Metody optymalizacji - wprowadzenie do SciLab a

Wielkość: px
Rozpocząć pokaz od strony:

Download "Metody optymalizacji - wprowadzenie do SciLab a"

Transkrypt

1 Metody optymalizacji - wprowadzenie do SciLab a 1

2 Zmienne Nazwy: dozwolone nazwy zawierają znaki: od a do z, od A do Z, od 0 do 9 oraz _, #,!, $,? Operator przypisania wartości zmiennej = Przykład x=2 napis= Hello Operatory Operatory logiczne & (and), (or), ~ (not), == (operator równoważności) Operatory na łańcuchach <lancuch> + <lancuch> (połączenie) Operatory zakresu indeksów <start> : <stop> (zakres ze zmianą równą1) <start> : <krok zmiany> : <stop> Przykład hello + world 3:7 3:2:7 Zadanie 1: wypisz liczby całkowite od 10 do 1 malejąco 2

3 Macierze Definiowanie przez wprowadzenie z linii poleceń: [ oraz ] oznacza początek i koniec macierzy, oddziela elementy w wierszu ; oddziela wiersze : definiowanie zakresu Przykład a = [1,2,3] // wektor wierszowy b = [4 ; 5 ; 6] // wektor kolumnowy c = [1,2; 3,4; 5,6] // macierz 3 wiersze 2 kolumny d = [1:10] // wektor wartości od 1 do 10 e = 1:10 // wektor wartości od 1 do 10!! f = [d ; e] f = [1:10;1:10] Macierze Odwołanie się do elementów : ( oraz ) pozwala odwołać się do elementów, podając w nawiasach numer wiersza i kolumny oddzielony, : interpretowany jako cały zakres zmienności $ indeks ostatniego elementu Przykład c(2,1) c(1:2,1:2) c(1,:) c(:,1) c($,$) // 2-gi wiersz i 1-a kolumna // podmacierz // elementy 1-go wiersza // elementy 1-ej kolumny // prawy dolny element Zadanie 2: wypisz 2 pierwsze elementy macierzy c Zadanie 3: wypisz 3 ostatnie elementy macierzy c Zadanie 4: wypisz wszystkie elementy macierzy c 3

4 Macierze Odwołanie się do elementów : wybieranie elementów za pomocą macierzy wartości logicznych Przykład a=[1:5] b=sin(a) c=b>0 b(c) a(c) // macierz wartości logicznych // wybieranie // wybieranie Zadanie 5: z macierzy o wartościach całkowitych wybierz wartości większe od 7 Macierze Funkcje równomiernie zapełniające zakres linspace(a,b) liniowo od a do b (100 elementow) linspace(a,b,c) liniowo od a do b (c elementow) logspace(a,b) logarytmicznie j.w. Przykład linspace(1,100) linspace(1,100,10) g = logspace(1,3,3) log10(g) //domyslnie 100 elementow //10 elementow 4

5 Macierze Funkcje tworzące macierze specjalne ones() macierz zawierająca 1 zeros() macierz zawierająca 0 eye() macierz jednostkowa rand() macierz losowa Przykład ones(3,2) zeros(2,3) eye(4,4) rand(2,3) // macierz 3x2 // macierz 2x3 // macierz 4x4 // macierz 2x3 Macierze Funkcje tworzące macierze specjalne diag() utworzenie macierzy diagonalnej z elementów wektora lub wydobycie przekątnej z istniejącej macierzy Przykład h=[1:3] diag(h) h=rand(3,3) diag(h) // utworzenie macierzy diagonalnej // wydobycie przekątnej z macierzy 5

6 Macierze Operacje: operator transpozycji macierzy A + B dodanie dwóch macierzy +, -, *, / - dzielenie to mnożenie przez odwrotność!!!.*,./ - operacje na elementach macierzy Przykład A=[1,2,3] B=[4;5;6] A+A A+B // ERROR!!! A+B A+3 A B Macierze Przykład A * B // mnożenie w sensie Cauchy ego B * A // mnożenie w sensie Cauchy ego A * B // ERROR!!! A.* B // mnożenie element przez element A * 3 A B 6

7 Macierze Operacje (uwaga: zdefiniuj wpierw macierze) A + B = B + A // przemienność A + (B+C) = (A + B)+C // łączność I*A = A * I = A A * (B *C) = (A * B)*C // łączność A*B = B*A = I // B macierz odwrotna! Macierz osobliwa to macierz nie posiadająca macierzy odwrotnej, np. A = [1,2; 1,2] Zadania sprawdź powyższe zależności Rozwiązywanie układów równań a * x = b --> a -1 * a * x = a -1 * b Uwaga: w Scilabie możemy zapisać x = a\b!! Zadanie (rozwiązanie : x1 = 1, x2 = 2) x1 + 2x2 = 5 2x1 + x2 = 4 Program a=[1,2;2,1] b=[5;4] x=a^-1 * b x=a\b 7

8 Rozwiązywanie układów równań Zadanie x1+2x2 + 3x3 = 3 -x1-5x2 + 8x3 = 5 4x1 + 9x3 = 7 Proste wykresy Operacje: plot2d(matrix) matrix to wektor Nx1 lub 1xN (lub N x K) Program A=(0:0.1:6.28) B=sin(A) plot2d(b) 8

9 Proste wykresy Operacje: plot2d(x,y) wymaga wektorów kolumnowych! UWAGA na apostrof przy kopiowaniu z instrukcji Program x=[0:0.1:6.28] y=sin(x) plot2d(x,y) Proste wykresy Program x=[0:0.1:6.28] y=sin(x) y2=cos(x) plot2d(x,[y,y2],leg= sin@cos,style=[2,3]) xtitle( sin i cos, x, y ) 9

10 Proste wykresy Operacje: plot3d(x,y,z) Program x=linspace(0, 6.28,11) y=x z= cos(x) *cos(x) plot3d(x,y,z) Proste wykresy Zadanie: narysuj wykres funkcji f(x,y) = x 2 +y 2 x i y zmieniają się od -3 do 3 10

11 Proste wykresy Program: x=linspace(-3, 3,50) y=linspace(-3, 3, 50) xx=x' * ones(y) yy=ones(x)'*y z= (xx.*xx)+(yy.*yy) plot3d(x,y,z) Proste wykresy Operacje: param3d(x,y,z) wykres trajektorii Program t=linspace(0,4*%pi,101) x=2*cos(t) y=2*sin(t) z=4*t xset("thickness",3) param3d(x,y,z) xset("thickness",1) param3d(x,y,zeros(z)) 11

12 Funkcje Program cz. 1 function y = kwadrat (x) y = x * x endfunction function z = kwadrat2 (x1,x2) z = x1^2 + x2^2 endfunction Wykresy 2D Operacje: plot(x,y) Program cz. 2 x=linspace(1,10,50) plot(x,kwadrat) 12

13 Wykres konturowy Operacje: contour(x,y,z,nz) x (y) - wektor wartości o rozmiarze n1 (n2) z macierz wartości o rozmiarze n1 * n2 nz liczba poziomów Program cz. 3 x=linspace(-1,1,100) y=linspace(-1,1,100) contour(x,y,kwadrat2,10) 13

