Temat: Algorytmy aproksymacyjne dla wybranych NP-trudnych problemów grafowych

Wielkość: px
Rozpocząć pokaz od strony:

Download "Temat: Algorytmy aproksymacyjne dla wybranych NP-trudnych problemów grafowych"

Transkrypt

1 Temat: Algorytmy aproksymacyjne dla wybranych NP-trudnych problemów grafowych 1. Problem komiwojaera Wejcie: Graf G = <V, E, w> pełny, zorientowany z dodatnimi wagami; w - funkcja wag grafu Wyjcie: Najtaszy w sensie łcznej sumy wag cykl Hamiltona w grafie Problem, cho prosty, jeli chodzi o zdefiniowanie, okazuje si bardzo trudny do rozwizania. Jeden z dokładnych algorytmów polega na kompletnym przegldzie wszystkich moliwych cykli Hamiltona w grafie G i wybranie najkrótszego. Poniewa ilo moliwych cykli ronie z iloci miast jak (n-1)!, złoono problemu wynosi O(n!). Zatem ju dla n=2 mamy cykli. Czas oblicze tylu cykli Hamiltona dla najszybszych znanych dzisiaj komputerów wyniósłby około 4. lat. G. Morton i A.H. Land (w 1955) przedstawili pierwszy, 3-przybliony algorytm (czyli dajcy co najwyej 3 razy gorszy wynik od optymalnego), a w 1956 Merill M. Flood opublikowali algorytm 2- przybliony, oparty o technik włczania, rozwizujcy metryczn wersj problemu komiwojaera. Wersja metryczna problemu komiwojaera ma na wejciu graf metryczny, tzn. taki, e dla kadej trójki wierzchołków grafu i. j, k spełniony jest warunek trójkta, tj.: w ik w ij + w jk. Mimo zawenia klasy grafów, które mog by przetwarzane w metrycznej wersji problemu komiwojaera, w praktyce grafy wejciowe dla tego problemu s najczciej metryczne. W 1975 roku N. Christofides przedstawił algorytm 1,5-przybliony,

2 bdcy najlepszym dostpnym algorytmem aproksymacyjnym dla wersji metrycznej problemu komiwojaera. Istniej algorytmy aproksymacyjne, dajce równie dobre przyblienie trasy, oparte o sztuczn inteligencj i genetyk; wykorzystujce elementy losowe, które mog by zastosowane dla dowolnych grafów (niekoniecznie metrycznych). a) Algorytm Flooda Idea Wybieramy wierzchołek pocztkowy cyklu s. Nastpny wierzchołek cyklu wybieramy sporód n-1 pozostałych wierzchołków, zgodnie z nastpujcym kryterium: (*) Wybieramy wierzchołek nie odwiedzony, połoony najdalej od cyklu (tzn. od wszystkich wierzchołków, które ju s w cyklu). Oznaczmy wybrany wierzchołek przez p. Otrzymujemy w ten sposób cykl złoony z dwóch wierzchołków: (s, p, s). Nastpnie jest wybierany kolejny wierzchołek, spełniajcy kryterium (*). Do biecego rozwizania włczamy albo cykl (s, p, q, s) albo (s, q, p, s) w zalenoci od tego, który jest taszy. Kontynuujemy krok wybierania wierzchołka i włczania go do cyklu czciowego a do momentu uzyskania pełnego cyklu. Oznaczmy przez VT zbiór wierzchołków nalecych do biecego cyklu, a E T zbiór krawdzi tego cyklu. I krok: Wybieranie wierzchołka Aby efektywnie wyznaczy wierzchołek nie odwiedzony, lecy najdalej od wierzchołków biecego cyklu, zastosujemy tablic jednowymiarow odległoci dist, tak, e dist[v] zapamituje

3 najmniejsz odległo wierzchołków cyklu od v. Jeeli wierzchołek f jest włczany do cyklu jako nastpny, to ma najwiksz warto w tablicy dist. Po włczeniu f do cyklu tablica dist jest uaktualniana i kady jej element staje si równy minimum sporód biecej wartoci w tablicy dist i odpowiedniej wartoci w wierszu f macierzy wag W. II krok: Włczanie wierzchołka do cyklu Załómy, e biecy cykl zawiera k wierzchołków i nastpnym do włczenia wierzchołkiem jest f. Badamy kady łuk (i, j) cyklu i okrelamy koszt włczenia f midzy i oraz j, który jest równy: cij = wif + wfj wij. Wród k łuków cyklu wybieramy łuk (t, h) o najmniejszym koszcie c th. Wierzchołek f włczamy do cyklu midzy t i h, uaktualniamy długo cyklu i wartoci elementów w tablicy dist. algorytm TSP_Flood; // inicjalizacja V T ={s}; E T = {(s, s)}; w ss = ; koszt = ; for (u V \ {s}) dist[u] = w su ; // iteracja while ( V T < n) { f = wierzchołek ze zbioru V \ V T o najwikszej wartoci dist ; for ((i, j) E T ) cij = wif + wfj wij ; (t, h) = łuk z E T o najmniejszym koszcie c th ; E E {( t, f ), ( f, h) } ( t, h) T = T V V { f }; T = T koszt = koszt + c th ; { };

