Uniwersytet Kazimierza Wielkiego w Bydgoszczy Zespół Szkół nr 5 Mistrzostwa Sportowego XV Liceum Ogólnokształcące w Bydgoszczy

Wielkość: px
Rozpocząć pokaz od strony:

Download "Uniwersytet Kazimierza Wielkiego w Bydgoszczy Zespół Szkół nr 5 Mistrzostwa Sportowego XV Liceum Ogólnokształcące w Bydgoszczy"

Transkrypt

1 Uniwersytet Kazimierza Wielkiego w Bydgoszczy Zespół Szkół nr 5 Mistrzostwa Sportowego XV Liceum Ogólnokształcące w Bydgoszczy Matematyka, królowa nauk Edycja X - etap 2 Bydgoszcz, 16 kwietnia 2011

2 Fordoński Turniej Wiedzy Algorytmicznej Edycja X - kwiecień 2011 etap 2 Zadanie 1 Kalkulator adresów IP 8pkt Każdy komputer w sieci otrzymuje unikatowy numer zwany adresem IP. Adres IP w wersji podstawowej (IPv4) jest czterobajtową liczbą, którą zapisuje się w postaci kropkowo-dziesiętnej, tzn. takiej, w której każdy kolejny bajt oddzielony jest kropką, np Możliwe adresy IP mieszczą się w przedziale od do (część adresów z tego przedziału jest zarezerwowana) i w celu uporządkowania podzielone zostały na klasy przedstawione poniżej: Klasa A maksymalna liczba sieci w klasie 126 Klasa B maksymalna liczba sieci w klasie Klasa C maksymalna liczba sieci w klasie Klasa D Klasa E Dwie ostanie klasy adresów IP zarezerwowane są m. in. do celów eksperymentalnych. Nie należy używać także adresów oraz Na podstawie adresu IP i maski można w prosty sposób określić numer komputera w sieci. Dla przykładu, wyznaczmy numer sieci i numer komputera w sieci o adresie IP klasy B: i masce W tym celu należy kolejne liczby adresu IP i maski zamienić z systemu dziesiątkowego na system dwójkowy, co najłatwiej zapisać w dwuwierszowej tabeli: IP maska Odczytując cyfry numeru IP odpowiadające jedynkom w masce, otrzymujemy adres sieci: , czyli w postaci dziesiętnej: Numer komputera w sieci odczytujemy z cyfr IP, którym odpowiadają zera w masce, czyli 11001, co w postaci dziesiętnej daje liczbę 25. Jeśli znamy adres IP dowolnego komputera z danej sieci, możemy również w bardzo prosty sposób obliczyć adres rozgłoszeniowy (broadcast). Wystarczy do adresu sieci dodać zanegowany (każda jedynka w adresie jest zamieniona na zero, a zero na jedynkę) adres maski sieci. Obliczmy adres rozgłoszeniowy sieci z poprzedniego przykładu o numerze: : adres sieci zanegowany adres maski adres rozgłoszeniowy str. 2 Otrzymaliśmy więc adres rozgłoszeniowy: , czyli w postaci dziesiętnej: Twoje zadanie polega na napisaniu programu obliczającego na podstawie adresu IP (np ) i maski (np ) podawanych w postaci kropkowo-dziesiętnej: adresu sieci (zgodnie z powyższym przykładem: ) - (2 pkt), numeru komputera w tej sieci (zgodnie z powyższym przykładem: 12) - (1 pkt), zanegowanego adresu maski (zgodnie z powyższym przykładem: ) - (1 pkt), adresu rozgłoszeniowego (zgodnie z powyższym przykładem: ) - (3 pkt). Ponadto program powinien określić, do jakiej klasy należy podany przez użytkownika adres IP (zgodnie z powyższym przykładem: klasa C) - (1 pkt).

3 Edycja X kwiecień 2011 etap 2 Fordoński Turniej Wiedzy Algorytmicznej Zadanie 2 Liczby bliźniacze 6pkt Liczby pierwsze to liczby naturalne, które mają dokładnie dwa dzielniki naturalne: jedynkę i samą siebie, np. 2, 3, 5, 7, 11, 13, 17, 19, 23, 29, 31, 37, 41, 43, 47, 53, 59, 61, 67, 71, 73, 79, itp. Liczby naturalne większe od 1, które mają więcej niż dwa dzielniki, ale ilość ich dzielników jest skończona, nazywa się liczbami złożonymi. Liczby 0 i 1 nie są ani pierwsze, ani złożone, ponieważ liczba 0 ma nieskończenie wiele dzielników, a liczba 1 ma tylko jeden dzielnik. Liczby bliźniacze to takie dwie liczby pierwsze, których różnica wynosi 2, np. 3 i 5, 5 i 7, 11 i 13, itd. Liczba 5 jest bliźniacza zarówno z 3 jak i z 7. Twoje zadanie polega na napisaniu programu wypisującego wszystkie liczby bliźniacze mniejsze od Liczb takich jest 61. Punkty możesz otrzymać za: skonstruowanie algorytmu wyszukującego liczby pierwsze - (3 pkt), wypisanie wszystkich 61 par liczb bliźniaczych mniejszych od (3 pkt), BRUDNOPIS: str. 3

4 Fordoński Turniej Wiedzy Algorytmicznej Edycja X - kwiecień 2011 etap 2 Zadanie 3 Symbole i wzór Newtona 8pkt Silnią liczby naturalnej n>1 nazywamy iloczyn wszystkich liczb naturalnych od 1 do n włącznie i oznaczamy ją wykrzyknikiem, czyli!=1 2 3, >1. Ponadto przyjmuje się, że: 0! = 1 i 1! = 1. Popatrz jak oblicza się silnię liczby 6: 6!= =720. Symbol Newtona (czytamy n nad k ) określamy następująco:! =, np.!! 4 2 = 4! 2! 4 2! = = ! =24 4 =6! =! 0! =1,! = 0 0!! =1 Za pomocą symboli Newtona można ułożyć trójkąt Pascala. Jeżeli numerację wierszy i numerację elementów każdego wiersza rozpoczynamy od 0, to wówczas jest elementem trójkąta Pascala stojącym w n-tym wierszu na k-tej pozycji. Otrzymujemy więc trójkąt Pascala przedstawiony po stronie prawej, który po wykonaniu obliczeń z zastosowaniem wzoru =!!! daje nam trójkąt przedstawiony poniżej Zwróć uwagę, że każdy element nie stojący na brzegu wiersza trójkąta jest równy sumie dwóch najbliższych elementów poprzedniego wiersza, np. patrząc na przedostatni wiersz mamy: 5 = 1 + 4, 10 = 4 + 6, 10 = 6 + 4, 5 = Dla każdej liczby naturalnej n oraz dowolnych liczb rzeczywistych a i b prawdziwa jest równość: + = zwana wzorem Newtona, np. + = = = = str. 4

5 Edycja X kwiecień 2011 etap 2 Fordoński Turniej Wiedzy Algorytmicznej Otrzymaliśmy więc jeden ze wzorów zwanych wzorami skróconego mnożenia: + = Analogicznie, dla n = 0, 1, 2, 3 otrzymujemy: + =1 + =+ + = = Zwróć uwagę, że współczynniki wielomianów stanowiących rozwinięcie tych potęg tworzą trójkąt Pascala, np. dla n = 3 mamy współczynniki 1, 3, 3, 1 czyli czwarty wiersz trójkąta Pascala. Twoje zadanie polega na napisaniu programu wyznaczającego wzór skróconego mnożenia dla n określonego przez użytkownika z wykorzystaniem trójkąta Pascala, symbolu Newtona i wzoru Newtona. Punkty możesz otrzymać za: skonstruowanie algorytmu obliczającego silnię - (2 pkt), prawidłowe zastosowanie symboli Newtona - (2 pkt), prawidłowe zastosowanie wzoru Newtona lub trójkąta Pascala - (2 pkt), prawidłowe wyznaczenie właściwego wzoru skróconego mnożenia - (2 pkt). BRUDNOPIS: str. 5

