Sprawozdanie do zadania numer 2

Save this PDF as:
 WORD  PNG  TXT  JPG

Wielkość: px
Rozpocząć pokaz od strony:

Download "Sprawozdanie do zadania numer 2"

Transkrypt

1 Sprawozdanie do zadania numer 2 Michał Pawlik Temat: Badanie efektywności algorytmów grafowych w zależności od rozmiaru instancji oraz sposobu reprezentacji grafu w pamięci komputera 1 WSTĘP W ramach zadania projektowego zaimplementowałem i przeanalizowałem działanie następujących algorytmów: Wyznaczających minimalne drzewo rozpinające: Prima oraz Kruskala Wyznaczających najkrótszą ścieżkę w grafie: Dijkstry Implementacje zostały wykonane z użyciem reprezentacji macierzy incydencji oraz listowej. Złożoności obliczeniowe algorytmów: Algorytm Prima O(E logv) Algorytm Kruskala O(E logv) Algorytm Dijkstry O(E logv) 2 PLAN EKSPERYMENTU 2.1 WIELKOŚCI STRUKTUR Struktury przyjmować będą wielkości 1, 25, 5, 75 i 1 wierzchołków. Dla każdej z badanych ilości wierzchołków rozpatrywane będą gęstości drzewa: 25%, 5%, 75% oraz 99%. 2.2 POMIAR CZASU Czas mierzony będzie poprzez pobranie czasu systemowego przed i po wykonaniu algorytmu, następnie policzenie ich różnicy. 2.3 GENEROWANIE GRAFÓW Dla grafów o niskiej gęstości algorytm dba o istnienie w grafie ścieżki, która łączy każdą parę wierzchołków i graf ma nie mniej krawędzi niż wynosi liczba wierzchołków pomniejszona o jeden. Dla gęstszych grafów nie zachodzi ryzyko niespójności, zatem są generowane losowo. Strona 1

2 Michał Pawlik WYNIKI EKSPERYMENTÓW 3.1 MINIMALNE DRZEWO ROZPINAJĄCE ALGORYTM KRUSKALA Reprezentacja macierzowa ,816 1, , ,32 258,192 5,1538 4,691 57, ,71 862,42 75,2494 7, , ,2 1669,32 99,3776 1, , , ,96 Reprezentacja listowa ,83 1, , ,62 252,91 5,1541 3, , ,87 842,43 75,25 7,245 11, , ,92 99,3857 1, ,6619 8, , MINIMALNE DRZEWO ROZPINAJĄCE ALGORYTM PRIMA Reprezentacja macierzowa ,393 2,191 55,66 385,88 155,65 5,691 4, ,34 771,24 317,82 75,115 6, ,85 117,1 4684,79 99,1346 8, ,66 154,9 6217,86 Reprezentacja listowa ,1258, , ,3228 4,9815 5,18312, , ,2 82, ,238, ,532 39, ,896 99,2956, ,14 51, ,471 Strona 2

3 Michał Pawlik MST reprezentacja macierzowa Prim - gęstość 25 Prim - gęstość 5 Prim - gęstość 75 Prim - gęstość 99 Kruskal - gęstość 25 Kruskal - gęstość 5 Kruskal - gęstość 75 Kruskal - gęstość Strona 3

4 Michał Pawlik MST Reprezentacja listowa Kruskal - gestosc Kruskal - gestosc 5 Kruskal - gestosc 75 Kruskal - gęstość 99 Prim - gęstość 25 Prim - gęstość 5 Prim - gęstość 75 Prim - gęstość Strona 4

5 Michał Pawlik Algorytm Prima - reprezentacja listowa Algorytm Prima - reprezentacja macierzowa Strona 5

6 Michał Pawlik Algorytm Kruskala - reprezentacja listowa Algorytm Prima - reprezentacja macierzowa Strona 6

7 Michał Pawlik WYZNACZANIE NAJKRÓTSZEJ ŚCIEŻKI W GRAFIE ALGORYTM DIJKSTRY Reprezentacja macierzowa ,258,133,4915 1,4587 3,892 5,283,1418,7747 2,1264 4, ,313,1675,9119 2,7417 6, ,351,1933 1,1237 3,3525 7,811 Reprezentacja listowa ,258,971,466 1,225 2,54 5,279,1236,58 1,2991 2, ,317,1463,619 1,572 3,823 99,343,1641,726 1,7835 3, Algorytm Dijkstry Lista - gęstość 25 Lista - gęstość 5 Lista - gęstość 75 Lista - gęstość 99 Macierz - gęstość 25 Macierz - gęstość 5 Macierz - gęstość 75 Macierz - gęstość 99 1 Strona 7

8 Michał Pawlik Algorytm Dijkstry - reprezentacja listowa 4 3,5 3 2,5 2 1,5 1, Algorytm Dijkstry - reprezentacja macierzowa Strona 8

9 Michał Pawlik WNIOSKI Dane uzyskane w pomiarach wykazały niską w stosunku do danych z literatury skuteczność reprezentacji listowej. Wynika ona z charakteru jej implementacji. W większości zaprezentowanych pomiarów zauważamy, że czas wykonania algorytmów opartych o reprezentację listową jest niższy. Dzieje się tak ze względu na krótszy czas alokacji listy w stosunku do macierzy incydencji. Rozbieżności pomiędzy danymi literaturowymi a przedstawionymi wynikami eksperymentu mogą wynikać z niedokładności pomiaru czasu w systemie Windows, różnej zajętości procesora podczas wykonywania algorytmów, niedoskonałej implementacji struktur (lista, tablica, kopiec, kolejka, stos) oraz, przede wszystkim, wpływających na efektywność błędów w implementacji algorytmów. Rzeczywiste kształty wykresów mogą nie być widoczne przy tak małej ilości danych. Algorytm Prima niezależnie od reprezentacji wykazuje niższe czasy wykonania. Ze względu na wady implementacyjne i wynikające z nich problemy z dokonaniem pomiarów, nie zamieszczono czwartego algorytmu (Forda-Bellmana) 5 BIBLIOGRAFIA W realizacji zadania projektu posiłkowałem się następującymi pomocami naukowymi: Cormen Thomas H., Leiserson Charles E., Rivest Ronald L., Wprowadzenie do Algorytmów, wyd. IV, Warszawa: Wydawnictwa Naukowo-Techniczne Algorytm Dijkstry Wikipedia, wolna encyklopedia Algorytm Prima Wikipedia, wolna encyklopedia Macierz incydencji Wikipedia, wolna encyklopedia Algorytm Kruskala Wikipedia, wolna encyklopedia Algorytm Forda-Bellmana Wikipedia, wolna encyklopedia Strona 9

Struktury danych i złożoność obliczeniowa Wykład 5. Prof. dr hab. inż. Jan Magott