4 for (x V \ V T ) do dist[x]=min{dist[x], w fx }; } Wierzchołki V T i łuki E T, tworzce biecy cykl, s reprezentowane w tablicy cycle, w której element cycle[i] przyjmuje warto j, gdy krawd (i, j) naley do biecego cyklu i w przeciwnym przypadku. Przykład W = inicjalizacja: s = 1 dist: -, 3, 93, 13, 33, 9, cycle : 1,,,,, koszt: iteracja: I krok f = 3 - wierzchołek o maksymalnej wartoci dist koszt = koszt + c 11 =koszt + w 13 +w 31 = =138 dist: -, 3, -, 13, 16, 9, cycle: 3,, 1,,,, cykl: II krok f = 5 koszt = koszt + min{c 13, c 31 }=

5 = koszt +min{w 15 +w 53 - w 13, w 35 +w 51 - w 31 }= = min{ , }= = min{28, -1}=137 dist: -, 3, -, 13, -, 9, cycle: 3,, 5,, 1,, cykl: W = III krok f = 4 koszt = koszt +min{c 13, c 35, c 51 }= = koszt + min{w 14 +w 43 - w 13, w 34 +w 45 - w 35, w 54 +w 41 - w 51 }= = min{, 76, 44}=137 + =137 dist: -, 3, -, -, -, 7 cycle: 4,, 5, 3, 1,, cykl: IV krok f = 6 koszt = koszt + min{c 14, c 43, c 35, c 51 }= = 137+ min{42, -55, 14, }= = 82 dist: -, 3, -, -, -, - cycle: 4,, 5, 6, 1, 3, cykl:

6 V krok f = 2 koszt = koszt + min{c 14, c 46, c 63, c 35, c 51 }= = 82+ min{32, 99, 147, 22, 22}= = 14 Mamy tym razem dwie moliwoci włczenia z najmniejszym kosztem. Wybieramy c 35 i otrzymujemy ostatecznie rozwizanie cycle: 1, 4, 6, 3, 2, 5, 1 o całkowitym koszcie 14. Otrzymane rozwizanie jest jedn z dwóch optymalnych tras komiwojaera dla tego przykładu. W ogólnym przypadku nie mona jednak oczekiwa, e zawsze bdziemy mieli tyle szczcia, aby algorytm przybliony generował rozwizanie optymalne. Zaleca si, aby algorytm przybliony zastosowa n razy dla danego przypadku danych i wybra rozwizanie o najniszym koszcie całkowitym. Złoono czasowa algorytmu przyblionego Przy jednym uruchomieniu : O(n 2 ). Przy n uruchomieniach: O(n 3 ) Twierdzenie Algorytm aproksymacyjny dla problemu komiwojaera zrealizowany metod przez włczanie jest algorytmem aproksymacyjnym z C ograniczeniem wzgldnym równym 2. Czyli 2 *, gdzie C C * jest optymalnym cyklem dla danego grafu, a C jest cyklem wyznaczonym przez algorytm przybliony.

7 b) Algorytm Christofidesa Algorytm Christofidesa wykorzystuje pojcie minimalnego skojarzenia dokładnego. Def. Minimalne skojarzenie dokładne grafu G to podzbiór krawdzi tego grafu taki, e kady wierzchołek grafu G ma stopie jeden i suma wag wybranych krawdzi jest najmniejsza. Idea Algorytm w pierwszej fazie wyznacza minimalne drzewo rozpinajce grafu. Nastpnie, wierzchołki stopnia nieparzystego w drzewie s łczone krawdziami w pary tak, aby waga grafu indukowanego przez drzewo rozpinajce i krawdzie łczce wierzchołki stopnia nieparzystego w tym drzewie była moliwie najmniejsza. Wszystkie wierzchołki tak wyznaczonego grafu maj stopie parzysty, wic istnieje w nim cykl Eulera. W ostatnim kroku algorytmu cykl ten jest wyznaczany i przekształcany w cykl Hamiltona, który jest jednoczenie cyklem wynikowym. algorytm TSP_Christofides; T = minimalne drzewo rozpinajce grafu G ; V odd = zbiór wierzchołków nieparzystego stopnia w drzewie T ; M odd = minimalne skojarzenia dokładne w V odd ; CE = cykl Eulera w podgrafie indukowanym przez T M odd ; Przekształ cykl Eulera CE w cykl Hamiltona w grafie pełnym G;