6 Fordoński Turniej Wiedzy Algorytmicznej Edycja X - kwiecień 2011 etap 2 Zadanie 4 Rozwinięcie Laplace'a 8pkt Macierz (ang. matrix) jest złożonym tworem matematycznym, którego dokładna definicja jest dosyć skomplikowana. Na nasze potrzeby wystarczy przyjąć, iż macierz jest tablicą dwuwymiarową przechowującą wiele wartości. Macierz przechowuje dane w wierszach i kolumnach. Ilość wierszy i kolumn macierzy nazywamy jej wymiarami. Poszczególne elementy macierzy są numerowane wg wierszy i kolumn, w których się znajdują. Dzięki numeracji możemy określić położenie każdego elementu macierzy. Poniżej przedstawiona jest macierz o wymiarach 3x4 wypełniona wartościami symbolicznymi oraz macierz wypełniona przykładowymi wartościami liczbowymi: = 5 = Łatwo więc określić wartość każdego elementu macierzy, np. a 2,3 = 7. Jeśli ilość wierszy i kolumn w macierzy jest taka sama, to mówimy, iż macierz jest macierzą kwadratową. Jeśli jeden z wymiarów macierzy (wiersze lub kolumny) równy jest 1, to macierz nazywamy wektorem odpowiednio wierszowym lub kolumnowym (popatrz na poniższy opis): macierz kwadratowa:, wektory: wierszowy: i kolumnowy:. Wyznacznik n-tego stopnia (ang. determinant) macierzy kwadratowej A o wymiarach n x n jest liczbą, którą obliczamy rekurencyjnie. Jeśli n = 1, to wyznacznik macierzy jest równy wartości elementu tej macierzy, czyli: det A 1x1 = det [ a 1 ] = a 1. Dla n > 1 wybieramy dowolny wiersz lub kolumnę. Następnie każdy wyraz tego wiersza lub kolumny przemnażamy przez wyznacznik macierzy, która powstaje przez usunięcie wiersza i kolumny z mnożonym wyrazem (wyznacznik ten obliczamy rekurencyjnie tą samą metodą). Jeśli suma numeru wiersza i kolumny mnożonego wyrazu jest nieparzysta, to otrzymany iloczyn mnożymy dodatkowo przez (-1). Wyliczone iloczyny sumujemy otrzymując wartość wyznacznika. Sposób ten nosi nazwę metody Laplace'a. Rozwinięcie Laplace'a można przedstawić za pomocą wzoru: = 1 gdzie: A - macierz kwadratowa o rozmiarze n, której wyznacznik liczymy i - ustalony wiersz macierzy A, wg którego dokonujemy rozwinięcia Laplace'a j - kolejne numery kolumn w macierzy A a i,j - element macierzy A leżący w i-tym wierszu i j-tej kolumnie M i,j - minor elementu a i,j - jest to wyznacznik macierzy powstałej z A po usunięciu z niej i-tego wiersza i j-tej kolumny str. 6

7 Edycja X kwiecień 2011 etap 2 Fordoński Turniej Wiedzy Algorytmicznej Obliczmy więc wyznacznik 2 stopnia przykładowej macierzy (det wyznacznik macierzy): = = = =14 18= 4 Wykorzystując powyższy opis, możemy w prosty sposób obliczyć wyznacznik 3 stopnia macierzy: det = = 1 det det det, gdzie det, i obliczamy analogicznie jak w powyższym przykładzie. Obliczmy teraz wyznacznik 3 stopnia przykładowej macierzy kwadratowej: = 9 = = = = = = = = = 9 Twoje zadanie polega na napisaniu programu obliczającego wyznacznik stopnia określonego przez użytkownika z macierzy kwadratowej rekurencyjną metodą Laplace'a (rozwinięciem Laplace'a). str. 7

8 Fordoński Turniej Wiedzy Algorytmicznej Edycja X - kwiecień 2011 etap 2 Poniżej przedstawionych zostało kilka przykładowych wyznaczników macierzy z wynikami w celu sprawdzenia poprawności działania programu: =5, = 2, 5 7 1= 122, = Punkty możesz otrzymać za: prawidłowe zastosowanie wzoru rozwinięcia Laplace a - (4 pkt), prawidłowe utworzenie funkcji rekurencyjnej - (4 pkt). BRUDNOPIS: str. 8

15. Macierze. Definicja Macierzy. Definicja Delty Kroneckera. Definicja Macierzy Kwadratowej. Definicja Macierzy Jednostkowej

15. Macierze. Definicja Macierzy. Definicja Delty Kroneckera. Definicja Macierzy Kwadratowej. Definicja Macierzy Jednostkowej 15. Macierze Definicja Macierzy. Dla danego ciała F i dla danych m, n IN funkcję A : {1,...,m} {1,...,n} F nazywamy macierzą m n ( macierzą o m wierszach i n kolumnach) o wyrazach z F. Wartość A(i, j)

Bardziej szczegółowo

1 Zbiory i działania na zbiorach.

1 Zbiory i działania na zbiorach. Matematyka notatki do wykładu 1 Zbiory i działania na zbiorach Pojęcie zbioru jest to pojęcie pierwotne (nie definiuje się tego pojęcia) Pojęciami pierwotnymi są: element zbioru i przynależność elementu

Bardziej szczegółowo

1 Macierze i wyznaczniki

1 Macierze i wyznaczniki 1 Macierze i wyznaczniki 11 Definicje, twierdzenia, wzory 1 Macierzą rzeczywistą (zespoloną) wymiaru m n, gdzie m N oraz n N, nazywamy prostokątną tablicę złożoną z mn liczb rzeczywistych (zespolonych)

Bardziej szczegółowo

PODSTAWY AUTOMATYKI. MATLAB - komputerowe środowisko obliczeń naukowoinżynierskich - podstawowe operacje na liczbach i macierzach.

PODSTAWY AUTOMATYKI. MATLAB - komputerowe środowisko obliczeń naukowoinżynierskich - podstawowe operacje na liczbach i macierzach. WYDZIAŁ ELEKTROTECHNIKI I AUTOMATYKI Katedra Inżynierii Systemów Sterowania PODSTAWY AUTOMATYKI MATLAB - komputerowe środowisko obliczeń naukowoinżynierskich - podstawowe operacje na liczbach i macierzach.