14 Optymalizacja Programowanie liniowe (linpro) Zadanie min z = 3x1 + 5x2 2x3 x1 + 3x2 = 5 x1 + x2 x3 = 2 2x1 x2 <= 3 x1 + x2 + x3 <=25 0 <= x1 <= 5, 0 <= x2 <= 10, 0 <= x3 <= 3 Optymalizacja Program p=[3;5;-2] C=[1,3,0;1,1,-1;2,-1,0;1,1,1]; b=[5;2;3;25] xl=[0;0;0] xu=[5;10;3] [xopt,lagr,fopt]=linpro(p,c,b,xl,xu,2) // 2 ograniczenia //równościowe!!! 14

15 Optymalizacja Zadanie Sprawdź dla poprzedniego zadania, jakie są rozwiązania, gdy liczba ograniczeń równościowych zmienia się od 0 do 4 Optymalizacja Programowanie kwadratowe (quapro) [UWAGA wymaga zainstalowania Quapro poleceniem atomsinstall("quapro") oraz ponownego uruchomienia Scilaba] Zadanie min z = x1 2 +x1x2+3x1+5x2-2x3 x1 + 3x2 = 5 x1 + x2 x3 = 2 2x1 x2 <= 3 x1 + x2 + x3 <=25 0 <= x1 <= 5, 0 <= x2 <= 5, 0 <= x3 <= 3 15

16 Optymalizacja Program Q=[2,1,0;1,0,0;0,0,0] p=[3;5;-2] C=[1,3,0;1,1,-1;2,-1,0;1,1,1]; b=[5;2;3;25] xl=[0;0;0] xu=[5;10;3] [xopt,lagr,fopt]=quapro(q,p,c,b,xl,xu,2) // 2 ogr. Równościowe UWAGA macierz Q musi być symetryczna i pozytywnie określona Optymalizacja Zadanie Napisz program dla funkcji celu postaci: min z = x1 2 +2x1x2+3x1+5x2-2x3 16

17 Optymalizacja Programowanie nieliniowe (optim) Zadanie min z = sin(x1*x2) + cos(x1) na obszarze ograniczonym przez nierówności: 0 <= x1 <= 10, 0 <= x2 <= 10 punkt startowy: (1, 1) Optymalizacja Programowanie nieliniowe (optim) Wymagane jest zdefiniowanie funkcji kosztu (np. o nazwie costf), która ma następujące wywołanie function [f, g, ind] = costf(x, ind) x to aktualne rozwiązanie, ind to flaga f to minimalizowana funkcja g to gradient funkcji 17

18 Optymalizacja Programowanie nieliniowe (optim) Wywołanie funkcji: optim(costf,'b',[0;0],[10;10],[1;1]) znaczenie kolejnych parametrów funkcji optim costf oznacza funkcję kosztów j.w. b oznacza że są aktywne ograniczenia dolne i górne ograniczenie punkt startowy domyślnie stosowana jest metoda quasi-newtona z BFGS Optymalizacja 18

19 Optymalizacja Program function [f,g,ind]=costf(x,ind) f = sin(x(1)*x(2))+cos(x(1)) g = [0;0] g(1)= x(2)*cos(x(1)*x(2))-sin(x(1)) g(2)= x(1)*cos(x(1)*x(2)) endfunction [fopt,xopt]=optim(costf,'b',[0;0],[10;10],[1;1]) Optymalizacja Zadanie Przeanalizuj działanie programu podanego w pomocy Scilaba dla funkcji optim, znajdującego minimum dla funkcji Rosenbrocka Optymalizacja metody stochastyczne Projekty Projekt 1 Algorytm genetyczny zakres projektu podaje prowadzący laboratorium Projekt 2 Metoda symulowanego wyżarzania zakres projektu podaje prowadzący laboratorium 19

Wprowadzenie. SciLab Zmienne. Operatory. Macierze. Macierze. Tomasz Łukaszewski. Politechnika Poznańska Instytut Informatyki

Wprowadzenie. SciLab Zmienne. Operatory. Macierze. Macierze. Tomasz Łukaszewski. Politechnika Poznańska Instytut Informatyki SciLab 2016 Tomasz Łukaszewski Wprowadzenie Politechnika Poznańska Instytut Informatyki 2 Zmienne Operatory Nazwy: dozwolone nazwy zawierają znaki: od a do z, od A do Z, od 0 do 9 oraz _, #,!, $,? Przypisanie

Bardziej szczegółowo

SciLab Literatura. Tomasz Łukaszewski. Politechnika Poznańska Instytut Informatyki

SciLab Literatura. Tomasz Łukaszewski. Politechnika Poznańska Instytut Informatyki SciLab 2016 Tomasz Łukaszewski Politechnika Poznańska Instytut Informatyki Literatura A. Brozi, Scilab w przykładach, Nakom 2007 W. Treichelt i M.Stachurski, Matlab dla studentów, Witkom 2009 2 1 Wprowadzenie

Bardziej szczegółowo

Równania nieliniowe, nieliniowe układy równań, optymalizacja

Równania nieliniowe, nieliniowe układy równań, optymalizacja 4 maj 2009 Nieliniowe równania i układy rówań Slajd 1 Równania nieliniowe, nieliniowe układy równań, optymalizacja 4 maj 2009 Nieliniowe równania i układy rówań Slajd 2 Plan zajęć Rozwiązywanie równań

Bardziej szczegółowo

Scilab - wprowadzenie

Scilab - wprowadzenie Strona 1 Scilab jest darmowym programem (freeware) przeznaczonym do badań matematycznych. Może pomóc w statystycznym opracowaniu wyników badań (pomiarów). Można przy jego pomocy rysować grafy, wykresy

Bardziej szczegółowo

Równania nieliniowe, nieliniowe układy równań, optymalizacja

Równania nieliniowe, nieliniowe układy równań, optymalizacja Nieliniowe równania i układy rówań Slajd 1 Równania nieliniowe, nieliniowe układy równań, optymalizacja Nieliniowe równania i układy rówań Slajd 2 Plan zajęć Rozwiązywanie równań nieliniowych -metoda bisekcji

Bardziej szczegółowo

Wprowadzenie do Scilab: macierze

Wprowadzenie do Scilab: macierze Wprowadzenie do Scilab: macierze Narzędzia Informatyki Magdalena Deckert Izabela Szczęch Barbara Wołyńska Bartłomiej Prędki Politechnika Poznańska Instytut Informatyki Agenda Definiowanie macierzy Funkcje

Bardziej szczegółowo

Metody i analiza danych

Metody i analiza danych 2015/2016 Metody i analiza danych Macierze Laboratorium komputerowe 2 Anna Kiełbus Zakres tematyczny 1. Funkcje wspomagające konstruowanie macierzy 2. Dostęp do elementów macierzy. 3. Działania na macierzach

Bardziej szczegółowo

Wprowadzenie do Scilab: macierze

Wprowadzenie do Scilab: macierze Wprowadzenie do Scilab: macierze Narzędzia Informatyki Magdalena Deckert Izabela Szczęch Barbara Wołyńska Bartłomiej Prędki Politechnika Poznańska Instytut Informatyki Agenda Definiowanie macierzy Funkcje