Struktury danych i złożoność obliczeniowa Wykład 5. Prof. dr hab. inż. Jan Magott Struktury danych i złożoność obliczeniowa Wykład. Prof. dr hab. inż. Jan Magott Algorytmy grafowe: podstawowe pojęcia, reprezentacja grafów, metody przeszukiwania, minimalne drzewa rozpinające, problemy

Bardziej szczegółowo

Grafy i sieci w informatyce - opis przedmiotu

Grafy i sieci w informatyce - opis przedmiotu Grafy i sieci w informatyce - opis przedmiotu Informacje ogólne Nazwa przedmiotu Grafy i sieci w informatyce Kod przedmiotu 11.9-WI-INFD-GiSwI Wydział Kierunek Wydział Informatyki, Elektrotechniki i Automatyki

Bardziej szczegółowo

Złożoność obliczeniowa klasycznych problemów grafowych

Złożoność obliczeniowa klasycznych problemów grafowych Złożoność obliczeniowa klasycznych problemów grafowych Oznaczenia: G graf, V liczba wierzchołków, E liczba krawędzi 1. Spójność grafu Graf jest spójny jeżeli istnieje ścieżka łącząca każdą parę jego wierzchołków.

Bardziej szczegółowo

Algorytmy grafowe. Wykład 1 Podstawy teorii grafów Reprezentacje grafów. Tomasz Tyksiński CDV

Algorytmy grafowe. Wykład 1 Podstawy teorii grafów Reprezentacje grafów. Tomasz Tyksiński CDV Algorytmy grafowe Wykład 1 Podstawy teorii grafów Reprezentacje grafów Tomasz Tyksiński CDV Rozkład materiału 1. Podstawowe pojęcia teorii grafów, reprezentacje komputerowe grafów 2. Przeszukiwanie grafów

Bardziej szczegółowo

KARTA KURSU. Algorytmy, struktury danych i techniki programowania. Algorithms, Data Structures and Programming Techniques

KARTA KURSU. Algorytmy, struktury danych i techniki programowania. Algorithms, Data Structures and Programming Techniques KARTA KURSU Nazwa Nazwa w j. ang. Algorytmy, struktury danych i techniki programowania Algorithms, Data Structures and Programming Techniques Kod Punktacja ECTS* 3 Koordynator dr Paweł Pasteczka Zespół

Bardziej szczegółowo

Porównanie algorytmów wyszukiwania najkrótszych ścieżek międz. grafu. Daniel Golubiewski. 22 listopada Instytut Informatyki

Porównanie algorytmów wyszukiwania najkrótszych ścieżek międz. grafu. Daniel Golubiewski. 22 listopada Instytut Informatyki Porównanie algorytmów wyszukiwania najkrótszych ścieżek między wierzchołkami grafu. Instytut Informatyki 22 listopada 2015 Algorytm DFS w głąb Algorytm przejścia/przeszukiwania w głąb (ang. Depth First

Bardziej szczegółowo

Zofia Kruczkiewicz, Algorytmu i struktury danych, Wykład 14, 1

Zofia Kruczkiewicz, Algorytmu i struktury danych, Wykład 14, 1 Wykład Algorytmy grafowe metoda zachłanna. Właściwości algorytmu zachłannego:. W przeciwieństwie do metody programowania dynamicznego nie występuje etap dzielenia na mniejsze realizacje z wykorzystaniem

Bardziej szczegółowo

Matematyczne Podstawy Informatyki

Matematyczne Podstawy Informatyki Matematyczne Podstawy Informatyki dr inż. Andrzej Grosser Instytut Informatyki Teoretycznej i Stosowanej Politechnika Częstochowska Rok akademicki 03/0 Przeszukiwanie w głąb i wszerz I Przeszukiwanie metodą

Bardziej szczegółowo

AiSD zadanie trzecie

AiSD zadanie trzecie AiSD zadanie trzecie Gliwiński Jarosław Marek Kruczyński Konrad Marek Grupa dziekańska I5 5 czerwca 2008 1 Wstęp Celem postawionym przez zadanie trzecie było tzw. sortowanie topologiczne. Jest to typ sortowania

Bardziej szczegółowo

a) 7 b) 19 c) 21 d) 34

a) 7 b) 19 c) 21 d) 34 Zadanie 1. Pytania testowe dotyczące podstawowych własności grafów. Zadanie 2. Przy każdym z zadań może się pojawić polecenie krótkiej charakterystyki algorytmu. Zadanie 3. W zadanym grafie sprawdzenie

Bardziej szczegółowo

Digraf. 13 maja 2017

Digraf. 13 maja 2017 Digraf 13 maja 2017 Graf skierowany, digraf, digraf prosty Definicja 1 Digraf prosty G to (V, E), gdzie V jest zbiorem wierzchołków, E jest rodziną zorientowanych krawędzi, między różnymi wierzchołkami,

Bardziej szczegółowo

ID2ZSD2 Złożone struktury danych Advanced data structures. Informatyka II stopień ogólnoakademicki stacjonarne

ID2ZSD2 Złożone struktury danych Advanced data structures. Informatyka II stopień ogólnoakademicki stacjonarne Załącznik nr 7 do Zarządzenia Rektora nr 10/12 z dnia 21 lutego 2012r. KARTA MODUŁU / KARTA PRZEDMIOTU Kod modułu Nazwa modułu Nazwa modułu w języku angielskim Obowiązuje od roku akademickiego 2012/2013

Bardziej szczegółowo

Załącznik KARTA PRZEDMIOTU. KARTA PRZEDMIOTU Wydział Automatyki, Elektroniki i Informatyki, Rok akademicki: 2009/2010

Załącznik KARTA PRZEDMIOTU. KARTA PRZEDMIOTU Wydział Automatyki, Elektroniki i Informatyki, Rok akademicki: 2009/2010 1/1 Wydział Automatyki, Elektroniki i Informatyki, Rok akademicki: 2009/2010 Kierunek: INFORMATYKA Specjalność: PRZEDMIOT OBOWIĄZKOWY DLA WSZYSTKICH STUDENTÓW. Tryb studiów: NIESTACJONARNE PIERWSZEGO STOPNIA

Bardziej szczegółowo

Politechnika Krakowska im. Tadeusza Kościuszki. Karta przedmiotu. obowiązuje w roku akademickim 2012/2013. Algorytmy i struktury danych

Politechnika Krakowska im. Tadeusza Kościuszki. Karta przedmiotu. obowiązuje w roku akademickim 2012/2013. Algorytmy i struktury danych Politechnika Krakowska im. Tadeusza Kościuszki Karta przedmiotu Wydział Inżynierii Elektrycznej i Komputerowej obowiązuje w roku akademickim 2012/2013 Kierunek studiów: Elektrotechnika Forma studiów: Niestacjonarne

Bardziej szczegółowo

Literatura. 1) Pojęcia: złożoność czasowa, rząd funkcji. Aby wyznaczyć pesymistyczną złożoność czasową algorytmu należy:

Literatura. 1) Pojęcia: złożoność czasowa, rząd funkcji. Aby wyznaczyć pesymistyczną złożoność czasową algorytmu należy: Temat: Powtórzenie wiadomości z PODSTAW INFORMATYKI I: Pojęcia: złożoność czasowa algorytmu, rząd funkcji kosztu. Algorytmy. Metody programistyczne. Struktury danych. Literatura. A. V. Aho, J.E. Hopcroft,

Bardziej szczegółowo

Algorytmy wyznaczania centralności w sieci Szymon Szylko

Algorytmy wyznaczania centralności w sieci Szymon Szylko Algorytmy wyznaczania centralności w sieci Szymon Szylko Zakład systemów Informacyjnych Wrocław 10.01.2008 Agenda prezentacji Cechy sieci Algorytmy grafowe Badanie centralności Algorytmy wyznaczania centralności

Bardziej szczegółowo

Wykład 8. Drzewo rozpinające (minimum spanning tree)

Wykład 8. Drzewo rozpinające (minimum spanning tree) Wykład 8 Drzewo rozpinające (minimum spanning tree) 1 Minimalne drzewo rozpinające - przegląd Definicja problemu Własności minimalnych drzew rozpinających Algorytm Kruskala Algorytm Prima Literatura Cormen,

Bardziej szczegółowo

Algorytmy zachłanne. dr inż. Urszula Gałązka

Algorytmy zachłanne. dr inż. Urszula Gałązka Algorytmy zachłanne dr inż. Urszula Gałązka Algorytm zachłanny O Dokonuje wyboru, który w danej chwili wydaje się najkorzystniejszy. O Mówimy, że jest to wybór lokalnie optymalny O W rzeczywistości nie

Bardziej szczegółowo

PRZEWODNIK PO PRZEDMIOCIE

PRZEWODNIK PO PRZEDMIOCIE Nazwa przedmiotu: I KARTA PRZEDMIOTU CEL PRZEDMIOTU PRZEWODNIK PO PRZEDMIOCIE C1. Podniesienie poziomu wiedzy studentów z zagadnień dotyczących analizy i syntezy algorytmów z uwzględnieniem efektywności

Bardziej szczegółowo

Algorytm Dijkstry znajdowania najkrótszej ścieżki w grafie

Algorytm Dijkstry znajdowania najkrótszej ścieżki w grafie Algorytm Dijkstry znajdowania najkrótszej ścieżki w grafie Używane struktury danych: V - zbiór wierzchołków grafu, V = {1,2,3...,n} E - zbiór krawędzi grafu, E = {(i,j),...}, gdzie i, j Î V i istnieje

Bardziej szczegółowo

IZ2ZSD2 Złożone struktury danych Advanced data structures. Informatyka II stopień ogólnoakademicki niestacjonarne

IZ2ZSD2 Złożone struktury danych Advanced data structures. Informatyka II stopień ogólnoakademicki niestacjonarne KARTA MODUŁU / KARTA PRZEDMIOTU Załącznik nr 7 do Zarządzenia Rektora nr 10/12 z dnia 21 lutego 2012r. Kod modułu Nazwa modułu Nazwa modułu w języku angielskim Obowiązuje od roku akademickiego 2012/2013

Bardziej szczegółowo

Ogólne wiadomości o grafach

Ogólne wiadomości o grafach Ogólne wiadomości o grafach Algorytmy i struktury danych Wykład 5. Rok akademicki: / Pojęcie grafu Graf zbiór wierzchołków połączonych za pomocą krawędzi. Podstawowe rodzaje grafów: grafy nieskierowane,

Bardziej szczegółowo

Drzewa spinające MST dla grafów ważonych Maksymalne drzewo spinające Drzewo Steinera. Wykład 6. Drzewa cz. II

Drzewa spinające MST dla grafów ważonych Maksymalne drzewo spinające Drzewo Steinera. Wykład 6. Drzewa cz. II Wykład 6. Drzewa cz. II 1 / 65 drzewa spinające Drzewa spinające Zliczanie drzew spinających Drzewo T nazywamy drzewem rozpinającym (spinającym) (lub dendrytem) spójnego grafu G, jeżeli jest podgrafem

Bardziej szczegółowo

Załącznik Nr 5 do Zarz. Nr 33/11/ Kod przedmiotu:aisd2

Załącznik Nr 5 do Zarz. Nr 33/11/ Kod przedmiotu:aisd2 Załącznik Nr 5 do Zarz. Nr 33/11/12 (pieczęć wydziału) KARTA PRZEDMIOTU Z1-PU7 WYDANIE N1 Strona 1 z 5 1. Nazwa przedmiotu: ALGORYTMY I STRUKTURY DANYCH 2 3. Karta przedmiotu ważna od roku akademickiego:

Bardziej szczegółowo

Algorytmy grafowe. Wykład 2 Przeszukiwanie grafów. Tomasz Tyksiński CDV

Algorytmy grafowe. Wykład 2 Przeszukiwanie grafów. Tomasz Tyksiński CDV Algorytmy grafowe Wykład 2 Przeszukiwanie grafów Tomasz Tyksiński CDV Rozkład materiału 1. Podstawowe pojęcia teorii grafów, reprezentacje komputerowe grafów 2. Przeszukiwanie grafów 3. Spójność grafu,

Bardziej szczegółowo

Algorytmy Grafowe. dr hab. Bożena Woźna-Szcześniak, prof. UJD. Wykład 5 i 6. Uniwersytet Humanistyczno-Przyrodniczy im. Jana Długosza w Częstochowie

Algorytmy Grafowe. dr hab. Bożena Woźna-Szcześniak, prof. UJD. Wykład 5 i 6. Uniwersytet Humanistyczno-Przyrodniczy im. Jana Długosza w Częstochowie Algorytmy Grafowe dr hab. Bożena Woźna-Szcześniak, prof. UJD Uniwersytet Humanistyczno-Przyrodniczy im. Jana Długosza w Częstochowie b.wozna@ujd.edu.pl Wykład 5 i 6 B. Woźna-Szcześniak (UJD) Algorytmy

Bardziej szczegółowo

AISDE ćwiczenie 5. Algorytmy grafowe

AISDE ćwiczenie 5. Algorytmy grafowe AISDE ćwiczenie 5 Algorytmy grafowe Wstęp Ćwiczenie ma na celu zapoznanie się z przykładowymi implementacjami wybranych algorytmów grafowych. Analizowane będą dwa rodzaje algorytmów: znajdujące najkrótszą

Bardziej szczegółowo

Zaliczenie. Egzamin. lub. Wykład. Zaliczenie. Ćwiczenie. 3 zadania. Projekty. Ocena. Na ocenę

Zaliczenie. Egzamin. lub. Wykład. Zaliczenie. Ćwiczenie. 3 zadania. Projekty. Ocena. Na ocenę Zaliczenie Egzamin Ocena lub Zerówka Wykład z Zaliczenie Ocena Ćwiczenie Projekty 3 zadania Na ocenę Sylabus O http://wmii.uwm.edu.pl/~jakula/sylabus_23 17N1-ALISTD_PL.pdf JAK? CO? ILE? Polecane Cormen