Bardziej szczegółowo

Krótkie wprowadzenie do macierzy i wyznaczników

Krótkie wprowadzenie do macierzy i wyznaczników Radosław Marczuk Krótkie wprowadzenie do macierzy i wyznaczników 12 listopada 2005 1. Macierze Macierzą nazywamy układ liczb(rzeczywistych, bądź zespolonych), funkcji, innych macierzy w postaci: A a 11

Bardziej szczegółowo

Wyznaczniki. Mirosław Sobolewski. Wydział Matematyki, Informatyki i Mechaniki UW. 6. Wykład z algebry liniowej Warszawa, listopad 2013

Wyznaczniki. Mirosław Sobolewski. Wydział Matematyki, Informatyki i Mechaniki UW. 6. Wykład z algebry liniowej Warszawa, listopad 2013 Wyznaczniki Mirosław Sobolewski Wydział Matematyki, Informatyki i Mechaniki UW 6. Wykład z algebry liniowej Warszawa, listopad 2013 Mirosław Sobolewski (UW) Warszawa, listopad 2013 1 / 13 Terminologia

Bardziej szczegółowo

Wstęp do informatyki- wykład 1 Systemy liczbowe

Wstęp do informatyki- wykład 1 Systemy liczbowe 1 Wstęp do informatyki- wykład 1 Systemy liczbowe Treści prezentowane w wykładzie zostały oparte o: S. Prata, Język C++. Szkoła programowania. Wydanie VI, Helion, 2012 www.cplusplus.com Jerzy Grębosz,

Bardziej szczegółowo

Jarosław Wróblewski Matematyka Elementarna, zima 2014/15

Jarosław Wróblewski Matematyka Elementarna, zima 2014/15 Ćwiczenia 0.10.014 Powtórka przed sprawdzianem nr 1. Wzory skróconego mnożenia dwumian Newtona procenty. Postęp arytmetyczny i geometryczny. Ćwiczenia 138.10.014 Sprawdzian nr 1: 1.10.014 godz. 8:15-8:40

Bardziej szczegółowo

Ćwiczenia z arytmetyki komputera Budowa adresu IP

Ćwiczenia z arytmetyki komputera Budowa adresu IP Ćwiczenia z arytmetyki komputera Budowa adresu IP Rozmiar adresu IP: 4 bajty (32 bity) Adres IP jest hierarchiczny - pierwsza część określa numer sieci, a pozostałe bity - numer komputera wewnątrz tej

Bardziej szczegółowo

Samodzielnie wykonaj następujące operacje: 13 / 2 = 30 / 5 = 73 / 15 = 15 / 23 = 13 % 2 = 30 % 5 = 73 % 15 = 15 % 23 =

Samodzielnie wykonaj następujące operacje: 13 / 2 = 30 / 5 = 73 / 15 = 15 / 23 = 13 % 2 = 30 % 5 = 73 % 15 = 15 % 23 = Systemy liczbowe Dla każdej liczby naturalnej x Î N oraz liczby naturalnej p >= 2 istnieją jednoznacznie wyznaczone: liczba n Î N oraz ciąg cyfr c 0, c 1,..., c n-1 (gdzie ck Î {0, 1,..., p - 1}) taki,

Bardziej szczegółowo

Definicja macierzy Typy i właściwości macierzy Działania na macierzach Wyznacznik macierzy Macierz odwrotna Normy macierzy RACHUNEK MACIERZOWY

Definicja macierzy Typy i właściwości macierzy Działania na macierzach Wyznacznik macierzy Macierz odwrotna Normy macierzy RACHUNEK MACIERZOWY Transport, studia niestacjonarne I stopnia, semestr I Instytut L-5, Wydział Inżynierii Lądowej, Politechnika Krakowska Adam Wosatko Ewa Pabisek Czym jest macierz? Definicja Macierzą A nazywamy funkcję

Bardziej szczegółowo

Programowanie dynamiczne

Programowanie dynamiczne Programowanie dynamiczne Ciąg Fibonacciego fib(0)=1 fib(1)=1 fib(n)=fib(n-1)+fib(n-2), gdzie n 2 Elementy tego ciągu stanowią liczby naturalne tworzące ciąg o takiej własności, że kolejny wyraz (z wyjątkiem

Bardziej szczegółowo

RACHUNEK MACIERZOWY. METODY OBLICZENIOWE Budownictwo, studia I stopnia, semestr 6. Instytut L-5, Wydział Inżynierii Lądowej, Politechnika Krakowska

RACHUNEK MACIERZOWY. METODY OBLICZENIOWE Budownictwo, studia I stopnia, semestr 6. Instytut L-5, Wydział Inżynierii Lądowej, Politechnika Krakowska RACHUNEK MACIERZOWY METODY OBLICZENIOWE Budownictwo, studia I stopnia, semestr 6 Instytut L-5, Wydział Inżynierii Lądowej, Politechnika Krakowska Ewa Pabisek Czym jest macierz? Definicja Macierzą A nazywamy

Bardziej szczegółowo

Adresacja IPv4 - podstawy

Adresacja IPv4 - podstawy Adresacja IPv4 - podstawy LAN LAN... MAN... LAN Internet Internet = sieć sieci Problem jak adresować urządzenia w takiej sieci? 1 Budowa adresu IP rozmiar adresu IP: 4 bajty (32 bity) Adres IP jest hierarchiczny

Bardziej szczegółowo

MATEMATYKA I SEMESTR ALK (PwZ) 1. Sumy i sumy podwójne : Σ i ΣΣ

MATEMATYKA I SEMESTR ALK (PwZ) 1. Sumy i sumy podwójne : Σ i ΣΣ MATEMATYKA I SEMESTR ALK (PwZ). Sumy i sumy podwójne : Σ i ΣΣ.. OKREŚLENIE Ciąg liczbowy = Dowolna funkcja przypisująca liczby rzeczywiste pierwszym n (ciąg skończony), albo wszystkim (ciąg nieskończony)

Bardziej szczegółowo

Rozdział 5. Macierze. a 11 a a 1m a 21 a a 2m... a n1 a n2... a nm

Rozdział 5. Macierze. a 11 a a 1m a 21 a a 2m... a n1 a n2... a nm Rozdział 5 Macierze Funkcję, która każdej parze liczb naturalnych (i,j) (i = 1,,n;j = 1,,m) przyporządkowuje dokładnie jedną liczbę a ij F, gdzie F = R lub F = C, nazywamy macierzą (rzeczywistą, gdy F

Bardziej szczegółowo

Algebra WYKŁAD 3 ALGEBRA 1

Algebra WYKŁAD 3 ALGEBRA 1 Algebra WYKŁAD 3 ALGEBRA 1 Liczby zespolone Postać wykładnicza liczby zespolonej Niech e oznacza stałą Eulera Definicja Równość e i cos isin nazywamy wzorem Eulera. ALGEBRA 2 Liczby zespolone Każdą liczbę

Bardziej szczegółowo

Wykład 4. Informatyka Stosowana. Magdalena Alama-Bućko. 25 marca Magdalena Alama-Bućko Wykład 4 25 marca / 25

Wykład 4. Informatyka Stosowana. Magdalena Alama-Bućko. 25 marca Magdalena Alama-Bućko Wykład 4 25 marca / 25 Wykład 4 Informatyka Stosowana Magdalena Alama-Bućko 25 marca 2019 Magdalena Alama-Bućko Wykład 4 25 marca 2019 1 / 25 Macierze Magdalena Alama-Bućko Wykład 4 25 marca 2019 2 / 25 Macierza wymiaru m n

Bardziej szczegółowo

dr Mariusz Grządziel 15,29 kwietnia 2014 Przestrzeń R k R k = R R... R k razy Elementy R k wektory;

dr Mariusz Grządziel 15,29 kwietnia 2014 Przestrzeń R k R k = R R... R k razy Elementy R k wektory; Wykłady 8 i 9 Pojęcia przestrzeni wektorowej i macierzy Układy równań liniowych Elementy algebry macierzy dodawanie, odejmowanie, mnożenie macierzy; macierz odwrotna dr Mariusz Grządziel 15,29 kwietnia

Bardziej szczegółowo

det[a 1,..., A i,..., A j,..., A n ] + det[a 1,..., ka j,..., A j,..., A n ] Dowód Udowodniliśmy, że: det[a 1,..., A i + ka j,..., A j,...

det[a 1,..., A i,..., A j,..., A n ] + det[a 1,..., ka j,..., A j,..., A n ] Dowód Udowodniliśmy, że: det[a 1,..., A i + ka j,..., A j,... Wykład 14 Wyznacznik macierzy cd Twierdzenie 1 Niech A będzie macierzą kwadratową i niech A i, A j będą dwiema różnymi jej kolumnami, wtedy dla dowolnego k K: det[a 1,, A i,, A j,, A n ] det[a 1,, A i