Bardziej szczegółowo

MATLAB - laboratorium nr 1 wektory i macierze

MATLAB - laboratorium nr 1 wektory i macierze MATLAB - laboratorium nr 1 wektory i macierze 1. a. Małe i wielkie litery nie są równoważne (MATLAB rozróżnia wielkość liter). b. Wpisanie nazwy zmiennej spowoduje wyświetlenie jej aktualnej wartości na

Bardziej szczegółowo

Matlab Składnia + podstawy programowania

Matlab Składnia + podstawy programowania Matlab Składnia + podstawy programowania Matlab Matrix Laboratory środowisko stworzone z myślą o osobach rozwiązujących problemy matematyczne, w których operuje się na danych stanowiących wielowymiarowe

Bardziej szczegółowo

Matlab Składnia + podstawy programowania

Matlab Składnia + podstawy programowania Matlab Składnia + podstawy programowania Matlab Matrix Laboratory środowisko stworzone z myślą o osobach rozwiązujących problemy matematyczne, w których operuje się na danych stanowiących wielowymiarowe

Bardziej szczegółowo

LABORATORIUM 3 ALGORYTMY OBLICZENIOWE W ELEKTRONICE I TELEKOMUNIKACJI. Wprowadzenie do środowiska Matlab

LABORATORIUM 3 ALGORYTMY OBLICZENIOWE W ELEKTRONICE I TELEKOMUNIKACJI. Wprowadzenie do środowiska Matlab LABORATORIUM 3 ALGORYTMY OBLICZENIOWE W ELEKTRONICE I TELEKOMUNIKACJI Wprowadzenie do środowiska Matlab 1. Podstawowe informacje Przedstawione poniżej informacje maja wprowadzić i zapoznać ze środowiskiem

Bardziej szczegółowo

Wprowadzenie do Scilab: macierze

Wprowadzenie do Scilab: macierze Wprowadzenie do Scilab: macierze Narzę dzia Informatyki Magdalena Deckert Izabela Szczę ch Barbara Wołyń ska Bartłomiej Prę dki Politechnika Poznań ska Instytut Informatyki Agenda Definiowanie macierzy

Bardziej szczegółowo

//warunki początkowe m=500; T=30; c=0.4; t=linspace(0,t,m); y0=[-2.5;2.5];

//warunki początkowe m=500; T=30; c=0.4; t=linspace(0,t,m); y0=[-2.5;2.5]; 4.3. Przykłady wykorzystania funkcji bibliotecznych 73 MATLAB % definiowanie funkcji function [dx]=vderpol(t,y) global c; dx=[y(2); c*(1-y(1)^2)*y(2)-y(1)]; SCILAB // definiowanie układu function [f]=vderpol(t,y,c)

Bardziej szczegółowo

Ćwiczenie 3: Wprowadzenie do programu Matlab

Ćwiczenie 3: Wprowadzenie do programu Matlab Uniwersytet Zielonogórski Instytut Sterowania i Systemów Informatycznych Laboratorium modelowania i symulacji Ćwiczenie 3: Wprowadzenie do programu Matlab 1. Wyznaczyć wartość sumy 1 1 2 + 1 3 1 4 + 1

Bardziej szczegółowo

Elementy metod numerycznych - zajęcia 9

Elementy metod numerycznych - zajęcia 9 Poniższy dokument zawiera informacje na temat zadań rozwiązanych w trakcie laboratoriów. Elementy metod numerycznych - zajęcia 9 Tematyka - Scilab 1. Labolatoria Zajęcia za 34 punktów. Proszę wysłać krótkie

Bardziej szczegółowo

Podstawowe operacje na macierzach

Podstawowe operacje na macierzach Podstawowe operacje na macierzach w pakiecie GNU octave. (wspomaganie obliczeń inżynierskich) Cel ćwiczenia Celem ćwiczenia jest zapoznanie się z tworzeniem macierzy i wektorów w programie GNU octave.

Bardziej szczegółowo

Analiza matematyczna i algebra liniowa Macierze

Analiza matematyczna i algebra liniowa Macierze Analiza matematyczna i algebra liniowa Macierze Wojciech Kotłowski Instytut Informatyki Politechniki Poznańskiej email: imię.nazwisko@cs.put.poznan.pl pok. 2 (CW) tel. (61)665-2936 konsultacje: poniedziałek

Bardziej szczegółowo

WPROWADZENIE DO ŚRODOWISKA SCILAB

WPROWADZENIE DO ŚRODOWISKA SCILAB Politechnika Gdańska Wydział Elektrotechniki i Automatyki WPROWADZENIE DO ŚRODOWISKA SCILAB Materiały pomocnicze do ćwiczeń laboratoryjnych Opracowanie: Paweł Lieder Gdańsk, 007 Podstawy pracy z Scilab.

Bardziej szczegółowo

Krótkie wprowadzenie do macierzy i wyznaczników

Krótkie wprowadzenie do macierzy i wyznaczników Radosław Marczuk Krótkie wprowadzenie do macierzy i wyznaczników 12 listopada 2005 1. Macierze Macierzą nazywamy układ liczb(rzeczywistych, bądź zespolonych), funkcji, innych macierzy w postaci: A a 11

Bardziej szczegółowo

Metody Numeryczne. Laboratorium 1. Wstęp do programu Matlab

Metody Numeryczne. Laboratorium 1. Wstęp do programu Matlab Metody Numeryczne Laboratorium 1 Wstęp do programu Matlab 1. Wiadomości wstępne liczby, format Program Matlab używa konwencjonalną notację dziesiętną, z kropka dziesiętną. W przypadku notacji naukowej

Bardziej szczegółowo

WEKTORY I MACIERZE. Strona 1 z 11. Lekcja 7.

WEKTORY I MACIERZE. Strona 1 z 11. Lekcja 7. Strona z WEKTORY I MACIERZE Wektory i macierze ogólnie nazywamy tablicami. Wprowadzamy je:. W sposób jawny: - z menu Insert Matrix, - skrót klawiszowy: {ctrl}+m, - odpowiedni przycisk z menu paska narzędziowego

Bardziej szczegółowo

1 Macierze i wyznaczniki

1 Macierze i wyznaczniki 1 Macierze i wyznaczniki 11 Definicje, twierdzenia, wzory 1 Macierzą rzeczywistą (zespoloną) wymiaru m n, gdzie m N oraz n N, nazywamy prostokątną tablicę złożoną z mn liczb rzeczywistych (zespolonych)

Bardziej szczegółowo

Wprowadzenie do środowiska

Wprowadzenie do środowiska Wprowadzenie do środowiska www.mathworks.com Piotr Wróbel piotr.wrobel@igf.fuw.edu.pl Pok. B 4.22 Metody numeryczne w optyce 2017 Czym jest Matlab Matlab (matrix laboratory) środowisko obliczeniowe oraz

Bardziej szczegółowo

Drugi sposób definiowania funkcji polega na wykorzystaniu polecenia:

Drugi sposób definiowania funkcji polega na wykorzystaniu polecenia: ĆWICZENIE 6. Scilab: Obliczenia symboliczne i numeryczne Uwaga: Podczas operacji kopiowania i wklejania potrzeba skasować wklejone pojedyńcze cudzysłowy i wpisać je ręcznie dla każdego ich wystąpienia

Bardziej szczegółowo

Macierze Lekcja I: Wprowadzenie

Macierze Lekcja I: Wprowadzenie Macierze Lekcja I: Wprowadzenie Wydział Matematyki Politechniki Wrocławskiej Definicja Niech dane będą dwie liczby naturalne dodatnie m i n. Układ m n liczb ułożonych w prostokątną tablicę złożoną z m

