Matematyka dyskretna Andrzej Łachwa, UJ, 2018 andrzej.lachwa@uj.edu.pl 7/10
Generowanie podzbiorów Weźmy n-elementowy zbiór X={x 1, x 2 x n }. Każdemu podzbiorowi YX przyporządkujemy ciąg binarny b 0 b 1 b n-1 określony następująco: b i 0 : 1: x x i1 i1 Y Y Otrzymujemy wtedy wzajemnie jednoznaczną odpowiedniość pomiędzy elementami P(X) a ciągami binarnymi długości n, czyli liczbami binarnymi z przedziału [0, 2 n 1] postaci b i 2 i oznaczanymi np. jako [b n-1 b 0 ]. i = 0 n-1 Ciąg binarny stanowi wygodną reprezentację maszynową podzbioru X, a kolejne liczby binarne określą wszystkie podzbiory zbioru X.
ZADANIE Ile jest par postaci (A, B), gdzie, gdy? Wskazówka: zaproponuj odpowiednią reprezentację dla takich par!
Rozwiązanie Dla dowolnej pary (A, B) weźmy funkcję zdefiniowaną jako Każdej taka funkcja odpowiada wzajemnie jednoznacznie parze (A, B). Zatem w zbiór {0, 1, 2}., bo jest to liczba funkcji ze zbioru X
Zbiory z powtórzeniami Skończony zbiór z powtórzeniami X=<x 1, x 1, x 2, x 2, x 3, x 3, x n, x n, > k 1 k 2 k 3 k n to rodzina elementów, w której x 1 powtarza się k 1 razy, x 2 powtarza się k 2 razy, itd. aż do x n które powtarza się k n razy. Zbiór taki zapisujemy również w postaci X = <k 1 *x 1, k 2 *x 2, k 3 *x 3, k n *x n >, a liczby k 1, k 2, k n nazywamy krotnościami. Inny sposób zapisania takiego zbioru to: X = <{x 1, x 2, x 3, x n }, {(x 1, k 1 ), (x 2, k 2 ), (x n, k n )} >. Moc zbioru z powtórzeniami to suma krotności jego elementów.
Podzbiór skończonego zbioru z powtórzeniami X = <k 1 *x 1, k 2 *x 2, k n *x n > może być wyznaczony przez wektor (m 1, m 2, m n ), gdzie 0m 1 k 1, 0m 2 k 2, 0m n k n. Liczba podzbiorów skończonego zbioru z powtórzeniami o krotnościach k 1, k 2, k n jest równa (k 1 +1)( k 2 +1) (k n +1). Suma dwóch zbiorów z powtórzeniami jest tworzona przez określenie krotności każdego elementu w sumie jako maksimum krotności tego elementu w składnikach sumy. Odpowiednio dla iloczynu będzie to minimum krotności, a dla różnicy ograniczona (od dołu przez 0) różnica krotności. Przykład: <a, a, b, c> <a, b, b> = <a, a, b, b, c>
W przypadku zbiorów z powtórzeniami można również mówić o krotnościowej sumie zbiorów, w której krotność elementu to suma algebraiczna krotności tego elementu w składnikach. Przykład: <a, a, b, c> < a, b, b> = <a, a, a, b, b, b, c> Zadanie Dwoje urzędników dostało 10 notesów, 16 zeszytów i 14 pisaków. Na ile sposobów mogą podzielić się tymi przedmiotami tak, by nie został żaden przedmiot i aby każdy coś dostał? Rozwiązanie Każdy podział odpowiada podzbiorowi zbioru z powtórzeniami. Jeden urzędnik dostaje ten podzbiór, a drugi pozostałe przedmioty. Sposobów podziału jest zatem tyle, co podzbiorów zbioru z powtórzeniami (zbioru notesów, zeszytów i pisaków): (10+1)(16+1)(14+1)=2805.
Podwójna silnia Definicje: 1!! = 1, (2n 1)!! = (2n 1) (2n 3)!! 2!! = 2, (2n)!! = (2n) (2n 2)!! Przykłady 5!! = 1 3 5 6!! = 2 4 6 Lemat (n 1)!! (2n)!! = n!
Zliczanie relacji Ile jest różnych relacji binarnych określonych na skończonym zbiorze X? Każda taka relacja jest podzbiorem XX. Jeśli zbiór X ma n elementów, to zbiór X 2, ma nn elementów (z zasady mnożenia). Różnych relacji jest tyle, co różnych podzbiorów X 2, czyli 2 nn. Każdą relację na X można przedstawić w postaci kwadratowej tablicy, a liczba relacji to liczba możliwych układów jedynek w takiej tablicy. A jeśli chcielibyśmy policzyć tylko relacje zwrotne? Każda relacja zwrotna ma jedynki na przekątnej, w pozostałych miejscach mogą być zera lub jedynki. Tych pozostałych miejsc jest n 2 n, więc relacji zwrotnych jest 2 n(n-1).
