1 Zacznijmy od początku... L A TEX 1 jest systemem składu umożliwiającym między innymi tworzenie dokumentów naukowych i technicznych o wysokiej jakości typograficznej. Oczywiście oprócz tego L A TEXumożliwia przygotowanie dowolnego rodzaju dokumentów, poczynając od listów, a kończąc na grubych książkach. 2 Tryb tekstowy Polecenia L A TEX a opisują strukturę logiczną dokumentu. TEXignoruje układ graficzny pliku źródłowego. Końce słów i zdań zaznacza się spacjami nie ma znaczenia ile spacji będzie znajdować się w pliku źródłowym, w wynikowym będzie tylko jeden odstęp[1]. Jeden pusty wiersz (lub więcej oznacza koniec akapitu. Akapity rozpoczynają się wcięciem pierwszego wiersza. 2.1 Wyliczenia W L A TEX u możemy stosować różnego rodzaju wyróżnienia tekstu: 1. złożenie tekstu kursywą; 2. złożenie tekstu czcionką szeryfową; 3. złożenie tekstu pismem maszynowym; 4. pogrubienie tekstu. W L A TEX u mamy kilka rodzajów list: enumerate jest to lista numerowana; itemize lista punktowana; description lista definicji. 1 Aby wstawić charakterystycznie sformatowany napis L A TEX należy wydać polecenie \LaTeX. 1
2.2 Tabele Oto opis kilku funkcji pascalowskich: nagłówek opis chr(x funkcja zwraca znak, który w kodzie ASCI ma numer x ord(x podaje numer porządkowy z tabeli ASCI znaku x trunc(x zwraca cześć całkowitą liczby rzeczywistej x wraz ze znakiem round(x podaje poprawne numerycznie zaokrąglenie liczby rzeczywistej x I przykład jeszcze jednej tabelki... Pn Wt Sr Cz Pt So Nd 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 22 24 35 26 27 28 29 30 31 Tabela 1: Grudzień 2007 3 Tryb matematyczny 3.1 Podstawy Ciąg liczb rzeczywistych a n nazywamy rosnącym, jeśli n N a n+1 a n. Jeśli natomiast a n+1 > a n, n N to mówimy, że ciąg a n jest ściśle rosnący. Zbadać dla jakich x R istnieje granica i obliczyć ją. lim n n k=0 ( 1 + 2 2 x 2k + x 2k
Weźmy pod uwagę następujące prawo rachunku zdań zwane prawem kontrapozycji: (α β ( β α. Wzory różne: n r f(x = h j (xf(a j + h j f (a j + E(x = y(x + E(x j=1 j=1 b a ϱ 2 1 ϱ 1 a (r n 2 1/2r 1/2 r (n 1 a (r n 2 a (r f(xdx h ( 1 2 f 0 + f 1 + + f m 1 + 1 2 f m 1 + 1 1 + 1 1+ 1 2 (x A \ B (x A x / B Czy to komuś będzie kiedykolwiek potrzebne?? 3.2 Wzory numerowane Niech {a n } będzie ciągiem określonym wzorem a n = 1 + 1 + + 1. (1 }{{} n-pierwiastków Obliczyć lim n a n. Zapiszmy równania stopnia pierwszego, drugiego i trzeciego w postaci: Dla dowolnych zbiorów A, B, C : x + a = 0 (2 x 2 + ax + b = 0 (3 x 3 + ax 2 + bx + c = 0 (4 A B = B A (5 A (B C = (A B C (6 A = A (7 A A = A (8 3
3.3 Definiowanie własnych środowisk Twierdzenie 3.1 (Pitagorasa Jeżeli trójkąt jest trójkątem prostokątnym to suma kwadratów długości przyprostokątnych jest równa kwadratowi długości przeciwprostokątnej. Lemat 3.2 Trójkąt jest prostokątny jeżeli ma kąt prosty. Twierdzenie 3.3 (Pitagorasa Jeżeli trójkąt jest trójkątem prostokątnym to suma kwadratów długości przyprostokątnych jest równa kwadratowi długości przeciwprostokątnej. Lemat 3.4 Trójkąt jest prostokątny jeżeli ma kąt prosty. 3.4 Matematyki ciąg dalszy... Wyznacznik Vandemonde a: Zatem det. 1 x 1 x 2 1 x n 1 1 1 x 2 x 2 2 x2 n 1 1 x 3 x 2 3 x n 1...... 1 x n x 2 n xn n 1 3 = n i,j=1 i>j (x i x j. t n = (k + 1c n+k = (k n + 1c k = k=0 k=n 1 = kc k (n 1 k=n k=n k kc 1 k = r n (n 1 k=n k (r k r k+1 = = 1 ( 1 n r n + (n 1 k=n+1 k 1 1 r k, k gdzie r n = nc n + (n + 1c n+1 +. Zbadać zbieżność szeregu Różne: n=0 3e n n!. 2 u x 2 u(x 0, y 0 2u(x 1, y 1 + u(x 2, y 2 x=x1,y=y 1 h 2 ( ( n n = n k + 1 k k 1 k 4