Bardziej szczegółowo

Ćwiczenie 3. MatLab: Algebra liniowa. Rozwiązywanie układów liniowych

Ćwiczenie 3. MatLab: Algebra liniowa. Rozwiązywanie układów liniowych Ćwiczenie 3. MatLab: Algebra liniowa. Rozwiązywanie układów liniowych Wszystko proszę zapisywać komendą diary do pliku o nazwie: imie_ nazwisko 1. Definiowanie macierzy i odwoływanie się do elementów:

Bardziej szczegółowo

Obliczenia w programie MATLAB

Obliczenia w programie MATLAB Obliczenia w programie MATLAB Na zajęciach korzystamy z programu MATLAB, w którym wykonywać będziemy większość obliczeń. Po uruchomieniu programu w zależności od wersji i konfiguracji może pojawić się

Bardziej szczegółowo

Scilab. Data ostaniej modyfikacji: 2 grudnia Piotr Fulmański

Scilab. Data ostaniej modyfikacji: 2 grudnia Piotr Fulmański Scilab Data ostaniej modyfikacji: 2 grudnia 2008 Piotr Fulmański Piotr Fulmański 1 Wydział Matematyki, Uniwersytet Łódzki Banacha 22, 90-232, Łódź Polska 1 email:fulmanp@imul.math.uni.lodz.pl Spis treści

Bardziej szczegółowo

Metody numeryczne Laboratorium 2

Metody numeryczne Laboratorium 2 Metody numeryczne Laboratorium 2 1. Tworzenie i uruchamianie skryptów Środowisko MATLAB/GNU Octave daje nam możliwość tworzenia skryptów czyli zapisywania grup poleceń czy funkcji w osobnym pliku i uruchamiania

Bardziej szczegółowo

Macierze. Rozdział Działania na macierzach

Macierze. Rozdział Działania na macierzach Rozdział 5 Macierze Funkcję, która każdej parze liczb naturalnych (i, j) (i 1,..., n; j 1,..., m) przyporządkowuje dokładnie jedną liczbę a ij F, gdzie F R lub F C, nazywamy macierzą (rzeczywistą, gdy

Bardziej szczegółowo

dr Mariusz Grządziel 15,29 kwietnia 2014 Przestrzeń R k R k = R R... R k razy Elementy R k wektory;

dr Mariusz Grządziel 15,29 kwietnia 2014 Przestrzeń R k R k = R R... R k razy Elementy R k wektory; Wykłady 8 i 9 Pojęcia przestrzeni wektorowej i macierzy Układy równań liniowych Elementy algebry macierzy dodawanie, odejmowanie, mnożenie macierzy; macierz odwrotna dr Mariusz Grządziel 15,29 kwietnia

Bardziej szczegółowo

Obliczenia iteracyjne

Obliczenia iteracyjne Lekcja Strona z Obliczenia iteracyjne Zmienne iteracyjne (wyliczeniowe) Obliczenia iteracyjne wymagają zdefiniowania specjalnej zmiennej nazywanej iteracyjną lub wyliczeniową. Zmienną iteracyjną od zwykłej

Bardziej szczegółowo

WYDZIAŁ ELEKTROTECHNIKI, AUTOMATYKI I INFORMATYKI INSTYTUT AUTOMATYKI I INFORMATYKI KIERUNEK AUTOMATYKA I ROBOTYKA STUDIA STACJONARNE I STOPNIA

WYDZIAŁ ELEKTROTECHNIKI, AUTOMATYKI I INFORMATYKI INSTYTUT AUTOMATYKI I INFORMATYKI KIERUNEK AUTOMATYKA I ROBOTYKA STUDIA STACJONARNE I STOPNIA WYDZIAŁ ELEKTROTECHNIKI, AUTOMATYKI I INFORMATYKI INSTYTUT AUTOMATYKI I INFORMATYKI KIERUNEK AUTOMATYKA I ROBOTYKA STUDIA STACJONARNE I STOPNIA PRZEDMIOT : : LABORATORIUM PODSTAW AUTOMATYKI 1. WSTĘP DO

Bardziej szczegółowo

Wykład 14. Elementy algebry macierzy

Wykład 14. Elementy algebry macierzy Wykład 14 Elementy algebry macierzy dr Mariusz Grządziel 26 stycznia 2009 Układ równań z dwoma niewiadomymi Rozważmy układ równań z dwoma niewiadomymi: a 11 x + a 12 y = h 1 a 21 x + a 22 y = h 2 a 11,

Bardziej szczegółowo

Definicja macierzy Typy i właściwości macierzy Działania na macierzach Wyznacznik macierzy Macierz odwrotna Normy macierzy RACHUNEK MACIERZOWY

Definicja macierzy Typy i właściwości macierzy Działania na macierzach Wyznacznik macierzy Macierz odwrotna Normy macierzy RACHUNEK MACIERZOWY Transport, studia niestacjonarne I stopnia, semestr I Instytut L-5, Wydział Inżynierii Lądowej, Politechnika Krakowska Adam Wosatko Ewa Pabisek Czym jest macierz? Definicja Macierzą A nazywamy funkcję

Bardziej szczegółowo

GNU Octave (w skrócie Octave) to rozbudowany program do analizy numerycznej.

GNU Octave (w skrócie Octave) to rozbudowany program do analizy numerycznej. 1 GNU Octave GNU Octave (w skrócie Octave) to rozbudowany program do analizy numerycznej. Octave zapewnia: sporą bibliotęke użytecznych funkcji i algorytmów; możliwośc tworzenia przeróżnych wykresów; możliwość

Bardziej szczegółowo

Wartości x-ów : Wartości x ów można w Scilabie zdefiniować na kilka sposobów, wpisując odpowiednie polecenie na konsoli.

Wartości x-ów : Wartości x ów można w Scilabie zdefiniować na kilka sposobów, wpisując odpowiednie polecenie na konsoli. Notatki z sesji Scilaba Istnieje możliwość dokładnego zapisu przebiegu aktualnej sesji pracy ze Scilabem: polecenie diary('nazwa_pliku.txt') powoduje zapis do podanego pliku tekstowego wszystkich wpisywanych

Bardziej szczegółowo

Wprowadzenie do Mathcada 1

Wprowadzenie do Mathcada 1 Wprowadzenie do Mathcada Ćwiczenie. - Badanie zmienności funkcji kwadratowej Ćwiczenie. pokazuje krok po kroku tworzenie prostego dokumentu w Mathcadzie. Dokument ten składa się z następujących elementów:.

Bardziej szczegółowo

Wprowadzenie do programowania w SciLab: typy danych, wyrażenia, operatory, funkcje własne, skrypty.