Ile jest różnych relacji symetrycznych? Relacja symetryczna ma dowolnie wypełnione pole na przekątnej i pod przekątną. Nad przekątną musi się znaleźć lustrzane odbicie układu pod przekątną. Relację symetryczną możemy więc określić wpisując jedynki albo zera do n(n+1)/2 pól; relacji takich jest więc 2 n(n+1)/2. Ile jest relacji równoważności? Każda taka relacja to podział na bloki (klasy abstrakcji). Liczba podziałów zbioru n-elementowego na k bloki to tzw. liczba Stirlinga drugiego rodzaju. Liczba wszystkich podziałów zbioru n-elementowego (liczba wszystkich relacji równoważności) to tzw. liczba Bella. Jest to suma n-tego wiersza trójkąta Stirlinga dla podziałów. Por. wykład 11/14.
WARIACJE Ciąg k-elementowy o wyrazach ze zbioru n-elementowego nazywa się k-wyrazową wariacją tego zbioru. Ciąg k-elementowy, którego wyrazy nie powtarzają się, nazywa się k-wyrazową wariacją bez powtórzeń. Liczba k-wyrazowych wariacji zbioru n-elementowego wynosi n k. Liczba k-wyrazowych wariacji bez powtórzeń zbioru n-elementowego, dla n k, wynosi n k = n (n-1) (n-k+1). Zamiast mówić o ciągach bez powtórzeń można mówić o funkcjach różnowartościowych. Weźmy więc zbiór k elementowy X i zbiór n elementowy Y oraz wszystkie różnowartościowe funkcje z X do Y. Każda taka funkcja odpowiada wariacji bez powtórzeń. UwagaL Dla k>n nie ma takich funkcji.
Przykład W zawodach punktuje się 6 pierwszych miejsc. Startuje 21 drużyn, w tym drużyna polska. Ile może być wyników zawodów? A ile wyników, gdy Polska zajmuje jedno z punktowanych miejsc? Rozwiązanie Wynik może być reprezentowany 6-elementowym ciągiem nazw drużyn zajmujących miejsca od pierwszego do szóstego. W przypadku pierwszego pytania, takich ciągów może być p 1 =212019181716. W przypadku drugiego pytania, przyjmujemy, że jedno z sześciu miejsc punktowanych jest już zajęte przez drużynę polską. Na pierwsze wolne miejsce w tym ciągu możemy wstawić jedną z 20 pozostałych drużyn, na drugie wolne jedną z 19 pozostałych drużyn, itd. Zatem liczba możliwych wyników p 2 =2019181716.
ROZMIESZCZENIA UPORZĄDKOWANE Ile jest różnych możliwych rozmieszczeń uporządkowanych k elementów w n pudełkach? Pierwszy element możemy umieścić na n sposobów. Drugi albo w pustym pudełku, których jest n-1, albo w pudelku z pierwszym elementem na dwa sposoby (przed nim lub po nim); czyli łącznie na n+1 sposobów. Jak już umieściliśmy w pudełkach i-1 elementów, to w kolejnych pudełkach znajduje się i 1, i 2, i n elementów oraz i 1 + i 2 + + i n = i 1. Element i-ty możemy włożyć do pierwszego pudełka na i 1 +1 sposobów, do drugiego na i 2 +1 sposobów, itd. Łącznie na (i 1 +1)+(i 2 +1)+ +(i n +1) = n+i 1 sposobów. Liczba rozmieszczeń uporządkowanych k elementów w n pudełkach wynosi n(n+1) (n +2) (n+k 1) = k n.
ROZMIESZCZANIA NIEUPORZĄDKOWANE (wersja 1) Sposobów rozmieszczenia n identycznych przedmiotów w k rozróżnialnych pudełkach jest ( n+k 1 k 1 ). (wersja 2) Liczba sposobów wyboru zbioru n przedmiotów (dopuszczalne są powtórzenia) k rozróżnialnych typów wynosi ( n+k 1 k 1 ). Uwaga! Porównaj przykład z deserami złożonymi z 5 kulek lodów o 3 smakach.
