IMIE I NAZWISKO PRAWDOPODOBIEŃSTWO PRAWDOPODOBIEŃSTWO CZAS PRACY: 180 MIN. SUMA PUNKTÓW: 100 ZADANIE 1 (5 PKT) Rzucono dwiema sześciennymi kostkami do gry i określono zdarzenia A na każdej kostce wypadła nieparzysta liczba oczek, B suma wyrzuconych oczek jest nie mniejsza niż 8. Oblicz prawdopodobieństwo zdarzenia A B. 1
ZADANIE 2 (5 PKT) Urzędniczka na 100 klientów kontroluje 15. Jakie jest prawdopodobieństwo, że z 12 jej klientów 3 zostanie skontrolowanych? 2
ZADANIE 3 (5 PKT) Na loterii jest 40 losów, w tym 4 wygrywajace. Kupujemy 2 losy. Jakie jest prawdopodobieństwo tego, że będzie wśród nich dokładnie jeden los wygrywajacy? 3
ZADANIE 4 (5 PKT) Dwaj równorzędni przeciwnicy graja w szachy. Co jest bardziej prawdopodobne: a) wygranie dwóch partii z trzech, czy czterech partii z sześciu rozegranych? b) wygranie nie mniej niż dwóch partii z trzech, czy nie mniej niż czterech partii z sześciu rozegranych? (Remisów nie uwzględniamy.) 4
ZADANIE 5 (5 PKT) W klasach 3a, 3b i 3c przeprowadzono sprawdziań. Losowo wybieramy klasę, a następnie ucznia z tej klasy. Jakie jest prawdopodobieństwo, że wybrany uczeń otrzymał ocenę co najmniej 4, jeżeli wiadomo, że w klasie 3a: wszystkich uczniów jest 20, uczniów z ocena co najmiej cztery jest 8; w klasie 3b: wszystkich uczniów jest 21, uczniów z ocena co najmiej cztery jest 14; w klasie 3c: wszystkich uczniów jest 18, uczniów z ocena co najmiej cztery jest 6. 5
ZADANIE 6 (5 PKT) Rzucamy dwa razy sześcienna kostka do gry. Oblicz prawdopodobieństwo wyrzucenia dwa razy nieparzystej liczby oczek, jeżeli wiadomo, że pięć oczek nie wypadło ani razu. 6
ZADANIE 7 (5 PKT) a) Wpuszczony do labiryntu szczur, dochodzac do rozwidlenia dróg, dwa razy częściej skręca w lewo niż w prawo. Jakie jest prawdopodobieństwo tego, że dotrze do pokarmu (oznaczonego na rysunku P)? P P wejście b) Inny szczur wpuszczony do tego samego labiryntu, dochodzac do rozwidlenia dróg, skręca w prawo w x% przypadków. Oblicz x, jeśli prawdopodobieństwo tego, że dotrze do pokarmu, jest równe 16 9. 7
ZADANIE 8 (5 PKT) Z talii 52 kart losujemy jednocześnie dwie karty. Oblicz prawdopodobieństwo, że przynajmniej jedna z nich będzie starsza od 10, jeśli wiadomo, że żadna z nich nie jest karem. 8
ZADANIE 9 (5 PKT) Uzasadnij, że P((A B) A) 1 6, jeżeli P(A ) = 1 3 i P(B ) = 1 2. 9
ZADANIE 10 (5 PKT) W sekretariacie stoja dwa telefony - biały i czarny. Telefony te dzwonia niezależnie od siebie. Prawdopodobieństwo, że w ciagu najbliższych pięciu minut zadzwoni telefon biały, jest równe 0,5. Prawdopodobieństwo, że w ciagu najbliższych pięciu minut zadzwoni telefon czarny, jest równe 0,4. Oblicz prawdopodobieństwo, że w ciagu najbliższych pięciu minut zadzwoni co najmniej jeden z telefonów. 10
ZADANIE 11 (5 PKT) W urnie jest 6 kul białych i 4 czarne. Wyjęto losowo 2 kule i określono zdarzenia: A wylosowanie co najwyżej 1 kuli białej, B wylosowanie co najwyżej jednej kuli czarnej. Sprawdź, czy te zdarzenia sa niezależne. 11
ZADANIE 12 (5 PKT) Rozmieszczamy m różnych listów w m rozróżnialnych, ponumerowanych skrytkach. Jakie jest prawdopodobieństwo takiego rozmieszczenia, że: a) A co najmniej jedna skrytka jest pusta? b) B co najmniej dwie skrytki sa puste? 12
ZADANIE 13 (5 PKT) Ze zbioru liczb {1, 2, 3,..., 10} losujemy bez zwracania dwie i od pierwszej odejmujemy druga. Oblicz prawdopodobieństwo, że otrzymana różnica jest większa od 2. 13
ZADANIE 14 (5 PKT) Ze zbioru liczb {1, 2, 3,..., 21} losujemy jednocześnie siedem liczb i ustawiamy je w kolejności rosnacej x 1 < x 2 < x 3 <... < x 7. Oblicz prawdopodobieństwo zdarzenia x 2 3. 14
ZADANIE 15 (5 PKT) Badania statystyczne pokazały, że średnio 13,9% zapałek jest wadliwych. Jakie jest prawdopodobieństwo, że w pudełku z 90 zapałkami sa więcej niż 2 wadliwe? 15
ZADANIE 16 (5 PKT) Rzucono dziesięć razy kostka do gry. Oblicz prawdopodobieństwo, że już w pierwszym rzucie wypadła szóstka, jeśli w ogóle wypadły trzy szóstki. 16
ZADANIE 17 (5 PKT) W magazynie sa dwie równe partie elementów produkowanych w fabrykach I i II. Niezawodność (w czasie T) elementów z fabryki I jest równa 0,9, a z fabryki II 0,7. W sposób przypadkowy wzięto jeden element z magazynu i okazało się, że był sprawny przez czas T. Obliczyć prawdopodobieństwo, że wybrany element pochodzi z fabryki I. 17
ZADANIE 18 (5 PKT) Z trzech urn, w których jest po 2 kule białe i 3 czarne, wyjmujemy po jednej kuli i wkładamy do czwartej urny, w której była jedna kula biała. Losujemy teraz jedna kulę z czwartej urny. Oblicz prawdopodobieństwo, że z czwartej urny wyjmiemy biała kulę. 18
ZADANIE 19 (5 PKT) Rzucamy dwa razy kostka do gry. Jeśli suma oczek wyrzuconych na obu kostkach jest liczba podzielna przez 3, losujemy jedna liczbę ze zbioru Z 1 = {1, 2, 3,..., 2n + 7}, w przeciwnym przypadku losujemy jedna liczbę ze zbioru Z 2 = {1, 2, 3,..., 2n}. Oblicz parawdopodobieństwo wylosowania liczby parzystej. 19
ZADANIE 20 (5 PKT) Rzucamy dwa razy kostka do gry. Niech A oznacza zdarzenie suma wyrzuconych oczek jest większa od 7, a B zdarzenie, że iloczyn wyrzuconych oczek jest mniejszy od 48. a) Oblicz P(A) i P(B). b) Sprawdź czy zdarzenia A i B sa niezależne, c) Oblicz P(A B) i P(B A). 20
Rozwiazania zadań znajdziesz na stronie HTTP://WWW.ZADANIA.INFO/5511_7117R 21