Wprowadzenie do programowania w SciLab: typy danych, wyrażenia, operatory, funkcje własne, skrypty. 13 listopad 2012 Podstawowe obliczenia w programie SciLab slajd 1 Wprowadzenie do programowania w SciLab: typy danych, wyrażenia, operatory, funkcje własne, skrypty. 13 listopad 2012 Podstawowe obliczenia

Bardziej szczegółowo

MATEMATYKA I SEMESTR ALK (PwZ) 1. Sumy i sumy podwójne : Σ i ΣΣ

MATEMATYKA I SEMESTR ALK (PwZ) 1. Sumy i sumy podwójne : Σ i ΣΣ MATEMATYKA I SEMESTR ALK (PwZ). Sumy i sumy podwójne : Σ i ΣΣ.. OKREŚLENIE Ciąg liczbowy = Dowolna funkcja przypisująca liczby rzeczywiste pierwszym n (ciąg skończony), albo wszystkim (ciąg nieskończony)

Bardziej szczegółowo

Zajęcia nr 1 (1h) Dwumian Newtona. Indukcja. Zajęcia nr 2 i 3 (4h) Trygonometria

Zajęcia nr 1 (1h) Dwumian Newtona. Indukcja. Zajęcia nr 2 i 3 (4h) Trygonometria Technologia Chemiczna 008/09 Zajęcia wyrównawcze. Pokazać, że: ( )( ) n k k l = ( n l )( n l k l Zajęcia nr (h) Dwumian Newtona. Indukcja. ). Rozwiązać ( ) ( równanie: ) n n a) = 0 b) 3 ( ) n 3. Znaleźć

Bardziej szczegółowo

Scilab skrypty (programowanie)

Scilab skrypty (programowanie) Strona 1 Skrypt (program interpretowany) możemy napisać w dowolnym edytorze. Warto posługiwać się edytorem wbudowanym w program Scilab. Wykonać skrypt możemy na dwa sposoby: wpisując polecenie exec('nazwaskryptu')

Bardziej szczegółowo

Wykład 5. Metoda eliminacji Gaussa

Wykład 5. Metoda eliminacji Gaussa 1 Wykład 5 Metoda eliminacji Gaussa Rozwiązywanie układów równań liniowych Układ równań liniowych może mieć dokładnie jedno rozwiązanie, nieskończenie wiele rozwiązań lub nie mieć rozwiązania. Metody dokładne

Bardziej szczegółowo

Met Me ody numer yczne Wykład ykład Dr inż. Mic hał ha Łanc Łan zon Instyt Ins ut Elektr Elektr echn iki echn i Elektrot Elektr echn olo echn

Met Me ody numer yczne Wykład ykład Dr inż. Mic hał ha Łanc Łan zon Instyt Ins ut Elektr Elektr echn iki echn i Elektrot Elektr echn olo echn Metody numeryczne Wykład 3 Dr inż. Michał Łanczont Instytut Elektrotechniki i Elektrotechnologii E419, tel. 4293, m.lanczont@pollub.pl, http://m.lanczont.pollub.pl Zakres wykładu Pojęcia podstawowe Algebra

Bardziej szczegółowo

Podstawowe operacje na macierzach, operacje we/wy

Podstawowe operacje na macierzach, operacje we/wy 26 listopad 2012 Podstawowe operacje na macierzach, operacje we/wy Slajd 1 Podstawowe operacje na macierzach, operacje we/wy Zakład Komputerowego Wspomagania Projektowania Semestr 1. 26 listopad 2012 Podstawowe

Bardziej szczegółowo

Modelowanie danych hodowlanych

Modelowanie danych hodowlanych Modelowanie danych hodowlanych 1. Wykład wstępny 2. Algebra macierzowa 3. Wykorzystanie różnych źródeł informacji w predykcji wartości hodowlanej 4. Kowariancja genetyczna pomiędzy spokrewnionymi osobnikami

Bardziej szczegółowo

Modelowanie komputerowe w ochronie środowiska

Modelowanie komputerowe w ochronie środowiska Scilab - podstawy Scilab jest środowiskiem numerycznym, programistycznym i numerycznym dostępnym za darmo z INRIA (Institut Nationale de Recherche en Informatique et Automatique). Jest programem podobnym

Bardziej szczegółowo

RACHUNEK MACIERZOWY. METODY OBLICZENIOWE Budownictwo, studia I stopnia, semestr 6. Instytut L-5, Wydział Inżynierii Lądowej, Politechnika Krakowska

RACHUNEK MACIERZOWY. METODY OBLICZENIOWE Budownictwo, studia I stopnia, semestr 6. Instytut L-5, Wydział Inżynierii Lądowej, Politechnika Krakowska RACHUNEK MACIERZOWY METODY OBLICZENIOWE Budownictwo, studia I stopnia, semestr 6 Instytut L-5, Wydział Inżynierii Lądowej, Politechnika Krakowska Ewa Pabisek Czym jest macierz? Definicja Macierzą A nazywamy

Bardziej szczegółowo

1 Programowanie w matlabie - skrypty i funkcje

1 Programowanie w matlabie - skrypty i funkcje 1 Programowanie w matlabie - skrypty i funkcje 1.1 Skrypty Skrypt jest plikiem tekstowym z rozszerzeniem *.m zawierającym listę poleceń do wykonania. Aby utworzyć skrypt w matlabie wybierz File New Script,

Bardziej szczegółowo

; B = Wykonaj poniższe obliczenia: Mnożenia, transpozycje etc wykonuję programem i przepisuję wyniki. Mam nadzieję, że umiesz mnożyć macierze...

; B = Wykonaj poniższe obliczenia: Mnożenia, transpozycje etc wykonuję programem i przepisuję wyniki. Mam nadzieję, że umiesz mnożyć macierze... Tekst na niebiesko jest komentarzem lub treścią zadania. Zadanie. Dane są macierze: A D 0 ; E 0 0 0 ; B 0 5 ; C Wykonaj poniższe obliczenia: 0 4 5 Mnożenia, transpozycje etc wykonuję programem i przepisuję

Bardziej szczegółowo

Rozdział 5. Macierze. a 11 a a 1m a 21 a a 2m... a n1 a n2... a nm

Rozdział 5. Macierze. a 11 a a 1m a 21 a a 2m... a n1 a n2... a nm Rozdział 5 Macierze Funkcję, która każdej parze liczb naturalnych (i,j) (i = 1,,n;j = 1,,m) przyporządkowuje dokładnie jedną liczbę a ij F, gdzie F = R lub F = C, nazywamy macierzą (rzeczywistą, gdy F

Bardziej szczegółowo

Przykład 1 -->s="hello World!" s = Hello World! -->disp(s) Hello World!

Przykład 1 -->s=hello World! s = Hello World! -->disp(s) Hello World! Scilab jest środowiskiem programistycznym i numerycznym dostępnym za darmo z INRIA (Institut Nationale de Recherche en Informatique et Automatique). Jest programem podobnym do MATLABa oraz jego darmowego

Bardziej szczegółowo

Wprowadzenie do programu Mathcad 15 cz. 1

Wprowadzenie do programu Mathcad 15 cz. 1 Wpisywanie tekstu Wprowadzenie do programu Mathcad 15 cz. 1 Domyślnie, Mathcad traktuje wpisywany tekst jako wyrażenia matematyczne. Do trybu tekstowego można przejść na dwa sposoby: Zaczynając wpisywanie

Bardziej szczegółowo

Algebra macierzy

Algebra macierzy Algebra macierzy Definicja macierzy Macierze Macierze Macierze Działania na macierzach Działania na macierzach A + B = B + A (prawo przemienności dodawania) (A + B) + C = A + (B + C) (prawo łączności dodawania)

Bardziej szczegółowo

a 11 a a 1n a 21 a a 2n... a m1 a m2... a mn a 1j a 2j R i = , C j =

a 11 a a 1n a 21 a a 2n... a m1 a m2... a mn a 1j a 2j R i = , C j = 11 Algebra macierzy Definicja 11.1 Dla danego ciała F i dla danych m, n N funkcję A : {1,..., m} {1,..., n} F nazywamy macierzą m n (macierzą o m wierszach i n kolumnach) o wyrazach z F. Wartość A(i, j)

Bardziej szczegółowo

Zadania. Rozdział Wektory i macierze. 1.Podajpolecenie 1,któreutworzywektor: v = [100, 95, 90,..., 95, 100].