Bardziej szczegółowo

IMPLEMENTACJA I PORÓWNANIE WYDAJNOŚCI WYBRANYCH ALGORYTMÓW GRAFOWYCH W WARUNKACH OBLICZEŃ RÓWNOLEGŁYCH

IMPLEMENTACJA I PORÓWNANIE WYDAJNOŚCI WYBRANYCH ALGORYTMÓW GRAFOWYCH W WARUNKACH OBLICZEŃ RÓWNOLEGŁYCH IMPLEMENTACJA I PORÓWNANIE WYDAJNOŚCI WYBRANYCH ALGORYTMÓW GRAFOWYCH W WARUNKACH OBLICZEŃ RÓWNOLEGŁYCH Michał Podstawski Praca dyplomowa napisana pod kierunkiem Prof. WSTI dr hab. inż. Jarosława Śmiei

Bardziej szczegółowo

Zadanie projektowe nr 1

Zadanie projektowe nr 1 Zadanie projektowe nr 1 Badanie efektywności operacji dodawania (wstawiania), usuwania oraz wyszukiwania elementów w podstawowych strukturach danych Należy zaimplementować oraz dokonać pomiaru czasu działania

Bardziej szczegółowo

Segmentacja obrazów cyfrowych z zastosowaniem teorii grafów - wstęp. autor: Łukasz Chlebda

Segmentacja obrazów cyfrowych z zastosowaniem teorii grafów - wstęp. autor: Łukasz Chlebda Segmentacja obrazów cyfrowych Segmentacja obrazów cyfrowych z zastosowaniem teorii grafów - wstęp autor: Łukasz Chlebda 1 Segmentacja obrazów cyfrowych - temat pracy Temat pracy: Aplikacja do segmentacji

Bardziej szczegółowo

Wprowadzenie do algorytmów / Thomas H. Cormen [et al.]. - wyd. 7. Warszawa, Spis treści. Wprowadzenie 2

Wprowadzenie do algorytmów / Thomas H. Cormen [et al.]. - wyd. 7. Warszawa, Spis treści. Wprowadzenie 2 Wprowadzenie do algorytmów / Thomas H. Cormen [et al.]. - wyd. 7. Warszawa, 2012 Spis treści Przedmowa XIII Część I Podstawy Wprowadzenie 2 1. Rola algorytmów w obliczeniach 4 1.1. Algorytmy 4 1.2. Algorytmy

Bardziej szczegółowo

Egzamin, AISDI, I termin, 18 czerwca 2015 r.

Egzamin, AISDI, I termin, 18 czerwca 2015 r. Egzamin, AISDI, I termin, 18 czerwca 2015 r. 1 W czasie niezależnym do danych wejściowych działają algorytmy A. sortowanie bąbelkowego i Shella B. sortowanie szybkiego i przez prosty wybór C. przez podział

Bardziej szczegółowo

Politechnika Krakowska im. Tadeusza Kościuszki. Karta przedmiotu. obowiązuje w roku akademickim 2012/2013. Projektowanie i analiza algorytmów

Politechnika Krakowska im. Tadeusza Kościuszki. Karta przedmiotu. obowiązuje w roku akademickim 2012/2013. Projektowanie i analiza algorytmów Politechnika Krakowska im. Tadeusza Kościuszki Karta przedmiotu Wydział Inżynierii Elektrycznej i Komputerowej obowiązuje w roku akademickim 01/013 Kierunek studiów: Elektrotechnika Forma studiów: Niestacjonarne

Bardziej szczegółowo

Minimalne drzewa rozpinające

Minimalne drzewa rozpinające KNM UŚ 26-28 listopada 2010 Ostrzeżenie Wprowadzenie Motywacja Definicje Niektóre pojęcia pojawiające się podczas tego referatu są naszymi autorskimi tłumaczeniami z języka angielskiego. Nie udało nam

Bardziej szczegółowo

Zadanie projektowe 1: Struktury danych i złożoność obliczeniowa

Zadanie projektowe 1: Struktury danych i złożoność obliczeniowa Łukasz Przywarty 171018 Data utworzenia: 24.03.2010r. Mariusz Kacała 171058 Prowadzący: prof. dr hab. inż. Adam Janiak oraz dr inż. Tomiasz Krysiak Zadanie projektowe 1: Struktury danych i złożoność obliczeniowa

Bardziej szczegółowo

Algorytmy Grafowe. dr hab. Bożena Woźna-Szcześniak, prof. UJD. Wykład 1,2,3. Uniwersytet Humanistyczno-Przyrodniczy im. Jana Długosza w Częstochowie

Algorytmy Grafowe. dr hab. Bożena Woźna-Szcześniak, prof. UJD. Wykład 1,2,3. Uniwersytet Humanistyczno-Przyrodniczy im. Jana Długosza w Częstochowie Algorytmy Grafowe dr hab. Bożena Woźna-Szcześniak, prof. UJD Uniwersytet Humanistyczno-Przyrodniczy im. Jana Długosza w Częstochowie b.wozna@ujd.edu.pl Wykład 1,2,3 B. Woźna-Szcześniak (UJD) Algorytmy

Bardziej szczegółowo

Algorytmy Równoległe i Rozproszone Część V - Model PRAM II

Algorytmy Równoległe i Rozproszone Część V - Model PRAM II Algorytmy Równoległe i Rozproszone Część V - Model PRAM II Łukasz Kuszner pokój 209, WETI http://www.sphere.pl/ kuszner/ kuszner@sphere.pl Oficjalna strona wykładu http://www.sphere.pl/ kuszner/arir/ 2005/06

Bardziej szczegółowo

Badania operacyjne: Wykład Zastosowanie kolorowania grafów w planowaniu produkcji typu no-idle

Badania operacyjne: Wykład Zastosowanie kolorowania grafów w planowaniu produkcji typu no-idle Badania operacyjne: Wykład Zastosowanie kolorowania grafów w planowaniu produkcji typu no-idle Paweł Szołtysek 12 czerwca 2008 Streszczenie Planowanie produkcji jest jednym z problemów optymalizacji dyskretnej,

Bardziej szczegółowo

Matematyczne Podstawy Informatyki

Matematyczne Podstawy Informatyki Matematyczne Podstawy Informatyki dr inż. Andrzej Grosser Instytut Informatyki Teoretycznej i Stosowanej Politechnika Częstochowska Rok akademicki 2013/2014 Informacje podstawowe 1. Konsultacje: pokój

Bardziej szczegółowo

Algorytmy sortujące. Sortowanie bąbelkowe

Algorytmy sortujące. Sortowanie bąbelkowe Algorytmy sortujące Sortowanie bąbelkowe Sortowanie bąbelkowe - wstęp Algorytm sortowania bąbelkowego jest jednym z najstarszych algorytmów sortujących. Zasada działania opiera się na cyklicznym porównywaniu

Bardziej szczegółowo

Algorytmy i struktury danych.