Bardziej szczegółowo

Macierze. Rozdział Działania na macierzach

Macierze. Rozdział Działania na macierzach Rozdział 5 Macierze Funkcję, która każdej parze liczb naturalnych (i, j) (i 1,..., n; j 1,..., m) przyporządkowuje dokładnie jedną liczbę a ij F, gdzie F R lub F C, nazywamy macierzą (rzeczywistą, gdy

Bardziej szczegółowo

Macierze - obliczanie wyznacznika macierzy z użyciem permutacji

Macierze - obliczanie wyznacznika macierzy z użyciem permutacji Macierze - obliczanie wyznacznika macierzy z użyciem permutacji I LO im. F. Ceynowy w Świeciu Radosław Rudnicki joix@mat.uni.torun.pl 17.03.2009 r. Typeset by FoilTEX Streszczenie Celem wykładu jest wprowadzenie

Bardziej szczegółowo

5. Rozwiązywanie układów równań liniowych

5. Rozwiązywanie układów równań liniowych 5. Rozwiązywanie układów równań liniowych Wprowadzenie (5.1) Układ n równań z n niewiadomymi: a 11 +a 12 x 2 +...+a 1n x n =a 10, a 21 +a 22 x 2 +...+a 2n x n =a 20,..., a n1 +a n2 x 2 +...+a nn x n =a

Bardziej szczegółowo

O MACIERZACH I UKŁADACH RÓWNAŃ

O MACIERZACH I UKŁADACH RÓWNAŃ O MACIERZACH I UKŁADACH RÓWNAŃ Problem Jak rozwiązać podany układ równań? 2x + 5y 8z = 8 4x + 3y z = 2x + 3y 5z = 7 x + 8y 7z = Definicja Równanie postaci a x + a 2 x 2 + + a n x n = b gdzie a, a 2, a

Bardziej szczegółowo

Macierz o wymiarach m n. a 21. a 22. A =

Macierz o wymiarach m n. a 21. a 22. A = Macierze 1 Macierz o wymiarach m n A = a 11 a 12 a 1n a 21 a 22 a 2n a m1 a m2 a mn Mat m n (R) zbiór macierzy m n o współczynnikach rzeczywistych Analogicznie określamy Mat m n (Z), Mat m n (Q) itp 2

Bardziej szczegółowo

Transponowanie macierzy Mnożenie macierzy Potęgowanie macierzy Wyznacznik macierzy

Transponowanie macierzy Mnożenie macierzy Potęgowanie macierzy Wyznacznik macierzy Transponowanie macierzy Mnożenie macierzy Potęgowanie macierzy Wyznacznik macierzy Problem Transponować macierz A m n na A T n m. Operacja transponowania macierzy polega na zamianie wierszy w kolumny i

Bardziej szczegółowo

Podstawą w systemie dwójkowym jest liczba 2 a w systemie dziesiętnym liczba 10.

Podstawą w systemie dwójkowym jest liczba 2 a w systemie dziesiętnym liczba 10. ZAMIANA LICZB MIĘDZY SYSTEMAMI DWÓJKOWYM I DZIESIĘTNYM Aby zamienić liczbę z systemu dwójkowego (binarnego) na dziesiętny (decymalny) należy najpierw przypomnieć sobie jak są tworzone liczby w ww systemach

Bardziej szczegółowo

a 11 a a 1n a 21 a a 2n... a m1 a m2... a mn x 1 x 2... x m ...

a 11 a a 1n a 21 a a 2n... a m1 a m2... a mn x 1 x 2... x m ... Wykład 15 Układy równań liniowych Niech K będzie ciałem i niech α 1, α 2,, α n, β K. Równanie: α 1 x 1 + α 2 x 2 + + α n x n = β z niewiadomymi x 1, x 2,, x n nazywamy równaniem liniowym. Układ: a 21 x

Bardziej szczegółowo

Metody i analiza danych

Metody i analiza danych 2015/2016 Metody i analiza danych Macierze Laboratorium komputerowe 2 Anna Kiełbus Zakres tematyczny 1. Funkcje wspomagające konstruowanie macierzy 2. Dostęp do elementów macierzy. 3. Działania na macierzach

Bardziej szczegółowo

, A T = A + B = [a ij + b ij ].

, A T = A + B = [a ij + b ij ]. 1 Macierze Jeżeli każdej uporządkowanej parze liczb naturalnych (i, j), 1 i m, 1 j n jest przyporządkowana dokładnie jedna liczba a ij, to mówimy, że jest określona macierz prostokątna A = a ij typu m

Bardziej szczegółowo

Akademia Techniczno-Humanistyczna w Bielsku-Białej

Akademia Techniczno-Humanistyczna w Bielsku-Białej Akademia Techniczno-Humanistyczna w Bielsku-Białej Wydział Budowy Maszyn i Informatyki Laboratorium z sieci komputerowych Ćwiczenie numer: 2 Temat ćwiczenia: Maska sieci, podział sieci na podsieci. 1.

Bardziej szczegółowo

Wstęp do informatyki- wykład 1

Wstęp do informatyki- wykład 1 MATEMATYKA 1 Wstęp do informatyki- wykład 1 Systemy liczbowe Treści prezentowane w wykładzie zostały oparte o: S. Prata, Język C++. Szkoła programowania. Wydanie VI, Helion, 2012 www.cplusplus.com Jerzy

Bardziej szczegółowo

Akademia Górniczo-Hutnicza im. Stanisława Staszica w Krakowie Olimpiada O Diamentowy Indeks AGH 2017/18. Informatyka Etap III

Akademia Górniczo-Hutnicza im. Stanisława Staszica w Krakowie Olimpiada O Diamentowy Indeks AGH 2017/18. Informatyka Etap III Akademia Górniczo-Hutnicza im. Stanisława Staszica w Krakowie Olimpiada O Diamentowy Indeks AGH 017/18 Informatyka Etap III Zadania po 17 punktów Zadanie 1 Dla pewnej N-cyfrowej liczby naturalnej obliczono

Bardziej szczegółowo

ALGEBRA LINIOWA. Wykład 2. Analityka gospodarcza, sem. 1. Wydział Zarządzania i Ekonomii Politechnika Gdańska

ALGEBRA LINIOWA. Wykład 2. Analityka gospodarcza, sem. 1. Wydział Zarządzania i Ekonomii Politechnika Gdańska ALGEBRA LINIOWA Wykład 2 Analityka gospodarcza, sem 1 Wydział Zarządzania i Ekonomii Politechnika Gdańska dr inż Natalia Jarzębkowska, CNMiKnO semzimowy 2018/2019 2/17 Macierze Niech M = {1, 2,, m} i N

Bardziej szczegółowo

Wykład 14. Elementy algebry macierzy

Wykład 14. Elementy algebry macierzy Wykład 14 Elementy algebry macierzy dr Mariusz Grządziel 26 stycznia 2009 Układ równań z dwoma niewiadomymi Rozważmy układ równań z dwoma niewiadomymi: a 11 x + a 12 y = h 1 a 21 x + a 22 y = h 2 a 11,

Bardziej szczegółowo

MACIERZE I WYZNACZNIKI

MACIERZE I WYZNACZNIKI Wykłady z matematyki inżynierskiej IMiF UTP 07 MACIERZ DEFINICJA. Macierza o m wierszach i n kolumnach nazywamy przyporza dkowanie każdej uporza dkowanej parze liczb naturalnych (i, j), gdzie 1 i m, 1

Bardziej szczegółowo

Macierze i Wyznaczniki

Macierze i Wyznaczniki dr Krzysztof Żyjewski MiBM; S-I 0.inż. 0 października 04 Macierze i Wyznaczniki Kilka wzorów i informacji pomocniczych: Definicja. Iloczynem macierzy A = [a ij m n, i macierzy B = [b ij n p nazywamy macierz

Bardziej szczegółowo

Zbiór liczb rzeczywistych, to zbiór wszystkich liczb - wymiernych i niewymiernych. Zbiór liczb rzeczywistych oznaczamy symbolem R.