Zadania. Rozdział Wektory i macierze. 1.Podajpolecenie 1,któreutworzywektor: v = [100, 95, 90,..., 95, 100]. Rozdział 1 Zadania 11 Wektory i macierze 1Podajpolecenie 1,któreutworzywektor: v = [100, 95, 90,, 95, 100] 2 Podaj polecenie, które utworzy wektor: v = [cos(pi), cos(2 pi), cos(3 pi),,cos(100 pi)] 3 Podaj

Bardziej szczegółowo

Zakłócenia w układach elektroenergetycznych LABORATORIUM

Zakłócenia w układach elektroenergetycznych LABORATORIUM Zakłócenia w układach elektroenergetycznych LABORATORIUM Obliczenia w programie MATLAB Na zajęciach korzystamy z programu MATLAB, w którym wykonywać będziemy większość obliczeń. Po uruchomieniu programu

Bardziej szczegółowo

, A T = A + B = [a ij + b ij ].

, A T = A + B = [a ij + b ij ]. 1 Macierze Jeżeli każdej uporządkowanej parze liczb naturalnych (i, j), 1 i m, 1 j n jest przyporządkowana dokładnie jedna liczba a ij, to mówimy, że jest określona macierz prostokątna A = a ij typu m

Bardziej szczegółowo

Laboratorium Komputerowego Wspomagania Analizy i Projektowania

Laboratorium Komputerowego Wspomagania Analizy i Projektowania Laboratorium Komputerowego Wspomagania Analizy i Projektowania Ćwiczenie 2. Podstawowe operacje macierzowe. Opracował: dr inż. Sebastian Dudzik 1. Cel ćwiczenia Celem ćwiczenia jest zapoznanie się z tworzeniem

Bardziej szczegółowo

Mathcad c.d. - Macierze, wykresy 3D, rozwiązywanie równań, pochodne i całki, animacje

Mathcad c.d. - Macierze, wykresy 3D, rozwiązywanie równań, pochodne i całki, animacje Mathcad c.d. - Macierze, wykresy 3D, rozwiązywanie równań, pochodne i całki, animacje Opracował: Zbigniew Rudnicki Powtórka z poprzedniego wykładu 2 1 Dokument, regiony, klawisze: Dokument Mathcada realizuje

Bardziej szczegółowo

Przetwarzanie sygnałów

Przetwarzanie sygnałów Spis treści Przetwarzanie sygnałów Ćwiczenie 1 Wprowadzenie do programu Octave 1 Operatory 1 1.1 Operatory arytmetyczne...................... 1 1.2 Operatory relacji.......................... 1 1.3 Operatory

Bardziej szczegółowo

1 Logika. 1. Udowodnij prawa logiczne: 3. (p q) (p q) 2. (p q) ( q p) 2. Sprawdź, czy wyrażenie ((p q) r) (p (q r)) jest tautologią.

1 Logika. 1. Udowodnij prawa logiczne: 3. (p q) (p q) 2. (p q) ( q p) 2. Sprawdź, czy wyrażenie ((p q) r) (p (q r)) jest tautologią. Logika. Udowodnij prawa logiczne:. (p q) ( p q). (p q) ( q p) 3. (p q) (p q). Sprawdź czy wyrażenie ((p q) r) (p (q r)) jest tautologią. 3. Zad 3. Sprawdź czy zdanie: Jeżeli liczba a dzieli się przez i

Bardziej szczegółowo

Ekoenergetyka Matematyka 1. Wykład 3.

Ekoenergetyka Matematyka 1. Wykład 3. Ekoenergetyka Matematyka Wykład 3 MACIERZE Macierzą wymiaru n m, gdzie nm, nazywamy prostokątną tablicę złożoną z n wierszy i m kolumn: a a2 a j am a2 a22 a2 j a2m [ a ] nm A ai ai 2 a aim - i-ty wiersz

Bardziej szczegółowo

A A A A A A A A A n n

A A A A A A A A A n n DODTEK NR GEBR MCIERZY W dodatku tym podamy najważniejsze definicje rachunku macierzowego i omówimy niektóre funkcje i transformacje macierzy najbardziej przydatne w zastosowaniach numerycznych a w szczególności

Bardziej szczegółowo

MATEMATYKA I SEMESTR ALK (PwZ) 1. Sumy i sumy podwójne : Σ i ΣΣ

MATEMATYKA I SEMESTR ALK (PwZ) 1. Sumy i sumy podwójne : Σ i ΣΣ MATEMATYKA I SEMESTR ALK (PwZ). Sumy i sumy podwójne : Σ i ΣΣ.. OKREŚLENIE Ciąg liczbowy = Dowolna funkcja przypisująca liczby rzeczywiste pierwszym n (ciąg skończony), albo wszystkim (ciąg nieskończony)

Bardziej szczegółowo

Programowanie w języku Matlab

Programowanie w języku Matlab Programowanie w języku Matlab D. Caban, P. Skurowski Wykład. Składnia języka, podstawowe struktury i operacje Matlab Nazwa pochodzi od MATrix LAboratory Środowisko obliczeń numerycznych i symbolicznych

Bardziej szczegółowo

3. Macierze i Układy Równań Liniowych

3. Macierze i Układy Równań Liniowych 3. Macierze i Układy Równań Liniowych Rozważamy równanie macierzowe z końcówki ostatniego wykładu ( ) 3 1 X = 4 1 ( ) 2 5 Podstawiając X = ( ) x y i wymnażając, otrzymujemy układ 2 równań liniowych 3x

Bardziej szczegółowo

Układy równań liniowych. Krzysztof Patan

Układy równań liniowych. Krzysztof Patan Układy równań liniowych Krzysztof Patan Motywacje Zagadnienie kluczowe dla przetwarzania numerycznego Wiele innych zadań redukuje się do problemu rozwiązania układu równań liniowych, często o bardzo dużych

Bardziej szczegółowo

Elementy projektowania inzynierskiego Przypomnienie systemu Mathcad

Elementy projektowania inzynierskiego Przypomnienie systemu Mathcad Elementy projektowania inzynierskiego Definicja zmiennych skalarnych a : [S] - SPACE a [T] - TAB - CTRL b - SHIFT h h. : / Wyświetlenie wartości zmiennych a a = b h. h. = Przykładowe wyrażenia

Bardziej szczegółowo

Ćwiczenie 1. Wprowadzenie do programu Octave

Ćwiczenie 1. Wprowadzenie do programu Octave Politechnika Wrocławska Wydział Elektroniki Mikrosystemów i Fotoniki Przetwarzanie sygnałów laboratorium ETD5067L Ćwiczenie 1. Wprowadzenie do programu Octave Mimo że program Octave został stworzony do