Algorytmy i struktury danych. Kod przedmiotu: ASD Rodzaj przedmiotu: Wydział: Informatyki Kierunek: Informatyka Specjalność (specjalizacja): - Algorytmy i struktury danych. kierunkowy ; obowiązkowy Poziom studiów: pierwszego stopnia

Bardziej szczegółowo

Wykaz tematów prac licencjackich w roku akademickim 2016/2017 kierunek: informatyka

Wykaz tematów prac licencjackich w roku akademickim 2016/2017 kierunek: informatyka Wykaz tematów prac licencjackich w roku akademickim 2016/2017 kierunek: informatyka L.p. Nazwisko i imię studenta 1. Karczewska Aleksandra Promotor Temat pracy licencjackiej Opis zadania stawianego studentowi

Bardziej szczegółowo

Struktury danych i złozoność obliczeniowa. Prof. dr hab. inż. Jan Magott

Struktury danych i złozoność obliczeniowa. Prof. dr hab. inż. Jan Magott Struktury danych i złozoność obliczeniowa Prof. dr hab. inż. Jan Magott Formy zajęć: Wykład 1 godz., Ćwiczenia 1 godz., Projekt 2 godz.. Adres strony z materiałami do wykładu: http://www.zio.iiar.pwr.wroc.pl/sdizo.html

Bardziej szczegółowo

Kierunek: Informatyka. Przedmiot:

Kierunek: Informatyka. Przedmiot: Kierunek: Informatyka Przedmiot: ALGORYTMY I Z LOŻONOŚĆ Czas trwania: Przedmiot: Jezyk wyk ladowy: semestr III obowiazkowy polski Rodzaj zaj eć Wyk lad Laboratorium Prowadzacy Prof. dr hab. Wojciech Penczek

Bardziej szczegółowo

Algorytmiczna teoria grafów

Algorytmiczna teoria grafów Przedmiot fakultatywny 20h wykładu + 20h ćwiczeń 21 lutego 2014 Zasady zaliczenia 1 ćwiczenia (ocena): kolokwium, zadania programistyczne (implementacje algorytmów), praca na ćwiczeniach. 2 Wykład (egzamin)

Bardziej szczegółowo

MATEMATYKA DYSKRETNA - MATERIAŁY DO WYKŁADU GRAFY

MATEMATYKA DYSKRETNA - MATERIAŁY DO WYKŁADU GRAFY ERIAŁY DO WYKŁADU GRAFY Graf nieskierowany Grafem nieskierowanym nazywamy parę G = (V, E), gdzie V jest pewnym zbiorem skończonym (zwanym zbiorem wierzchołków grafu G), natomiast E jest zbiorem nieuporządkowanych

Bardziej szczegółowo

Przygotowanie kilku wersji kodu zgodnie z wymogami wersji zadania,

Przygotowanie kilku wersji kodu zgodnie z wymogami wersji zadania, Przetwarzanie równoległe PROJEKT OMP i CUDA Temat projektu dotyczy analizy efektywności przetwarzania równoległego realizowanego przy użyciu komputera równoległego z procesorem wielordzeniowym z pamięcią

Bardziej szczegółowo

Drzewa poszukiwań binarnych

Drzewa poszukiwań binarnych 1 Drzewa poszukiwań binarnych Kacper Pawłowski Streszczenie W tej pracy przedstawię zagadnienia związane z drzewami poszukiwań binarnych. Przytoczę poszczególne operacje na tej strukturze danych oraz ich

Bardziej szczegółowo

REFERAT PRACY DYPLOMOWEJ

REFERAT PRACY DYPLOMOWEJ REFERAT PRACY DYPLOMOWEJ Temat pracy: Implementacja i porównanie wydajności wybranych algorytmów grafowych w warunkach obliczeń równoległych Autor pracy: Michał Podstawski Promotor: Prof. WSTI, dr hab.

Bardziej szczegółowo

Graf. Definicja marca / 1

Graf. Definicja marca / 1 Graf 25 marca 2018 Graf Definicja 1 Graf ogólny to para G = (V, E), gdzie V jest zbiorem wierzchołków (węzłów, punktów grafu), E jest rodziną krawędzi, które mogą być wielokrotne, dokładniej jednoelementowych

Bardziej szczegółowo

koordynator modułu dr hab. Michał Baczyński rok akademicki 2012/2013

koordynator modułu dr hab. Michał Baczyński rok akademicki 2012/2013 Uniwersytet Śląski w Katowicach str. 1 Kierunek i poziom studiów: Matematyka, studia II stopnia, rok 1 Sylabus modułu: Matematyczne podstawy informatyki (03-MO2S-12-MPIn) 1. Informacje ogólne koordynator

Bardziej szczegółowo

Algorytmy i Struktury Danych.

Algorytmy i Struktury Danych. Algorytmy i Struktury Danych. Grafy dr hab. Bożena Woźna-Szcześniak bwozna@gmail.com Jan Długosz University, Poland Wykład 9 Bożena Woźna-Szcześniak (AJD) Algorytmy i Struktury Danych. Wykład 9 1 / 53

Bardziej szczegółowo

Algorytmizacja procesu wyznaczania długości ścieżek w sieci rozbudowanej podstawą optymalizacji zagadnień transportowych

Algorytmizacja procesu wyznaczania długości ścieżek w sieci rozbudowanej podstawą optymalizacji zagadnień transportowych Ignaciuk Szymon 1, Wawrzosek Jacek 2, Kubera Elżbieta 3, Baryła-Paśnik Małgorzata 4, Piekarski Wiesław 5 Uniwersytet Przyrodniczy w Lublinie Algorytmizacja procesu wyznaczania długości ścieżek w sieci

Bardziej szczegółowo

Równoległy algorytm wyznaczania bloków dla cyklicznego problemu przepływowego z przezbrojeniami

Równoległy algorytm wyznaczania bloków dla cyklicznego problemu przepływowego z przezbrojeniami Równoległy algorytm wyznaczania bloków dla cyklicznego problemu przepływowego z przezbrojeniami dr inż. Mariusz Uchroński Wrocławskie Centrum Sieciowo-Superkomputerowe Agenda Cykliczny problem przepływowy

Bardziej szczegółowo

WYŻSZA SZKOŁA INFORMATYKI STOSOWANEJ I ZARZĄDZANIA Pod auspicjami Polskiej Akademii Nauk Warszawa, ul. Newelska 6, tel.