Zbiór liczb rzeczywistych, to zbiór wszystkich liczb - wymiernych i niewymiernych. Zbiór liczb rzeczywistych oznaczamy symbolem R. Zbiór liczb rzeczywistych, to zbiór wszystkich liczb - wymiernych i niewymiernych. Zbiór liczb rzeczywistych oznaczamy symbolem R. Liczby naturalne - to liczby całkowite, dodatnie: 1,2,3,4,5,6,... Czasami

Bardziej szczegółowo

UKŁADY RÓWNAŃ LINIOWYCH

UKŁADY RÓWNAŃ LINIOWYCH Wykłady z matematyki inżynierskiej JJ, 08 DEFINICJA Układ m równań liniowych z n niewiadomymi to: ( ) a 11 x 1 + a 12 x 2 + + a 1n x n = b 1 a 21 x 1 + a 22 x 2 + + a 2n x n = b 2 a m1 x 1 + a m2 x 2 +

Bardziej szczegółowo

Własności wyznacznika

Własności wyznacznika Własności wyznacznika Rozwinięcie Laplace a względem i-tego wiersza: n det(a) = ( 1) i+j a ij M ij (A), j=1 gdzie M ij (A) to minor (i, j)-ty macierzy A, czyli wyznacznik macierzy uzyskanej z macierzy

Bardziej szczegółowo

MATEMATYKA I SEMESTR ALK (PwZ) 1. Sumy i sumy podwójne : Σ i ΣΣ

MATEMATYKA I SEMESTR ALK (PwZ) 1. Sumy i sumy podwójne : Σ i ΣΣ MATEMATYKA I SEMESTR ALK (PwZ). Sumy i sumy podwójne : Σ i ΣΣ.. OKREŚLENIE Ciąg liczbowy = Dowolna funkcja przypisująca liczby rzeczywiste pierwszym n (ciąg skończony), albo wszystkim (ciąg nieskończony)

Bardziej szczegółowo

ZASADY PODZIAŁU SIECI NA PODSIECI, OBLICZANIA ADRESÓW PODSIECI, ADRESÓW HOSTÓW I ADRESU ROZGŁOSZENIOWEGO

ZASADY PODZIAŁU SIECI NA PODSIECI, OBLICZANIA ADRESÓW PODSIECI, ADRESÓW HOSTÓW I ADRESU ROZGŁOSZENIOWEGO ZASADY PODZIAŁU SIECI NA PODSIECI, OBLICZANIA ADRESÓW PODSIECI, ADRESÓW HOSTÓW I ADRESU ROZGŁOSZENIOWEGO Wybór schematu adresowania podsieci jest równoznaczny z wyborem podziału lokalnej części adresu

Bardziej szczegółowo

4. Postęp arytmetyczny i geometryczny. Wartość bezwzględna, potęgowanie i pierwiastkowanie liczb rzeczywistych.

4. Postęp arytmetyczny i geometryczny. Wartość bezwzględna, potęgowanie i pierwiastkowanie liczb rzeczywistych. Jarosław Wróblewski Matematyka dla Myślących, 008/09. Postęp arytmetyczny i geometryczny. Wartość bezwzględna, potęgowanie i pierwiastkowanie liczb rzeczywistych. 15 listopada 008 r. Uwaga: Przyjmujemy,

Bardziej szczegółowo

Analiza matematyczna i algebra liniowa Macierze

Analiza matematyczna i algebra liniowa Macierze Analiza matematyczna i algebra liniowa Macierze Wojciech Kotłowski Instytut Informatyki Politechniki Poznańskiej email: imię.nazwisko@cs.put.poznan.pl pok. 2 (CW) tel. (61)665-2936 konsultacje: poniedziałek

Bardziej szczegółowo

W planie dydaktycznym założono 172 godziny w ciągu roku. Treści podstawy programowej. Propozycje środków dydaktycznych. Temat (rozumiany jako lekcja)

W planie dydaktycznym założono 172 godziny w ciągu roku. Treści podstawy programowej. Propozycje środków dydaktycznych. Temat (rozumiany jako lekcja) Ramowy plan nauczania (roczny plan dydaktyczny) dla przedmiotu matematyka w zakresie rozszerzonym dla klasy I liceum ogólnokształcącego uwzględniający kształcone i treści podstawy programowej W planie

Bardziej szczegółowo

Wykład 2. Informatyka Stosowana. 8 października 2018, M. A-B. Informatyka Stosowana Wykład 2 8 października 2018, M. A-B 1 / 41

Wykład 2. Informatyka Stosowana. 8 października 2018, M. A-B. Informatyka Stosowana Wykład 2 8 października 2018, M. A-B 1 / 41 Wykład 2 Informatyka Stosowana 8 października 2018, M. A-B Informatyka Stosowana Wykład 2 8 października 2018, M. A-B 1 / 41 Elementy logiki matematycznej Informatyka Stosowana Wykład 2 8 października

Bardziej szczegółowo

SIMR 2016/2017, Analiza 2, wykład 1, Przestrzeń wektorowa

SIMR 2016/2017, Analiza 2, wykład 1, Przestrzeń wektorowa SIMR 06/07, Analiza, wykład, 07-0- Przestrzeń wektorowa Przestrzeń wektorowa (liniowa) - przestrzeń (zbiór) w której określone są działania (funkcje) dodawania elementów i mnożenia elementów przez liczbę

Bardziej szczegółowo

Urządzenia Techniki. Klasa I TI. System dwójkowy (binarny) -> BIN. Przykład zamiany liczby dziesiętnej na binarną (DEC -> BIN):

Urządzenia Techniki. Klasa I TI. System dwójkowy (binarny) -> BIN. Przykład zamiany liczby dziesiętnej na binarną (DEC -> BIN): 1. SYSTEMY LICZBOWE UŻYWANE W TECHNICE KOMPUTEROWEJ System liczenia - sposób tworzenia liczb ze znaków cyfrowych oraz zbiór reguł umożliwiających wykonywanie operacji arytmetycznych na liczbach. Do zapisu

Bardziej szczegółowo

Zestaw 12- Macierz odwrotna, układy równań liniowych

Zestaw 12- Macierz odwrotna, układy równań liniowych Zestaw - Macierz odwrotna, układy równań liniowych Przykładowe zadania z rozwiązaniami Załóżmy, że macierz jest macierzą kwadratową stopnia n. Mówimy, że macierz tego samego wymiaru jest macierzą odwrotną

Bardziej szczegółowo

MACIERZE. Sobiesiak Łukasz Wilczyńska Małgorzata

MACIERZE. Sobiesiak Łukasz Wilczyńska Małgorzata MACIERZE Sobiesiak Łukasz Wilczyńska Małgorzata Podstawowe pojęcia dotyczące macierzy Nie bez przyczyny zaczynamy od pojęcia macierzy, które jest niezwykle przydatne we wszystkich zastosowaniach, obliczeniach

