancal Servces Researc. [0] Cornwell C., P. Scmdt, R. Sckles, 990, Producton fronters wt-cross-sectonal and tme-seres varaton n effcency levels, Journal of Econometrcs, 46. [] Detsc M., 993, Economes of scale and scope n Frenc commercal bankng ndustry, Journal of Productvty Analyss, 4. [2] Engls M., S. rosskopf, K. Hayes., S. Yaswarng, 993, Output allocatve and tecncal effcency of banks, Journal of Bankng and Fnance, 7. [3] Fernández C., J. Osewalsk, M.F.J. Steel, 997, On te use of panel data n stocastc fronter models wt mproper prors, Journal of Econometrcs, 79. [4] Ferrer.D., C.A.K. Lovell, 990, Measurng cost effcency n bankng: econometrc and lnear programmng evdence, Journal of Econometrcs, 46. 4

[5] rabowsk R., N. Ragan, R. Rezvanan, 993, Organzatonal forms n bankng: An emprcal nvestgaton of cost effcency, Journal of Bankng and Fnance, 7. [6] reene W., 980, Maxmum lkelood estmaton of econometrc fronter functons, Journal of Econometrcs, 3. [7] reene W., 990, A gamma-dstrbuted stocastc fronter model, Journal of Econometrcs, 46. [8] Hassan Y.A., rabowsk R., C. Pasurka, N. Ragan, 990, Tecncal, scale, and allocatve effcences n U.S. bankng: An emprcal nvestgaton, Revew of Economcs and Statstcs. [9] Huges J., L.J. Mester, 993, A qualty and rsk-adusted cost functon for banks: Evdence on te too-bg-to-fal doctrne, Journal of Productvty Analyss, 4. [20] Humprey D., 985, Costs and scale economes n bank ntermedaton, w: Handbook of Bankng Strategy (red.: R.C. Aspnwall, R. Esenbes), J. Wley, New York. [2] Humprey D., 993, Cost and tecncal cange: Effects from bank deregulaton, Journal of Productvty Analyss, 4. [22] Jondrow J., C.A.K. Lovell, I. Materov, P. Scmdt, 982, On te estmaton of tecncal neffcency n te stocastc fronter producton functon model, Journal of Econometrcs, 9. [23] Kaparaks E., S. M. Mller, A.. Noulas, 994, Sort-run cost neffcency of commercal banks: A flexble stocastc fronter approac, Journal of Money, Credt, and Bankng, 26. [24] Koop., J. Osewalsk, M.F.J Steel, 994, Bayesan effcency analyss wt a flexble form: Te AIM cost functon, Journal of Busness and Economc Statstcs, 2. [25] Koop., J. Osewalsk, M.F.J Steel, 997, Hosptal effcency analyss wt ndvdual effects: A Bayesan approac, Journal of Econometrcs, 76. [26] Kopp R., W.E. Dewert, 982, Te decomposton of fronter cost functon devatons nto measures of tecncal and allocatve neffcency, Journal of Econometrcs, 9. [27] Kumbakar S.C., 990, Producton fronters, panel data, and tme-varyng tecncal neffcency, Journal of Econometrcs, 46. [28] Kumbakar S.C., S. os, J.T. Mcuckn, 99, A generalzed producton fronter approac for estmatng determnants of neffcency n U.S. dary farms, Journal of Busness and Economc Statstcs, 9. [29] McAllster P.H., D. McManus, 993, Resolvng te scale effcency puzzle n bankng, Journal of Bankng and Fnance, 7. [30] Meeusen W., J. van den Broeck, 977, Effcency Estmaton from Cobb-Douglas Producton Functons wt Composed Error, Internatonal Economc Revew, 977, 8. [3] Mester L.J., 993, Effcency n te savngs and loan ndustry, Journal of Bankng and Fnance, 7. [32] Molyneux P., Y. Altunbas, E. ardener, 996, Effcency n European Bankng, J. Wley, Ccester. [33] Muldur U., Sassenou M., 993, Economes of scale and scope n Frenc bankng and savngs nstutons, Journal of Productvty Analyss, 4. 5

[34] Noulas A.., C.R. Subas, S.M. Mller, 990, Returns to scale and nput substtuton for large U.S. banks, Journal of Money, Credt, and Bankng, 22. [35] Osewalsk J., M.F.J. Steel, (998), Numercal tools for te Bayesan analyss of stocastc fronter models, Journal of Productvty Analyss, 9, w druku. [36] Ptt M., L.F. Lee, 98, Te measurement and sources of tecncal neffcency n te Indonesan weavng ndustry, Journal of Development Economcs, 9. [37] Rangan N., R. rabowsk, N.Y. Aly, C. Pasurka, 988, Te tecncal effcency of US Banks, Economcs Letters, 28. [38] Scmdt P., R. Sckles, 984, Producton fronters and panel data, Journal of Busness and Economc Statstcs, 2. [39] Sealey C.W., J.T. Lndley, 977, Inputs, outputs, and a teory of producton and cost at depostory fnancal nsttutons, Te Journal of Fnance, 32. [40] Stevenson R.E., 980, Lkelood functons for generalzed stocastc fronter estmaton, Journal of Econometrcs, 3. [4] van den Broeck J.,. Koop, J. Osewalsk, M.F.J. Steel, 994, Stocastc fronter models: A Bayesan perspectve, Journal of Econometrcs, 6. [42] Varan H.R., 995, Mkroekonoma, Wydawnctwo Naukowe PWN. [43] Zardokoo A., J. Kolar, 994, Branc offce economes of scale and scope: Evdence from savngs banks n Fnland, Journal of Bankng and Fnance, 8. X 2 y obs C x 2 obs B Z obs x 2 tec A Z tec x 2 opt Z opt C tec C obs O tec obs x x x opt C mn X Rysunek. Neefektywność kosztowa e dekompozyca. 6

lntc lntc αˆ µ ˆ0 α C B A rˆ ef, ( AB ) exp( AC ) = ( BC ) = exp exp ˆ 0 = ˆ α µ mn ˆ ε µ, α + TC to zaobserwowany koszt przy produkc Q lnq lnq Rysunek 2. Wyznaczane wskaźnka efektywnośc na podstawe danyc przekroowyc - skorygowana MNK. lntc ˆ α lntc ˆ α 2 x x x C + + + B x obserwowan y k oszt frmy obserwowan y k oszt frmy 2 + obserwowany koszt frmy 3 TC średn pozom kosztu frmy 2 przy pozome produkc Q ( ) r ef = exp BC ˆ, 2 ˆ3 α A lnq ˆ α 3 = mn( αˆ ) lnq Rysunek 3. Wyznaczane wskaźnka efektywnośc na podstawe danyc panelowyc: zndywdualzowane wyrazy wolne. Przypsy Praca wykonana w ramac proektu badawczego nr -H02B-05-, fnansowanego przez Komtet Badań Naukowyc. stosue sę także metody oparte na tecnkac programowana lnowego zob. np. Ferrer Lovell [4] oraz Bauer Hancock [3]. wynka z nego w szczególnośc, że eżel funkca f est 2-krotne różnczkowalna w pewnym punkce pocodne 2-go rzędu są cągłe, to macerz pocodnyc 2-go rzędu w tym punkce est macerzą symetryczną. 7