Bardziej szczegółowo

Pętla for. Matematyka dla ciekawych świata -19- Scilab. for i=1:10... end. for k=4:-1:1... end. k=3 k=4. k=1. k=2

Pętla for. Matematyka dla ciekawych świata -19- Scilab. for i=1:10... end. for k=4:-1:1... end. k=3 k=4. k=1. k=2 Pętle wielokrotne wykonywanie ciągu instrukcji. Bardzo często w programowaniu wykorzystuje się wielokrotne powtarzanie określonego ciągu czynności (instrukcji). Rozróżniamy sytuacje, gdy liczba powtórzeń

Bardziej szczegółowo

Wykład 4. Matlab cz.3 Tablice i operacje na tablicach

Wykład 4. Matlab cz.3 Tablice i operacje na tablicach Wykład 4 Matlab cz.3 Tablice i operacje na tablicach Dr inż. Zb. Rudnicki Tematyka wykładu 1. Macierze, wektory, tablice - wprowadzenie 2. Rozmiary i typy tablic 3. Zapis - nawiasy i znaki specjalne 4.

Bardziej szczegółowo

macierze jednostkowe (identyczności) macierze diagonalne, które na przekątnej mają same

macierze jednostkowe (identyczności) macierze diagonalne, które na przekątnej mają same 1 Macierz definicja i zapis Macierzą wymiaru m na n nazywamy tabelę a 11 a 1n A = a m1 a mn złożoną z liczb (rzeczywistych lub zespolonych) o m wierszach i n kolumnach (zamiennie będziemy też czasem mówili,

Bardziej szczegółowo

Przykładowe zadania na egzamin z matematyki - dr Anita Tlałka - 1

Przykładowe zadania na egzamin z matematyki - dr Anita Tlałka - 1 Przykładowe zadania na egzamin z matematyki - dr Anita Tlałka - 1 Zadania rozwiązywane na wykładzie Zadania rozwiązywane na ćwiczeniach Przy rozwiązywaniu zadań najistotniejsze jest wykazanie się rozumieniem

Bardziej szczegółowo

Akademia Górniczo-Hutnicza Wydział Elektrotechniki, Automatyki, Informatyki i Elektroniki

Akademia Górniczo-Hutnicza Wydział Elektrotechniki, Automatyki, Informatyki i Elektroniki Akademia Górniczo-Hutnicza Wydział Elektrotechniki, Automatyki, Informatyki i Elektroniki Przetwarzanie Sygnałów Studia Podyplomowe, Automatyka i Robotyka Podstawy MATLABA MATLAB jest zintegrowanym środowiskiem

Bardziej szczegółowo

a 11 a a 1n a 21 a a 2n... a m1 a m2... a mn x 1 x 2... x m ...

a 11 a a 1n a 21 a a 2n... a m1 a m2... a mn x 1 x 2... x m ... Wykład 15 Układy równań liniowych Niech K będzie ciałem i niech α 1, α 2,, α n, β K. Równanie: α 1 x 1 + α 2 x 2 + + α n x n = β z niewiadomymi x 1, x 2,, x n nazywamy równaniem liniowym. Układ: a 21 x

Bardziej szczegółowo

Funkcje Andrzej Musielak 1. Funkcje

Funkcje Andrzej Musielak 1. Funkcje Funkcje Andrzej Musielak 1 Funkcje Funkcja liniowa Funkcja liniowa jest postaci f(x) = a x + b, gdzie a, b R Wartość a to tangens nachylenia wykresu do osi Ox, natomiast b to wartość funkcji w punkcie

Bardziej szczegółowo

zajęcia 2 Definiowanie wektorów:

zajęcia 2 Definiowanie wektorów: zajęcia 2 Plan zajęć: definiowanie wektorów instrukcja warunkowa if wykresy Definiowanie wektorów: Co do definicji wektora: Koń jaki jest, każdy widzi Definiowanie wektora w Octave v1=[3,2,4] lub: v1=[3

Bardziej szczegółowo

ALGEBRA LINIOWA. Wykład 2. Analityka gospodarcza, sem. 1. Wydział Zarządzania i Ekonomii Politechnika Gdańska

ALGEBRA LINIOWA. Wykład 2. Analityka gospodarcza, sem. 1. Wydział Zarządzania i Ekonomii Politechnika Gdańska ALGEBRA LINIOWA Wykład 2 Analityka gospodarcza, sem 1 Wydział Zarządzania i Ekonomii Politechnika Gdańska dr inż Natalia Jarzębkowska, CNMiKnO semzimowy 2018/2019 2/17 Macierze Niech M = {1, 2,, m} i N

Bardziej szczegółowo

DB Algebra liniowa semestr zimowy 2018

DB Algebra liniowa semestr zimowy 2018 DB Algebra liniowa semestr zimowy 2018 SPIS TREŚCI Teoria oraz większość zadań w niniejszym skrypcie zostały opracowane na podstawie książek: 1 G Banaszak, W Gajda, Elementy algebry liniowej cz I, Wydawnictwo

Bardziej szczegółowo

Metody Numeryczne Optymalizacja. Wojciech Szewczuk

Metody Numeryczne Optymalizacja. Wojciech Szewczuk Metody Numeryczne Optymalizacja Optymalizacja Definicja 1 Przez optymalizację będziemy rozumieć szukanie minimów lub maksimów funkcji. Optymalizacja Definicja 2 Optymalizacja lub programowanie matematyczne

Bardziej szczegółowo

(mniejszych od 10 9 ) podanych przez użytkownika, wypisze komunikat TAK, jeśli są to liczby bliźniacze i NIE, w przeciwnym przypadku.

(mniejszych od 10 9 ) podanych przez użytkownika, wypisze komunikat TAK, jeśli są to liczby bliźniacze i NIE, w przeciwnym przypadku. Zadanie 1 Już w starożytności matematycy ze szkoły pitagorejskiej, którzy szczególnie cenili sobie harmonię i ład wśród liczb, interesowali się liczbami bliźniaczymi, czyli takimi parami kolejnych liczb

Bardziej szczegółowo

ŚRODOWISKO MATLAB WPROWADZENIE. dr inż. Dariusz Borkowski. Podstawy informatyki. (drobne) modyfikacje: dr inż. Andrzej Wetula

ŚRODOWISKO MATLAB WPROWADZENIE. dr inż. Dariusz Borkowski. Podstawy informatyki. (drobne) modyfikacje: dr inż. Andrzej Wetula ŚRODOWISKO MATLAB WPROWADZENIE dr inż. Dariusz Borkowski (drobne) modyfikacje: dr inż. Andrzej Wetula Przebieg III części przedmiotu - 10 zajęć = 6 laboratoriów Matlab + 2 laboratoria Simulink + 2 kolokwia.