Bardziej szczegółowo

1 Macierz odwrotna metoda operacji elementarnych

1 Macierz odwrotna metoda operacji elementarnych W tej części skupimy się na macierzach kwadratowych. Zakładać będziemy, że A M(n, n) dla pewnego n N. Definicja 1. Niech A M(n, n). Wtedy macierzą odwrotną macierzy A (ozn. A 1 ) nazywamy taką macierz

Bardziej szczegółowo

Luty 2001 Algorytmy (7) 2000/2001 s-rg@siwy.il.pw.edu.pl

Luty 2001 Algorytmy (7) 2000/2001 s-rg@siwy.il.pw.edu.pl System dziesiętny 7 * 10 4 + 3 * 10 3 + 0 * 10 2 + 5 *10 1 + 1 * 10 0 = 73051 Liczba 10 w tym zapisie nazywa się podstawą systemu liczenia. Jeśli liczba 73051 byłaby zapisana w systemie ósemkowym, co powinniśmy

Bardziej szczegółowo

Wykład 5. Metoda eliminacji Gaussa

Wykład 5. Metoda eliminacji Gaussa 1 Wykład 5 Metoda eliminacji Gaussa Rozwiązywanie układów równań liniowych Układ równań liniowych może mieć dokładnie jedno rozwiązanie, nieskończenie wiele rozwiązań lub nie mieć rozwiązania. Metody dokładne

Bardziej szczegółowo

Struktura adresu IP v4

Struktura adresu IP v4 Adresacja IP v4 E13 Struktura adresu IP v4 Adres 32 bitowy Notacja dziesiętna - każdy bajt (oktet) z osobna zostaje przekształcony do postaci dziesiętnej, liczby dziesiętne oddzielone są kropką. Zakres

Bardziej szczegółowo

Treść wykładu. Układy równań i ich macierze. Rząd macierzy. Twierdzenie Kroneckera-Capellego.

Treść wykładu. Układy równań i ich macierze. Rząd macierzy. Twierdzenie Kroneckera-Capellego. . Metoda eliminacji. Treść wykładu i ich macierze... . Metoda eliminacji. Ogólna postać układu Układ m równań liniowych o n niewiadomych x 1, x 2,..., x n : a 11 x 1 + a 12 x 2 + + a 1n x n = b 1 a 21

Bardziej szczegółowo

Złożoność obliczeniowa zadania, zestaw 2

Złożoność obliczeniowa zadania, zestaw 2 Złożoność obliczeniowa zadania, zestaw 2 Określanie złożoności obliczeniowej algorytmów, obliczanie pesymistycznej i oczekiwanej złożoności obliczeniowej 1. Dana jest tablica jednowymiarowa A o rozmiarze

Bardziej szczegółowo

1. Napisz program, który wyświetli Twoje dane jako napis Witaj, Imię Nazwisko. 2. Napisz program, który wyświetli wizytówkę postaci:

1. Napisz program, który wyświetli Twoje dane jako napis Witaj, Imię Nazwisko. 2. Napisz program, który wyświetli wizytówkę postaci: 1. Napisz program, który wyświetli Twoje dane jako napis Witaj, Imię Nazwisko. 2. Napisz program, który wyświetli wizytówkę postaci: * Jan Kowalski * * ul. Zana 31 * 3. Zadeklaruj zmienne przechowujące

Bardziej szczegółowo

Grupy. Permutacje 1. (G2) istnieje element jednostkowy (lub neutralny), tzn. taki element e G, że dla dowolnego a G zachodzi.

Grupy. Permutacje 1. (G2) istnieje element jednostkowy (lub neutralny), tzn. taki element e G, że dla dowolnego a G zachodzi. Grupy. Permutacje 1 1 Definicja grupy Niech G będzie zbiorem. Działaniem na zbiorze G nazywamy odwzorowanie (oznaczane, jak mnożenie, przez ) przyporządkowujące każdej parze uporządkowanej (a, b) G G element

Bardziej szczegółowo

Ekoenergetyka Matematyka 1. Wykład 3.

Ekoenergetyka Matematyka 1. Wykład 3. Ekoenergetyka Matematyka Wykład 3 MACIERZE Macierzą wymiaru n m, gdzie nm, nazywamy prostokątną tablicę złożoną z n wierszy i m kolumn: a a2 a j am a2 a22 a2 j a2m [ a ] nm A ai ai 2 a aim - i-ty wiersz

Bardziej szczegółowo

Algorytmy i struktury danych. Wykład 4

Algorytmy i struktury danych. Wykład 4 Wykład 4 Różne algorytmy - obliczenia 1. Obliczanie wartości wielomianu 2. Szybkie potęgowanie 3. Algorytm Euklidesa, liczby pierwsze, faktoryzacja liczby naturalnej 2017-11-24 Algorytmy i struktury danych

Bardziej szczegółowo

macierze jednostkowe (identyczności) macierze diagonalne, które na przekątnej mają same

macierze jednostkowe (identyczności) macierze diagonalne, które na przekątnej mają same 1 Macierz definicja i zapis Macierzą wymiaru m na n nazywamy tabelę a 11 a 1n A = a m1 a mn złożoną z liczb (rzeczywistych lub zespolonych) o m wierszach i n kolumnach (zamiennie będziemy też czasem mówili,

Bardziej szczegółowo

(mniejszych od 10 9 ) podanych przez użytkownika, wypisze komunikat TAK, jeśli są to liczby bliźniacze i NIE, w przeciwnym przypadku.

(mniejszych od 10 9 ) podanych przez użytkownika, wypisze komunikat TAK, jeśli są to liczby bliźniacze i NIE, w przeciwnym przypadku. Zadanie 1 Już w starożytności matematycy ze szkoły pitagorejskiej, którzy szczególnie cenili sobie harmonię i ład wśród liczb, interesowali się liczbami bliźniaczymi, czyli takimi parami kolejnych liczb

Bardziej szczegółowo

Met Me ody numer yczne Wykład ykład Dr inż. Mic hał ha Łanc Łan zon Instyt Ins ut Elektr Elektr echn iki echn i Elektrot Elektr echn olo echn

Met Me ody numer yczne Wykład ykład Dr inż. Mic hał ha Łanc Łan zon Instyt Ins ut Elektr Elektr echn iki echn i Elektrot Elektr echn olo echn Metody numeryczne Wykład 3 Dr inż. Michał Łanczont Instytut Elektrotechniki i Elektrotechnologii E419, tel. 4293, m.lanczont@pollub.pl, http://m.lanczont.pollub.pl Zakres wykładu Pojęcia podstawowe Algebra

Bardziej szczegółowo

wagi cyfry 7 5 8 2 pozycje 3 2 1 0

wagi cyfry 7 5 8 2 pozycje 3 2 1 0 Wartość liczby pozycyjnej System dziesiętny W rozdziale opiszemy pozycyjne systemy liczbowe. Wiedza ta znakomicie ułatwi nam zrozumienie sposobu przechowywania liczb w pamięci komputerów. Na pierwszy ogień

Bardziej szczegółowo

ZADANIE 1. Rozwiązanie:

ZADANIE 1. Rozwiązanie: EUROELEKTR Ogólnopolska Olimpiada Wiedzy Elektrycznej i Elektronicznej Rok szkolny 200/20 Rozwiązania zadań dla grupy teleinformatycznej na zawody II. stopnia ZNIE ramka logiczna w technologii MOS składa

Bardziej szczegółowo

I. Podstawy języka C powtórka

I. Podstawy języka C powtórka I. Podstawy języka C powtórka Zadanie 1. Utwórz zmienne a = 730 (typu int), b = 106 (typu long long), c = 123.45 (typu double) Wypisz następujące komunikaty: Dane sa liczby: a = 730, b = 106 i c = 123.45.