Zadanie W sali banku są czynne 3 okienka. Na ile sposobów 23 klientów może ustawić się w kolejkach do tych okienek? Zadanie Na ile sposobów można wybrać 10 cukierków w trzech smakach? Zadanie Na ile sposobów możemy pokolorować graf o p ponumerowanych wierzchołkach farbami w r kolorach? Zadanie Ile jest różnych n-cyfrowych liczb naturalnych? UWAGA: We wszystkich tych zadaniach zacznij od wskazania takiej reprezentacji, dla której można będzie zaproponować odpowiedni wzór!
ZADANIA Z KARTAMI: POKER Talia kart składa się z 4 kolorów zwanych trefl, karo, kier i pik. Każdy kolor składa się z 13 kart: 2, 3, 4, 5, 6, 7, 8, 9, 10, W, D, K, A. Układ kart w ręce (figura) jest zbiorem (!!!) 5 kart z talii 52 kart. Kolejność wyboru kart nie jest istotna. Rodzaje figur: poker królewski to 10,W,D,K,A w jednym kolorze poker to sekwens w jednym kolorze nie będący pokerem królewskim (sekwens to 5 kolejnych kart, przy czym as może stać przed dwójką lub za królem) czwórka to układ zawierający 4 karty tej samej wysokości, np. DDDD ful to 3 karty tej samej wysokości i 2 karty tej samej wysokości
kolor to 5 kart w jednym kolorze nie tworzących ani pokera królewskiego, ani pokera strit to sekwens nie będący ani pokerem, ani pokerem królewskim trójka to 3 karty tej samej wysokości, czwarta innej i piąta jeszcze innej dwie pary to 2 karty tej samej wysokości, 2 karty innej, lecz między sobą tej samej wysokości, i piąta karta jeszcze innej wysokości para to 2 karty tej samej wysokości, pozostałe dowolne ale łącznie nie tworzące żadnego z wymienionych wyżej rodzajów układów zerówka to układ, który nie jest żadnego z powyższych rodzajów. Powyższa kolejność jest odwrotna do szansy otrzymania figury danego rodzaju.
1. Ile jest układów kart w pokerze? Pokaż, że jest to 2 598 960. 2. Ile układów, to fule? Trochę wcześniej wprowadziliśmy pojęcie typ 4 4 fula. I pokazaliśmy, że jest tych układów dla jednego typu oraz 3 2 1312 różnych typów. Zatem 24156 = 3744 możliwości. Zakładając, że każdy układ jest jednakowo prawdopodobny i przyjmując, że prawdopodobieństwo zdarzenia to iloraz liczby zdarzeń elementarnych sprzyjających zdarzeniu przez liczbę wszystkich możliwych zdarzeń elementarnych, prawdopodobieństwo wyciągnięcia fula to 3744/2598960 = 0.001440 czyli około 1,5 promila. Policz prawdopodobieństwa pozostałych rodzajów figur w pokerze!
Współczynniki dwumianowe Przypomnijmy: współczynnik dwumianowy to liczba k-elementowych podzbiorów zbioru n-elementowego, tzn.. Nazwa "współczynniki dwumianowe" bierze się stąd, że pojawiają się one w rozwinięciu dwumianu. Twierdzenie o liczbie podzbiorów Gdyby była istotna kolejność elementów w podzbiorach, to mielibyśmy do czynienia z k-elementowymi wariacjami, więc byłoby ich n k. Jednak każdy k-elementowy podzbiór można uporządkować na k! sposobów, zatem mamy k n n nn 1 n k 1 n!. k k! k! n k! k!
Lematy Reguła symetrii, dla,, dla,, dla nk0,, dla REGUŁA DODAWANIA Reguła ta stanowi fundament dla rekurencyjnej procedury obliczania współczynników dwumianowych: dla mamy
Dowody lematów Pierwszy punkt jest natychmiastową konsekwencją faktu, że dowolny zbiór n-elementowy ma tylko jeden 0-elementowy podzbiór podzbiór pusty i tylko jeden podzbiór n-elementowy cały zbiór. Drugi punkt jest oczywisty, jako że zbiór n-elementowy nie może mieć podzbiorów o k elementach, gdy k>n. Dla dowodu trzeciego punktu, zauważmy jedynie, że podzbiorów jednoelementowych jest dokładnie tyle ile elementów w zbiorze. Dowód reguły symetrii Wreszcie dla dowodu ostatniego punktu załóżmy, że. Wtedy funkcja jest bijekcją. Innymi słowy, zamiast wybierać k elementów ze zbioru X można odrzucić n k elementów.