Bardziej szczegółowo

Analiza matematyczna i algebra liniowa Macierze

Analiza matematyczna i algebra liniowa Macierze Analiza matematyczna i algebra liniowa Macierze Wojciech Kotłowski Instytut Informatyki Politechniki Poznańskiej email: imię.nazwisko@cs.put.poznan.pl pok. 2 (CW) tel. (61)665-2936 konsultacje: poniedziałek

Bardziej szczegółowo

3 1 + i 1 i i 1 2i 2. Wyznaczyć macierze spełniające własność komutacji: [A, X] = B

3 1 + i 1 i i 1 2i 2. Wyznaczyć macierze spełniające własność komutacji: [A, X] = B 1. Dla macierzy a) A = b) A = c) A = d) A = 3 1 + i 1 i i i 0 i i 0 1 + i 1 i 0 0 0 0 1 0 1 0 1 + i 1 i Wyznaczyć macierze spełniające własność komutacji: A, X = B. Obliczyć pierwiaski z macierzy: A =

Bardziej szczegółowo

Metody numeryczne Wykład 4

Metody numeryczne Wykład 4 Metody numeryczne Wykład 4 Dr inż. Michał Łanczont Instytut Elektrotechniki i Elektrotechnologii E419, tel. 4293, m.lanczont@pollub.pl, http://m.lanczont.pollub.pl Zakres wykładu Metody skończone rozwiązywania

Bardziej szczegółowo

Analiza numeryczna Kurs INP002009W. Wykłady 6 i 7 Rozwiązywanie układów równań liniowych. Karol Tarnowski A-1 p.

Analiza numeryczna Kurs INP002009W. Wykłady 6 i 7 Rozwiązywanie układów równań liniowych. Karol Tarnowski A-1 p. Analiza numeryczna Kurs INP002009W Wykłady 6 i 7 Rozwiązywanie układów równań liniowych Karol Tarnowski karol.tarnowski@pwr.wroc.pl A-1 p.223 Plan wykładu Podstawowe pojęcia Własności macierzy Działania

Bardziej szczegółowo

Matematyka dyskretna. Andrzej Łachwa, UJ, B/14

Matematyka dyskretna. Andrzej Łachwa, UJ, B/14 Matematyka dyskretna Andrzej Łachwa, UJ, 2019 andrzej.lachwa@uj.edu.pl 2B/14 Relacje Pojęcia: relacja czyli relacja dwuargumentowa relacja w zbiorze A relacja n-argumentowa Relacja E = {(x, x): x S} jest

Bardziej szczegółowo

Wykład Matematyka A, I rok, egzamin ustny w sem. letnim r. ak. 2002/2003. Każdy zdający losuje jedno pytanie teoretyczne i jedno praktyczne.

Wykład Matematyka A, I rok, egzamin ustny w sem. letnim r. ak. 2002/2003. Każdy zdający losuje jedno pytanie teoretyczne i jedno praktyczne. Wykład Matematyka A, I rok, egzamin ustny w sem. letnim r. ak. 2002/2003. Każdy zdający losuje jedno pytanie teoretyczne i jedno praktyczne. pytania teoretyczne:. Co to znaczy, że wektory v, v 2 i v 3

Bardziej szczegółowo

, to liczby γ +δi oraz γ δi opisują pierwiastki z a+bi.

, to liczby γ +δi oraz γ δi opisują pierwiastki z a+bi. Zestaw 1 Liczby zespolone 1 Zadania do przeliczenia Nie będziemy robić na ćwiczeniach S 1 Policz wartość 1 + i + (2 + i)(i 3) 1 i Zadania domowe x y(1 + i) 1 Znajdź liczby rzeczywiste x, y takie, że +

Bardziej szczegółowo

Laboratorium 1b Operacje na macierzach oraz obliczenia symboliczne

Laboratorium 1b Operacje na macierzach oraz obliczenia symboliczne Uniwersytet Zielonogórski Instytut Sterowania i Systemów Informatycznych Laboratorium Metod Numerycznych Laboratorium 1b Operacje na macierzach oraz obliczenia symboliczne 1 Zadania 1. Obliczyć numerycznie

Bardziej szczegółowo

Kurs z matematyki - zadania

Kurs z matematyki - zadania Kurs z matematyki - zadania Miara łukowa kąta Zadanie Miary kątów wyrażone w stopniach zapisać w radianach: a) 0, b) 80, c) 90, d), e) 0, f) 0, g) 0, h), i) 0, j) 70, k), l) 80, m) 080, n), o) 0 Zadanie

Bardziej szczegółowo

PRZYKŁADOWE SKRYPTY (PROGRAMY W MATLABIE Z ROZSZERZENIEM.m): 1) OBLICZANIE WYRAŻEŃ 1:

PRZYKŁADOWE SKRYPTY (PROGRAMY W MATLABIE Z ROZSZERZENIEM.m): 1) OBLICZANIE WYRAŻEŃ 1: PRZYKŁADOWE SKRYPTY (PROGRAMY W MATLABIE Z ROZSZERZENIEM.m): 1) OBLICZANIE WYRAŻEŃ 1: clear % usunięcie zmiennych z pamięci roboczej MATLABa % wyczyszczenie okna kom % nadanie wartości zmiennym x1 i x2

Bardziej szczegółowo

Roger Bacon Def. Def. Def. Funktory zdaniotwórcze

Roger Bacon Def. Def. Def. Funktory zdaniotwórcze Kto lekceważy osiągnięcia matematyki przynosi szkodę całej nauce, ponieważ ten, kto nie zna matematyki, nie może poznad innych nauk ścisłych i nie może poznad świata." Roger Bacon Def. Zdaniem logicznym

Bardziej szczegółowo

Wersje instalacyjne programu Scilab mogą zostać pobrane ze strony

Wersje instalacyjne programu Scilab mogą zostać pobrane ze strony Scilab - podstawy Scilab jest środowiskiem numerycznym, programistycznym i numerycznym dostępnym za darmo z INRIA (Institut Nationale de Recherche en Informatique et Automatique). Jest programem podobnym

Bardziej szczegółowo

MATLAB tworzenie własnych funkcji

MATLAB tworzenie własnych funkcji MATLAB tworzenie własnych funkcji Definiowanie funkcji anonimowych Własne definicje funkcji możemy tworzyć bezpośrednio w Command Window, są to tzw. funkcje anonimowe; dla funkcji jednej zmiennej składnia

Bardziej szczegółowo

do MATLABa podstawowe operacje na macierzach WYKŁAD Piotr Ciskowski

do MATLABa podstawowe operacje na macierzach WYKŁAD Piotr Ciskowski Wprowadzenie do MATLABa podstawowe operacje na macierzach WYKŁAD Piotr Ciskowski M A T L A B : Computation Visualization Programming easy to use environment MATLAB = matrix laboratory podstawowa jednostka

Bardziej szczegółowo

Aby przygotować się do kolokwiów oraz do egzaminów należy ponownie przeanalizować zadania

Aby przygotować się do kolokwiów oraz do egzaminów należy ponownie przeanalizować zadania Chemia Budowlana - Wydział Chemiczny - 1 Aby przygotować się do kolokwiów oraz do egzaminów należy ponownie przeanalizować zadania rozwiązywane na wykładzie, rozwiązywane na ćwiczeniach, oraz samodzielnie

Bardziej szczegółowo

Algebra liniowa. 1. Macierze.

Algebra liniowa. 1. Macierze. Algebra liniowa 1 Macierze Niech m oraz n będą liczbami naturalnymi Przestrzeń M(m n F) = F n F n będącą iloczynem kartezjańskim m egzemplarzy przestrzeni F n z naturalnie określonymi działaniami nazywamy

Bardziej szczegółowo