WYŻSZA SZKOŁA INFORMATYKI STOSOWANEJ I ZARZĄDZANIA Pod auspicjami Polskiej Akademii Nauk Warszawa, ul. Newelska 6, tel. WYŻSZA SZKOŁA INFORMATYKI STOSOWANEJ I ZARZĄDZANIA Pod auspicjami Polskiej Akademii Nauk 01-447 Warszawa, ul. Newelska 6, tel. 22 3486544 Wydział Informatyki Kierunek studiów Profil Stopień studiów Forma

Bardziej szczegółowo

Grafy i Zastosowania. 5: Drzewa Rozpinające. c Marcin Sydow. Drzewa rozpinające. Cykle i rozcięcia fundamentalne. Zastosowania

Grafy i Zastosowania. 5: Drzewa Rozpinające. c Marcin Sydow. Drzewa rozpinające. Cykle i rozcięcia fundamentalne. Zastosowania Grafy i Grafy i 5: Rozpinające Spis zagadnień Grafy i i lasy cykle fundamentalne i własności cykli i rozcięć przestrzenie cykli i rozcięć* : zastosowanie w sieciach elektrycznych minimalne * algorytm Kruskala*

Bardziej szczegółowo

Programowanie dynamiczne i algorytmy zachłanne

Programowanie dynamiczne i algorytmy zachłanne Programowanie dynamiczne i algorytmy zachłanne Tomasz Głowacki tglowacki@cs.put.poznan.pl Zajęcia finansowane z projektu "Rozwój i doskonalenie kształcenia na Politechnice Poznańskiej w zakresie technologii

Bardziej szczegółowo

MATEMATYKA DYSKRETNA - KOLOKWIUM 2

MATEMATYKA DYSKRETNA - KOLOKWIUM 2 1 MATEMATYKA DYSKRETNA - KOLOKWIUM 2 GRUPA A RACHUNKI+KRÓTKIE WYJAŚNIENIA! NA TEJ KARTCE! KAŻDA DODATKOWA KARTKA TO MINUS 1 PUNKT! Imię i nazwisko...... Nr indeksu... 1. (3p.) Znajdź drzewo o kodzie Prufera

Bardziej szczegółowo

Wykład 10 Grafy, algorytmy grafowe

Wykład 10 Grafy, algorytmy grafowe . Typy złożoności obliczeniowej Wykład Grafy, algorytmy grafowe Typ złożoności oznaczenie n Jedna operacja trwa µs 5 logarytmiczna lgn. s. s.7 s liniowa n. s.5 s. s Logarytmicznoliniowa nlgn. s.8 s.4 s

Bardziej szczegółowo

Reprezentacje grafów nieskierowanych Reprezentacje grafów skierowanych. Wykład 2. Reprezentacja komputerowa grafów

Reprezentacje grafów nieskierowanych Reprezentacje grafów skierowanych. Wykład 2. Reprezentacja komputerowa grafów Wykład 2. Reprezentacja komputerowa grafów 1 / 69 Macierz incydencji Niech graf G będzie grafem nieskierowanym bez pętli o n wierzchołkach (x 1, x 2,..., x n) i m krawędziach (e 1, e 2,..., e m). 2 / 69

Bardziej szczegółowo

Listy, kolejki, stosy

Listy, kolejki, stosy Listy, kolejki, stosy abc Lista O Struktura danych składa się z węzłów, gdzie mamy informacje (dane) i wskaźniki do następnych węzłów. Zajmuje tyle miejsca w pamięci ile mamy węzłów O Gdzie można wykorzystać:

Bardziej szczegółowo

ZASTOSOWANIE GRAFU WIDOCZNOŚCI W PLANOWANIU TRASY PRZEJŚCIA STATKU APPLICATION OF A VISIBILITY GRAPH IN SHIP S PATH PLANNING

ZASTOSOWANIE GRAFU WIDOCZNOŚCI W PLANOWANIU TRASY PRZEJŚCIA STATKU APPLICATION OF A VISIBILITY GRAPH IN SHIP S PATH PLANNING Zeszyty Naukowe Akademii Morskiej w Gdyni Scientific Journal of Gdynia Maritime University Nr /, ISSN - e-issn - ZASTOSOWANIE GRAFU WIDOCZNOŚCI W PLANOWANIU TRASY PRZEJŚCIA STATKU APPLICATION OF A VISIBILITY

Bardziej szczegółowo

Programowanie sieciowe. Tadeusz Trzaskalik

Programowanie sieciowe. Tadeusz Trzaskalik Programowanie Tadeusz Trzaskalik 8.1. Wprowadzenie Słowa kluczowe Drzewo rozpinające Minimalne drzewo rozpinające Najkrótsza droga w sieci Wierzchołek początkowy Maksymalny przepływ w sieci Źródło Ujście

Bardziej szczegółowo

Zał nr 4 do ZW. Dla grupy kursów zaznaczyć kurs końcowy. Liczba punktów ECTS charakterze praktycznym (P)

Zał nr 4 do ZW. Dla grupy kursów zaznaczyć kurs końcowy. Liczba punktów ECTS charakterze praktycznym (P) Zał nr 4 do ZW WYDZIAŁ PODSTAWOWYCH PROBLEMÓW TECHNIKI KARTA PRZEDMIOTU Nazwa w języku polskim : Algorytmy i Struktury Danych Nazwa w języku angielskim : Algorithms adn Data Structures Kierunek studiów

Bardziej szczegółowo

Sylabus modułu: Matematyczne podstawy informatyki (kod modułu:03-mo2n-12-mpln)

Sylabus modułu: Matematyczne podstawy informatyki (kod modułu:03-mo2n-12-mpln) Uniwersytet Śląski w Katowicach str. 1 Kierunek i poziom studiów: Matematyka, studia II stopnia, rok 1 Sylabus modułu: Matematyczne podstawy informatyki (kod modułu:03-mo2n-12-mpln) 1. Informacje ogólne

Bardziej szczegółowo

Metodyki i techniki programowania

Metodyki i techniki programowania Metodyki i techniki programowania dr inż. Maciej Kusy Katedra Podstaw Elektroniki Wydział Elektrotechniki i Informatyki Politechnika Rzeszowska Elektronika i Telekomunikacja, sem. 2 Plan wykładu Sprawy

Bardziej szczegółowo

Przykładowe sprawozdanie. Jan Pustelnik

Przykładowe sprawozdanie. Jan Pustelnik Przykładowe sprawozdanie Jan Pustelnik 30 marca 2007 Rozdział 1 Sformułowanie problemu Tematem pracy jest porównanie wydajności trzech tradycyjnych metod sortowania: InsertionSort, SelectionSort i BubbleSort.