b a f(xdx h( 1 2 f 0 + f 1 + + f m 1 + 1 2 f m Zbiór wszystkich liczb rzeczywistych oznaczamy symbolem R. Wiadomo, że m k=0 ( m k m składników {}}{ n + n + + n a 11 a 12 a 13 a 21 a 22 a 23 a 31 a 32 a 33 f : R różnowartościowa R na = 2 m. Stąd a 2 + b 2 = c 2 m n,k=0 k+n=m 1 n!k! = 2m m! Rozpoczniemy od implikacji: ( a, b liczby całkowite p liczba pierwsza ( p jest dzielnikiem liczby (a + b p a p b p (9 Wykazać, że jeżeli iloczyn nieskończony jest bezwzględnie zbieżny, to ma miejsce równość (1 + a n =1 + a n + n=1 n=1 n 1,n 2 =1 n 1 <n 2 a n1a n2 + + + a n1a n2... a +. nk n 1,n 2,...,n k =1 n 1 <n 2 < <n k ℵ(m = Z (m (10 1 0... 0 0 1... 0 A = E n =............ 0 0... 1 (11 5
N Z Q R (12 Wzór łączący najważniejsze stałe matematyki: e πi + 1 = 0 Zadanie. Załóżmy, że a {1, 2,..., 9}.Obliczyć Rozwiązanie. Mamy lim n a + aa + + 10 n n-cyfr {}}{ aa... a n-cyfr {}}{ 11... 1 = n-cyfr {}}{ a + aa + + aa... a = a(1 + 11 + + ] = a [10 n 1 + 2 10 n 2 + + n 10 0 = = a [(1 + 10 + + 10 n 1 + ] + + (1 + 10 + 1 = ( 10 = a n 1 + 10n 1 1 + + 102 1 + 10 1 = 9 9 9 9 = a 10(10n 1 9n 81 (1 + 10 + + 10 n 2 + Stąd szukaną granicą jest 10a. 81 Na deser: P k = I k 1 0 0 P k 3.5 Większy fragment 3.5.1 Pochodna złożenia i macierz Jacobiego Ze wzorów na obliczanie pochodnych wynika, że sumy, iloczyny i ilorazy (z niezerowymi mianownikami funkcji klasy C k są funkcjami klasy C k. Także złożenie funkcji klasy C k jest funkcją klasy C k. Wynika to ze wzoru na pochodną złożenia: jeśli g 1,, g n są funkcjami różniczkowalnymi 6
w punkcie y R p, a f jest funkcją różniczkowalną w punkcie x = g(y = (g 1 (y,, g n (y, to złożenie H = f gjest funkcją różniczkowalną w punkcie y i n k H(y = j f(x k g j (y. (3.13 Dowód wynika ze wzoru j=1 f(g(y + h = n f(g(y + j (g j (y + h g j g j (y + ε 1 g(y + h g(y j=1 = n p f(g(y + j f(x k g j (yh k + ε 2 h, j=1 k=1 gdzie,ε 1 0 gdy, g(y + h g(y 0 oraz, ε 2 0 gdy h 0. We wzorze na pochodną złożenia pojawia się macierz Jacobiego g (y = ( k g j (y pochodnych cząstkowych n funkcji g 1,..., g n ze względu na p zmiennych y 1,..., y p. Gdy wskaźnik j numeruje kolumny, a k - wiersze, jest to macierz o wymiarach n p. Jeśli f = (f 1,..., f q jest układem q funkcji zmiennej x, to wzór (3.13 na obliczanie pochodnej złożenia, zastosowany do każdej składowej f, można przedstawić w postaci macierzowej jako (f g (y = f (g(yg (y. Dla n = p = q = 1 otrzymujemy wzór na pochodną funkcji złożonej skalarnej, co uzasadnia stosowanie tego samego oznaczenia dla pochodnej i macierzy Jacobiego. Przykład 1 Macierz Jacobiego dla współrzędnych biegunowych na płaszczyźnie, ma postać gdzie i oznaczają pochodne cząstkowe ze względu na odpowiednią zmienną. 7
Spis treści 1 Zacznijmy od początku... 1 2 Tryb tekstowy 1 2.1 Wyliczenia............................. 1 2.2 Tabele............................... 2 3 Tryb matematyczny 2 3.1 Podstawy............................. 2 3.2 Wzory numerowane........................ 3 3.3 Definiowanie własnych środowisk................ 4 3.4 Matematyki ciąg dalszy........................ 4 3.5 Większy fragment......................... 6 3.5.1 Pochodna złożenia i macierz Jacobiego......... 6 Literatura [1] Leslie Lamport, L A TEX. System opracowywania dokumentów, WNT, Warszawa 2004. 8