Bardziej szczegółowo

0 + 0 = 0, = 1, = 1, = 0.

0 + 0 = 0, = 1, = 1, = 0. 5 Kody liniowe Jak już wiemy, w celu przesłania zakodowanego tekstu dzielimy go na bloki i do każdego z bloków dodajemy tak zwane bity sprawdzające. Bity te są w ścisłej zależności z bitami informacyjnymi,

Bardziej szczegółowo

DB Algebra liniowa semestr zimowy 2018

DB Algebra liniowa semestr zimowy 2018 DB Algebra liniowa semestr zimowy 2018 SPIS TREŚCI Teoria oraz większość zadań w niniejszym skrypcie zostały opracowane na podstawie książek: 1 G Banaszak, W Gajda, Elementy algebry liniowej cz I, Wydawnictwo

Bardziej szczegółowo

Zadanie 1. Algorytmika ćwiczenia

Zadanie 1. Algorytmika ćwiczenia Zadanie 1 Algorytmika ćwiczenia Zadanie 2 Zadanie 3 Zadanie 4 Zadanie 5 Zadanie 6 Zadanie 7 Wiązka zadań Ułamki dwójkowe W systemach pozycyjnych o podstawie innej niż 10 można zapisywać nie tylko liczby

Bardziej szczegółowo

Wykład 2. Informatyka Stosowana. 9 października Informatyka Stosowana Wykład 2 9 października / 42

Wykład 2. Informatyka Stosowana. 9 października Informatyka Stosowana Wykład 2 9 października / 42 Wykład 2 Informatyka Stosowana 9 października 2017 Informatyka Stosowana Wykład 2 9 października 2017 1 / 42 Systemy pozycyjne Informatyka Stosowana Wykład 2 9 października 2017 2 / 42 Definicja : system

Bardziej szczegółowo

Wykład 2. Informatyka Stosowana. 10 października Informatyka Stosowana Wykład 2 10 października / 42

Wykład 2. Informatyka Stosowana. 10 października Informatyka Stosowana Wykład 2 10 października / 42 Wykład 2 Informatyka Stosowana 10 października 2016 Informatyka Stosowana Wykład 2 10 października 2016 1 / 42 Systemy pozycyjne Informatyka Stosowana Wykład 2 10 października 2016 2 / 42 Definicja : system

Bardziej szczegółowo

Układy równań liniowych i metody ich rozwiązywania

Układy równań liniowych i metody ich rozwiązywania Układy równań liniowych i metody ich rozwiązywania Łukasz Wojciechowski marca 00 Dany jest układ m równań o n niewiadomych postaci: a x + a x + + a n x n = b a x + a x + + a n x n = b. a m x + a m x +

Bardziej szczegółowo

ZMIERZYĆ SIĘ Z KALKULATOREM

ZMIERZYĆ SIĘ Z KALKULATOREM ZMIERZYĆ SIĘ Z KALKULATOREM Agnieszka Cieślak Wyższa Szkoła Informatyki i Zarządzania z siedzibą w Rzeszowie Streszczenie Referat w prosty sposób przedstawia niekonwencjonalne sposoby mnożenia liczb. Tematyka

Bardziej szczegółowo

Techniki multimedialne

Techniki multimedialne Techniki multimedialne Digitalizacja podstawą rozwoju systemów multimedialnych. Digitalizacja czyli obróbka cyfrowa oznacza przetwarzanie wszystkich typów informacji - słów, dźwięków, ilustracji, wideo

Bardziej szczegółowo

Podział sieci na podsieci wytłumaczenie

Podział sieci na podsieci wytłumaczenie Podział sieci na podsieci wytłumaczenie Witam wszystkich z mojej grupy pozdrawiam wszystkich z drugiej grupy. Tematem tego postu jest podział sieci na daną ilość podsieci oraz wyznaczenie zakresów IP tychże

Bardziej szczegółowo

Jarosław Wróblewski Matematyka Elementarna, zima 2015/16

Jarosław Wróblewski Matematyka Elementarna, zima 2015/16 Na ćwiczeniach 6.0.205 omawiamy test kwalifikacyjny. Uwaga: Przyjmujemy, że 0 nie jest liczbą naturalną, tzn. liczby naturalne są to liczby całkowite dodatnie.. Sformułować uogólnione cechy podzielności

Bardziej szczegółowo

1 Wartości własne oraz wektory własne macierzy

1 Wartości własne oraz wektory własne macierzy Rozwiązania zadania umieszczonego na końcu poniższych notatek proszę przynieść na kartkach Proszę o staranne i formalne uzasadnienie odpowiedzi Za zadanie można uzyskać do 6 punktów (jeżeli przyniesione

Bardziej szczegółowo

Matematyka Dyskretna 2/2008 rozwiązania. x 2 = 5x 6 (1) s 1 = Aα 1 + Bβ 1. A + B = c 2 A + 3 B = d

Matematyka Dyskretna 2/2008 rozwiązania. x 2 = 5x 6 (1) s 1 = Aα 1 + Bβ 1. A + B = c 2 A + 3 B = d C. Bagiński Materiały dydaktyczne 1 Matematyka Dyskretna /008 rozwiązania 1. W każdym z następujących przypadków podać jawny wzór na s n i udowodnić indukcyjnie jego poprawność: (a) s 0 3, s 1 6, oraz

Bardziej szczegółowo

Zadania do wykonania. Rozwiązując poniższe zadania użyj pętlę for.

Zadania do wykonania. Rozwiązując poniższe zadania użyj pętlę for. Zadania do wykonania Rozwiązując poniższe zadania użyj pętlę for. 1. apisz program, który przesuwa w prawo o dwie pozycje zawartość tablicy 10-cio elementowej liczb całkowitych tzn. element t[i] dla i=2,..,9

Bardziej szczegółowo

FUNKCJA LINIOWA - WYKRES. y = ax + b. a i b to współczynniki funkcji, które mają wartości liczbowe

FUNKCJA LINIOWA - WYKRES. y = ax + b. a i b to współczynniki funkcji, które mają wartości liczbowe FUNKCJA LINIOWA - WYKRES Wzór funkcji liniowej (postać kierunkowa) Funkcja liniowa to funkcja o wzorze: y = ax + b a i b to współczynniki funkcji, które mają wartości liczbowe Szczególnie ważny w postaci

Bardziej szczegółowo

NIEDZIESIĄTKOWE SYSTEMY LICZENIA.

NIEDZIESIĄTKOWE SYSTEMY LICZENIA. NIEDZIESIĄTKOWE SYSTEMY LICZENIA. Inspiracją do powstania artykułu było popularne powiedzenie :,,... to jest oczywiste jak 2 x 2 jest 4. To powiedzenie pokazuje jak bardzo system dziesiętny zakorzenił

Bardziej szczegółowo

Zaprojektować i zaimplementować algorytm realizujący następujące zadanie.