Bardziej szczegółowo

Teoria obliczeń i złożoność obliczeniowa

Teoria obliczeń i złożoność obliczeniowa Teoria obliczeń i złożoność obliczeniowa Kontakt: dr hab. inż. Adam Kasperski, prof. PWr. pokój 509 B4 adam.kasperski@pwr.wroc.pl materiały + informacje na stronie www. Zaliczenie: Egzamin Literatura Problemy

Bardziej szczegółowo

Instytut Ekonomiczny 9 kierunek studiów

Instytut Ekonomiczny 9 kierunek studiów Kod przedmiotu: PLPILA02-IEEKO-L-2s1-2012IWBIAS Pozycja planu: D1 INFORMACJE O PRZEDMIOCIE A. Podstawowe dane 1 Nazwa przedmiotu Algorytmy i struktury 2 Rodzaj przedmiotu Specjalnościowy /Obowiązkowy 3

Bardziej szczegółowo

Konspekt. 15 października Wykład III (16 października 2014 r.): optymalizacja kombinatoryczna na grafach (metody sieciowe)

Konspekt. 15 października Wykład III (16 października 2014 r.): optymalizacja kombinatoryczna na grafach (metody sieciowe) Konspekt 15 października 2014 1 Wykład III (16 października 2014 r.): optymalizacja kombinatoryczna na grafach (metody sieciowe) 1.1 Przykładowe problemy optymalizacji kombinatorycznej na grafach 1. Optymalizacja

Bardziej szczegółowo

Twój wynik: 4 punktów na 6 możliwych do uzyskania (66,67 %).

Twój wynik: 4 punktów na 6 możliwych do uzyskania (66,67 %). Powrót Twój wynik: 4 punktów na 6 możliwych do uzyskania (6667 %). Nr Opcja Punkty Poprawna Odpowiedź Rozważmy algorytm AVLSequence postaci: 1 Niech drzewo będzie rezultatem działania algorytmu AVLSequence

Bardziej szczegółowo

Informatyka II. Laboratorium.

Informatyka II. Laboratorium. Informatyka II. Laboratorium. Ćwiczenie 13. Reprezentacja grafów w Java. Wyszukiwanie najkrótszej ścieżki w grafie. I. Wstęp. Grafy [1] są podstawową strukturą danych dla wielu algorytmów stosowanych w

Bardziej szczegółowo

Matematyczne podstawy informatyki Mathematical Foundations of Computational Sciences. Matematyka Poziom kwalifikacji: II stopnia

Matematyczne podstawy informatyki Mathematical Foundations of Computational Sciences. Matematyka Poziom kwalifikacji: II stopnia Nazwa przedmiotu: Kierunek: Rodzaj przedmiotu: obowiązkowy dla wszystkich specjalności Rodzaj zajęć: wykład, ćwiczenia Matematyczne podstawy informatyki Mathematical Foundations of Computational Sciences

Bardziej szczegółowo

EGZAMIN - Wersja A. ALGORYTMY I STRUKTURY DANYCH Lisek89 opracowanie kartki od Pani dr E. Koszelew

EGZAMIN - Wersja A. ALGORYTMY I STRUKTURY DANYCH Lisek89 opracowanie kartki od Pani dr E. Koszelew 1. ( pkt) Dany jest algorytm, który dla dowolnej liczby naturalnej n, powinien wyznaczyd sumę kolejnych liczb naturalnych mniejszych od n. Wynik algorytmu jest zapisany w zmiennej suma. Algorytm i=1; suma=0;

Bardziej szczegółowo

Karta przedmiotu. obowiązuje studentów rozpoczynających studia w roku akademickim 2015/2016. Forma studiów: Stacjonarne Kod kierunku: 11.

Karta przedmiotu. obowiązuje studentów rozpoczynających studia w roku akademickim 2015/2016. Forma studiów: Stacjonarne Kod kierunku: 11. Państwowa Wyższa Szko la Zawodowa w Nowym Sa czu Karta przedmiotu Instytut Techniczny obowiązuje studentów rozpoczynających studia w roku akademickim 201/2016 Kierunek studiów: Informatyka Profil: Ogólnoakademicki

Bardziej szczegółowo

TEORIA GRAFÓW I SIECI

TEORIA GRAFÓW I SIECI TEORIA GRAFÓW I SIECI Temat nr 1: Definicja grafu. Rodzaje i części grafów dr hab. inż. Zbigniew TARAPATA, prof. WAT e-mail: zbigniew.tarapata@wat.edu.pl http://tarapata.edu.pl tel.: 261-83-95-04, p.225/100

Bardziej szczegółowo

Matematyka dyskretna

Matematyka dyskretna Matematyka dyskretna Wykład 13: Teoria Grafów Gniewomir Sarbicki Literatura R.J. Wilson Wprowadzenie do teorii grafów Definicja: Grafem (skończonym, nieskierowanym) G nazywamy parę zbiorów (V (G), E(G)),

Bardziej szczegółowo

DWA ZDANIA O TEORII GRAFÓW. przepływ informacji tylko w kierunku

DWA ZDANIA O TEORII GRAFÓW. przepływ informacji tylko w kierunku DWA ZDANIA O TEORII GRAFÓW Krawędź skierowana Grafy a routing Każdą sieć przedstawić składającego przedstawiają E, inaczej węzłami). komunikacyjną można w postaci grafu G się z węzłów V (które węzły sieci)

Bardziej szczegółowo

Załącznik KARTA PRZEDMIOTU. KARTA PRZEDMIOTU Wydział Automatyki, Elektroniki i Informatyki, Rok akademicki: 2009/2010.

Załącznik KARTA PRZEDMIOTU. KARTA PRZEDMIOTU Wydział Automatyki, Elektroniki i Informatyki, Rok akademicki: 2009/2010. 01.10.009r. 1/1 Wydział Automatyki, Elektroniki i Informatyki, Rok akademicki: 009/010 Kierunek: INFORMATYKA AiSD/NSMW Specjalność: PRZEDMIOT OBOWIĄZKOWY DLA WSZYSTKICH STUDENTÓW Tryb studiów: NIESTACJONARNE

Bardziej szczegółowo

Wyznaczanie optymalnej trasy problem komiwojażera

Wyznaczanie optymalnej trasy problem komiwojażera Wyznaczanie optymalnej trasy problem komiwojażera Optymalizacja w podejmowaniu decyzji Opracowała: mgr inż. Natalia Malinowska Wrocław, dn. 28.03.2017 Wydział Elektroniki Politechnika Wrocławska Plan prezentacji

Bardziej szczegółowo

Kombinowanie o nieskończoności. 2. Wyspy, mosty, mapy i kredki materiały do ćwiczeń

Kombinowanie o nieskończoności. 2. Wyspy, mosty, mapy i kredki materiały do ćwiczeń Kombinowanie o nieskończoności. 2. Wyspy, mosty, mapy i kredki materiały do ćwiczeń Projekt Matematyka dla ciekawych świata spisał: Michał Korch 15 marzec 2018 Szybkie przypomnienie z wykładu Prezentacja

Bardziej szczegółowo

Podstawy Informatyki. Sprawność algorytmów

Podstawy Informatyki. Sprawność algorytmów Podstawy Informatyki Sprawność algorytmów Sprawność algorytmów Kryteria oceny oszczędności Miara złożoności rozmiaru pamięci (złożoność pamięciowa): Liczba zmiennych + liczba i rozmiar struktur danych