Dowód reguły dodawania (interpretacja kombinatoryczna) Załóżmy, że. Wtedy, po usunięciu ze zbioru Z elementu a dostajemy (n 1)-elementowy zbiór Z. Oczywiście wszystkie k-elementowe podzbiory zbioru Z można podzielić na dwa typy: albo mają w sobie element a, albo go nie mają. Każdy podzbiór pierwszego typu, czyli takie, że jest jednoznacznie wyznaczony przez swoje pozostałe (k 1)-elementów ze zbioru Z. Takich możliwości jest n 1 k 1 W drugim przypadku są to k-elementowe podzbiory (n 1)-elementowego zbioru Z'. Jest więc ich dokładnie. A zatem.
Trójkąt Pascala bazuje na regule dodawania i ustawia współczynniki w następujący sposób: wiersze trójkąta numerowane są kolejnymi liczbami naturalnymi 0,1..., w każdym z wierszy trójkąta występuje dokładnie kolejno. liczb i są to Przesunięcie w wierszach, pozwala wyliczyć dwu liczb stojących bezpośrednio nad. jako sumę
Reguła sumowania po górnym indeksie (sumowanie po przekątnej trójkąta Pascala) Dla mamy 1 1 1 1 2 1 1 3 3 1 1 4 6 4 1 1 5 10 10 5 1 1 6 15 20 15 6 1 1 7 21 35 35 21 7 1
Reguła sumowania równoległego (sumowanie po drugiej przekątnej) Dla mamy: 1 1 1 1 2 1 1 3 3 1 1 4 6 4 1 1 5 10 10 5 1 1 6 15 20 15 6 1 1 7 21 35 35 21 7 1
Tożsamość Cauchy'ego (splot Vandermonde'a) Dla liczb naturalnych mamy: Twierdzenie o dwumianie (wyjaśnia pochodzenie nazwy) Dla i mamy Przykłady
Lemat 1 Dla dowolnego n0 mamy. Lemat 2 Dla dowolnego n0 mamy. Lemat 3 Dla dowolnego n0 mamy. (Uwaga: )
Zadania 1. Policz 11 4 wykorzystując współczynniki dwumianowe. 2. Niech n>0, 0 k n. Dla jakich k wartość jest największa? 3. Udowodnij własność sześciokąta ( n 1 k 1) ( n k + 1) ( n+ 1 k ) = ( n 1 k ) ( n+ 1 k + 1) ( n k 1)
Sumy częściowe Umiemy już policzyć wartość sumy całego wiersza w trójkącie Pascala i wartość naprzemiennej sumy całego wiersza. W praktyce często pojawia się konieczność sumowania tylko pewnego fragmentu takiego wiersza. Do tego pomocne mogłyby być sumy postaci: dla, gdyby miały postać zwartą! Niestety nie jest znana żadna zwarta postać (*).
Druga suma, czyli naprzemienna częściowa suma (**) wiersza trójkąta Pascala ma postać zwartą. Wyprowadzenie takiej postaci odwołuje się do uogólnienia współczynnika dwumianowego na dowolne rzeczywiste indeksy górne, i dowolne całkowite indeksy dolne. Pomijamy to wyprowadzenie i przedstawiamy wzór na postać zwartą dla liczb naturalnych: dla naturalnych r, m: 0 m r. Zadanie Policz na dwa sposoby sumę częściową dla m=2.
Mamy również wzór na zwartą postać modyfikacji sumy (**) polegającej na wymnożeniu każdego składnika przez jego odległość od środka trójkąta Pascala. Dla zachodzi 1 2 1 ) 2 ( 0 m n m i n i n m i Np. dla n=6 i m=4 mamy sumę: 15 15 1 15 1 6 2 1 3 4 6 1) ( 3 6 0 2 6 1 1 6 2 0 6 3 oraz postać zwartą 15 6 2 5 5 6 2 1 4
Reguła odwracania Dla funkcji f, g: Z R zachodzi wtedy i tylko wtedy, gdy Zadania Obliczyć 0 1) ( k k k n. Wykazać, że n n k n k 2 2.
Zadania 1. W kolejce stoi n studentów. Wchodzą oni na egzamin w k niepustych grupach. Na ile sposobów można utworzyć te grupy? 2. Ile rozwiązań w liczbach naturalnych ma równanie x 1 +x 2 + +x k =n? 3. Na ile sposobów można ustawić n osób w kolejkach do k ponumerowanych okienek pocztowych, przy czym dopuszczamy puste kolejki (zamknięte okienka). 4. Ile jest rosnących funkcji odwzorowujących zbiór {1,2 k} w zbiór {1,2 n}? A ile jest takich funkcji niemalejących? 5. Na ile sposobów można rozmieścić 6 przedmiotów w trzech różnych pojemnikach tak, by w każdym były dokładnie dwa przedmioty?