Zaprojektować i zaimplementować algorytm realizujący następujące zadanie. Lista 1 Utworzenie tablicy jest równoznaczne z alokacją pamięci na elementy tablicy (utworzeniem dynamicznej tablicy). W zadaniach należy pamiętać o zwolnieniu zasobów przydzielonych na stercie. Zabronione

Bardziej szczegółowo

KOŁO MATEMATYCZNE LUB INFORMATYCZNE - klasa III gimnazjum, I LO

KOŁO MATEMATYCZNE LUB INFORMATYCZNE - klasa III gimnazjum, I LO Aleksandra Nogała nauczycielka matematyki w Gimnazjum im. Macieja Rataja w Żmigrodzie olanog@poczta.onet.pl KONSPEKT ZAJĘĆ ( 2 godziny) KOŁO MATEMATYCZNE LUB INFORMATYCZNE - klasa III gimnazjum, I LO TEMAT

Bardziej szczegółowo

Wykład 7 Macierze i wyznaczniki

Wykład 7 Macierze i wyznaczniki Wykład 7 Macierze i wyznaczniki Andrzej Sładek sladek@ux2mathusedupl Instytut Matematyki, Uniwersytet Śląski w Katowicach Andrzej Sładek (Instytut Matematyki, Uniwersytet Śląski Wykład w Katowicach) 7

Bardziej szczegółowo

Algebra liniowa z geometrią

Algebra liniowa z geometrią Algebra liniowa z geometrią Maciej Czarnecki 15 stycznia 2013 Spis treści 1 Geometria płaszczyzny 2 1.1 Wektory i skalary........................... 2 1.2 Macierze, wyznaczniki, układy równań liniowych.........

Bardziej szczegółowo

Systemy liczbowe używane w technice komputerowej

Systemy liczbowe używane w technice komputerowej Systemy liczbowe używane w technice komputerowej Systemem liczenia nazywa się sposób tworzenia liczb ze znaków cyfrowych oraz zbiór reguł umożliwiających wykonywanie operacji arytmetycznych na liczbach.

Bardziej szczegółowo

Treści programowe. Matematyka. Efekty kształcenia. Literatura. Terminy wykładów i ćwiczeń. Warunki zaliczenia. tnij.org/ktrabka

Treści programowe. Matematyka. Efekty kształcenia. Literatura. Terminy wykładów i ćwiczeń. Warunki zaliczenia. tnij.org/ktrabka Treści programowe Matematyka Katarzyna Trąbka-Więcław Elementy algebry liniowej. Macierze i wyznaczniki. Ciągi liczbowe, granica ciągu i granica funkcji, rachunek granic, wyrażenia nieoznaczone, ciągłość

Bardziej szczegółowo

Wprowadzenie do programu Mathcad 15 cz. 1

Wprowadzenie do programu Mathcad 15 cz. 1 Wpisywanie tekstu Wprowadzenie do programu Mathcad 15 cz. 1 Domyślnie, Mathcad traktuje wpisywany tekst jako wyrażenia matematyczne. Do trybu tekstowego można przejść na dwa sposoby: Zaczynając wpisywanie

Bardziej szczegółowo

do instrukcja while (wyrażenie);

do instrukcja while (wyrażenie); Instrukcje pętli -ćwiczenia Instrukcja while Pętla while (póki) powoduje powtarzanie zawartej w niej sekwencji instrukcji tak długo, jak długo zaczynające pętlę wyrażenie pozostaje prawdziwe. while ( wyrażenie

Bardziej szczegółowo

FUNKCJA LINIOWA - WYKRES

FUNKCJA LINIOWA - WYKRES FUNKCJA LINIOWA - WYKRES Wzór funkcji liniowej (Postać kierunkowa) Funkcja liniowa jest podstawowym typem funkcji. Jest to funkcja o wzorze: y = ax + b a i b to współczynniki funkcji, które mają wartości

Bardziej szczegółowo

WYRAŻENIA ALGEBRAICZNE

WYRAŻENIA ALGEBRAICZNE WYRAŻENIA ALGEBRAICZNE Wyrażeniem algebraicznym nazywamy wyrażenie zbudowane z liczb, liter, nawiasów oraz znaków działań, na przykład: Symbole literowe występujące w wyrażeniu algebraicznym nazywamy zmiennymi.

Bardziej szczegółowo

Układy równań. Kinga Kolczyńska - Przybycień 22 marca Układ dwóch równań liniowych z dwiema niewiadomymi

Układy równań. Kinga Kolczyńska - Przybycień 22 marca Układ dwóch równań liniowych z dwiema niewiadomymi Układy równań Kinga Kolczyńska - Przybycień 22 marca 2014 1 Układ dwóch równań liniowych z dwiema niewiadomymi 1.1 Pojęcie układu i rozwiązania układu Układem dwóch równań liniowych z dwiema niewiadomymi

Bardziej szczegółowo

Liczby rzeczywiste. Działania w zbiorze liczb rzeczywistych. Robert Malenkowski 1

Liczby rzeczywiste. Działania w zbiorze liczb rzeczywistych. Robert Malenkowski 1 Robert Malenkowski 1 Liczby rzeczywiste. 1 Liczby naturalne. N {0, 1,, 3, 4, 5, 6, 7, 8...} Liczby naturalne to liczby używane powszechnie do liczenia i ustalania kolejności. Liczby naturalne można ustawić

Bardziej szczegółowo

Rekurencja (rekursja)

Rekurencja (rekursja) Rekurencja (rekursja) Rekurencja wywołanie funkcji przez nią samą wewnątrz ciała funkcji. Rekurencja może być pośrednia funkcja jest wywoływana przez inną funkcję, wywołaną (pośrednio lub bezpośrednio)

Bardziej szczegółowo

Laboratorium nr 1. i 2.

Laboratorium nr 1. i 2. Laboratorium nr 1. i 2. Celem laboratorium jest zapoznanie się ze zintegrowanym środowiskiem programistycznym, na przykładzie podstawowych aplikacji z obsługą standardowego wejścia wyjścia, podstawowych

Bardziej szczegółowo

Jarosław Wróblewski Matematyka Elementarna, lato 2014/15

Jarosław Wróblewski Matematyka Elementarna, lato 2014/15 Ćwiczenia 5/6, 10, 17.03.2015 (obie grupy) 33. Połączyć podane warunki w grupy warunków równoważnych dla dowolnej liczby naturalnej n. a) liczba n jest nieparzysta b) liczba n jest względnie pierwsza z

Bardziej szczegółowo

0 --> 5, 1 --> 7, 2 --> 9, 3 -->1, 4 --> 3, 5 --> 5, 6 --> 7, 7 --> 9, 8 --> 1, 9 --> 3.

0 --> 5, 1 --> 7, 2 --> 9, 3 -->1, 4 --> 3, 5 --> 5, 6 --> 7, 7 --> 9, 8 --> 1, 9 --> 3. (Aktualizacja z dnia 3 kwietnia 2013) MATEMATYKA DYSKRETNA - informatyka semestr 2 (lato 2012/2013) Zadania do omówienia na zajęciach w dniach 21 i 28 kwietnia 2013 ZESTAW NR 3/7 (przykłady zadań z rozwiązaniami)

Bardziej szczegółowo

Funkcja kwadratowa. f(x) = ax 2 + bx + c,

Funkcja kwadratowa. f(x) = ax 2 + bx + c, Funkcja kwadratowa. Funkcją kwadratową nazywamy funkcję f : R R określoną wzorem gdzie a, b, c R, a 0. f(x) = ax 2 + bx + c, Szczególnym przypadkiem funkcji kwadratowej jest funkcja f(x) = ax 2, a R \

Bardziej szczegółowo

Programowanie 3 - Funkcje, pliki i klasy

Programowanie 3 - Funkcje, pliki i klasy Instytut Informatyki Uniwersytetu Śląskiego Laborki funkcja; parametry funkcji; typ zwracany; typ void; funkcje bez parametrów; napis.length() - jako przykład funkcji. Zadania funkcja dodająca dwie liczby;

Bardziej szczegółowo

Pracownia Komputerowa wykład IV

Pracownia Komputerowa wykład IV Pracownia Komputerowa wykład IV dr Magdalena Posiadała-Zezula http://www.fuw.edu.pl/~mposiada/pk16 1 Reprezentacje liczb i znaków! Liczby:! Reprezentacja naturalna nieujemne liczby całkowite naturalny

Bardziej szczegółowo