Bardziej szczegółowo

KARTA PRZEDMIOTU. 1. Informacje ogólne. 2. Ogólna charakterystyka przedmiotu. Algorytmy i struktury danych, C3

KARTA PRZEDMIOTU. 1. Informacje ogólne. 2. Ogólna charakterystyka przedmiotu. Algorytmy i struktury danych, C3 KARTA PRZEDMIOTU 1. Informacje ogólne Nazwa przedmiotu i kod (wg planu studiów): Nazwa przedmiotu (j. ang.): Kierunek studiów: Specjalność/specjalizacja: Poziom kształcenia: Profil kształcenia: Forma studiów:

Bardziej szczegółowo

Struktury danych i złożoność obliczeniowa. Prof. dr hab. inż. Jan Magott

Struktury danych i złożoność obliczeniowa. Prof. dr hab. inż. Jan Magott Struktury danych i złożoność obliczeniowa Prof. dr hab. inż. Jan Magott Formy zajęć: Wykład 1 godz., Ćwiczenia 2 godz., Projekt 1 godz.. Strona kursu: http://www.zio.iiar.pwr.wroc.pl/sdizo.html Struktury

Bardziej szczegółowo

Algorytmy i str ruktury danych. Metody algorytmiczne. Bartman Jacek

Algorytmy i str ruktury danych. Metody algorytmiczne. Bartman Jacek Algorytmy i str ruktury danych Metody algorytmiczne Bartman Jacek jbartman@univ.rzeszow.pl Metody algorytmiczne - wprowadzenia Znamy strukturę algorytmów Trudność tkwi natomiast w podaniu metod służących

Bardziej szczegółowo

R E C E N Z J A. rozprawy doktorskiej mgr Wojciecha Bury nt. Wielokryterialne, mrowiskowe algorytmy optymalizacji w nawigacji samochodowej

R E C E N Z J A. rozprawy doktorskiej mgr Wojciecha Bury nt. Wielokryterialne, mrowiskowe algorytmy optymalizacji w nawigacji samochodowej Prof. dr hab. inż. Franciszek Seredyński Warszawa, 25.02.2015 Uniwersytet Kardynała Stefana Wyszyńskiego w Warszawie Wydział Matematyczno Przyrodniczy Szkoła Nauk Ścisłych ul. Wóycickiego 1/3, 01-938 Warszawa

Bardziej szczegółowo

WSTĘP DO INFORMATYKI. Grafy i struktury grafowe

WSTĘP DO INFORMATYKI. Grafy i struktury grafowe Akademia Górniczo-Hutnicza Wydział Elektrotechniki, Automatyki, Informatyki i Inżynierii Biomedycznej WTĘP DO INFORMATYKI Adrian Horzyk Grafy i struktury grafowe www.agh.edu.pl DEFINICJA GRAFU Graf to

Bardziej szczegółowo

Badanie struktury sieci WWW

Badanie struktury sieci WWW Eksploracja zasobów internetowych Wykład 1 Badanie struktury sieci WWW mgr inż. Maciej Kopczyński Białystok 214 Rys historyczny Idea sieci Web stworzona została w 1989 przez Tima BernersaLee z CERN jako

Bardziej szczegółowo

Algorytmiczna teoria grafów

Algorytmiczna teoria grafów Podstawowe pojęcia i klasy grafów Wykład 1 Grafy nieskierowane Definicja Graf nieskierowany (graf) G = (V,E) jest to uporządkowana para składająca się z niepustego skończonego zbioru wierzchołków V oraz

Bardziej szczegółowo

Algorytmika Problemów Trudnych

Algorytmika Problemów Trudnych Algorytmika Problemów Trudnych Wykład 9 Tomasz Krawczyk krawczyk@tcs.uj.edu.pl Kraków, semestr letni 2016/17 plan wykładu Algorytmy aproksymacyjne: Pojęcie algorytmu aproksymacyjnego i współczynnika aproksymowalności.

Bardziej szczegółowo

Programowanie obiektowe

Programowanie obiektowe Programowanie obiektowe Sieci powiązań Paweł Daniluk Wydział Fizyki Jesień 2015 P. Daniluk (Wydział Fizyki) PO w. IX Jesień 2015 1 / 21 Sieci powiązań Można (bardzo zgrubnie) wyróżnić dwa rodzaje powiązań

Bardziej szczegółowo

Algorytmy z powracaniem

Algorytmy z powracaniem Algorytmy z powracaniem Materiały Grafem nazywamy zbiór G = (V, E), gdzie: V jest zbiorem wierzchołków (ang. vertex) E jest zbiorem krawędzi (E można też określić jako podzbiór zbioru nieuporządkowanych

Bardziej szczegółowo

Struktury Danych i Złożoność Obliczeniowa

Struktury Danych i Złożoność Obliczeniowa Struktury Danych i Złożoność Obliczeniowa Zajęcia 1 Podstawowe struktury danych Tablica Najprostsza metoda przechowywania serii danych, zalety: prostota, wady: musimy wiedzieć, ile elementów chcemy przechowywać

Bardziej szczegółowo

Temat: Struktury danych do reprezentacji grafów. Wybrane algorytmy grafowe.

Temat: Struktury danych do reprezentacji grafów. Wybrane algorytmy grafowe. Temat: Struktury danych do reprezentacji grafów. Wybrane algorytmy grafowe. Oznaczenia G = V, E - graf bez wag, gdzie V - zbiór wierzchołków, E- zbiór krawdzi V = n - liczba wierzchołków grafu G E = m

Bardziej szczegółowo

Wykład 7. Algorytmy grafowe

Wykład 7. Algorytmy grafowe Wykład Algorytmy grafowe Algorytmy grafowe i podstawowe algorytmy przeszukiwania Problem Definicje i własności Reprezentacja Przeszukiwanie wszerz (Breadthirst Search) Przeszukiwanie w głąb (Depthirst

Bardziej szczegółowo

SYLABUS DOTYCZY CYKLU KSZTAŁCENIA Realizacja w roku akademickim 2016/17

SYLABUS DOTYCZY CYKLU KSZTAŁCENIA Realizacja w roku akademickim 2016/17 Załącznik nr 4 do Uchwały Senatu nr 430/01/2015 SYLABUS DOTYCZY CYKLU KSZTAŁCENIA 2015 2019 Realizacja w roku akademickim 2016/17 1.1. Podstawowe informacje o przedmiocie/module Nazwa przedmiotu/ modułu

Bardziej szczegółowo

PROJEKT Z TEORETYCZNYCH PODSTAW INFORMATYKI

PROJEKT Z TEORETYCZNYCH PODSTAW INFORMATYKI Autor: DAWID PICHEN (132775) PROJEKT Z TEORETYCZNYCH PODSTAW INFORMATYKI Temat: ALGORYTM DIJKSTRA Wstęp Celem niniejszego projektu była implementacja, analiza i wskazanie złoŝoności obliczeniowej algorytmu

Bardziej szczegółowo