8 Przykład Graf pełny G ma 11 wierzchołków. T = minimalne drzewo rozpinajce grafu G ; Wagi krawdzi zostały pominite. V odd = zbiór wierzchołków nieparzystego stopnia w drzewie T ; V odd = {1, 2, 3, 5, 6, 7, 8, 9, 11, 12 } Fakt: Zbiór V odd zawiera zawsze parzyst liczb wierzchołków. M odd = minimalne skojarzenia dokładne w V odd ;

9 Przegldamy zbiór wzłów nieparzystego stopnia i wyznaczamy minimalne skojarzenia midzy nimi, czyli łczymy w pary wierzchołki zbioru V odd tak, aby suma wag krawdzi łczcych wszystkie pary była moliwie najmniejsza. Gdyby liczba wierzchołków w zbiorze V odd była nieparzysta, to do zbioru M odd trzeba włczy najtasz krawd łczc nieskojarzony wierzchołek ze zbioru V odd z którym w wierzchołków V\V odd. Pytanie: Jak efektywnie wyznaczy minimalne skojarzenie dokładne dla zbioru wierzchołków V odd? CE = cykl Eulera w podgrafie indukowanym przez T M odd ; Taki cykl na pewno istnieje, gdy wszystkie wierzchołki grafu indukowanego przez zbiór T M odd maj stopie parzysty. CE :

10 przekształ cykl Eulera CE w cykl Hamiltona w grafie pełnym G; Przekształcenie cyklu Eulera w cykl Hamiltona polega na usuniciu wielokrotnych wystpie tych samych wierzchołków z cyklu (oprócz wierzchołka startowego), przy czy zostawiane jest wystpienie o najniszym koszcie. W powyszym grafie usunite jest, na przykład, pierwsze wystpienie wierzchołka 5, bo widocznie daje to mniejsz warto cykl ni gdyby usunite zostało drugie wystpienie wierzchołka 5.

11 Złoono czasowa algorytmu Christofidesa: Drzewo rozpinajce T jestemy w stanie wygenerowa kosztem O(mlogn). Cykl Eulera na grafie indukowanym przez zbiór T M odd moemy wyznaczy kosztem O(n) stosujc przegldanie DFS. Przekształcenie cyklu Eulera w cykl Hamiltona mona zrealizowa kosztem O(n 2 ). Zakładajc, e minimalne skojarzenie dokładne na zbiorze V odd moemy wyznaczy kosztem O(n 3 ), koszt łczny algorytmu Christofidesa jest równie O(n 3 ). 2. Algorytmy aproksymacyjne dla problemu kolorowania grafu a) Problem kolorowania wierzchołkowego grafu Pojcia: Def. Przypisanie kolorów wierzchołkom grafu G, po jednym kolorze dla kadego wierzchołka tak, aby ssiednie wierzchołki otrzymały róne kolory nazywamy pokolorowaniem grafu G. Def. Pokolorowanie k kolorami nazywamy k- pokolorowaniem. Def. Graf jest k - barwny, jeli istnieje l- pokolorowanie grafu G, gdzie l k. Def. Najmniejsz warto k, dla której graf G jest k - barwny nazywamy liczb chromatyczn grafu G. Def. Zbiór wierzchołków barwliwoci. tego samego koloru nazywamy klas Def. Takie dwa podzbiory, w których adne dwa wierzchołki nie ssiaduj ze sob nazywamy podzbiorami niezalenymi.

12 Def. Podzbiór W nazywamy maksymalnym zbiorem niezalenym, jeli nie istnieje zbiór zawierajcy W i róny od W, który jest niezaleny. Def. Najwikszy zbiór niezaleny to taki maksymalny zbiór niezaleny, który ma najwicej wierzchołków sporód wszystkich zbiorów maksymalnych. Przykład Liczby w nawiasach kwadratowych oznaczaj numer koloru przyporzdkowanego wierzchołkowi w procesie kolorowania. Graf jest 3-barwny. Na rysunku wyej przykład 3-pokolorowania. Liczb chromatyczn grafu 3. {1, 6}, {2, 4}, {3, 5} - klasy barwliwoci Przykłady podzbiorów niezalenych: {1, 6}, {2, 4}. S to jednoczenie przykłady maksymalnych zbiorów niezalenych i najwikszych zbiorów niezalenych.

13 Problem kolorowaniu grafu Wejcie: G - graf nieskierowany, bez wag. Wyjcie: Liczba chromatyczna grafu. Problem kolorowania grafu jest równowany problemowi podziału zbioru wierzchołków grafu na minimaln liczb podzbiorów niezalenych: Wejcie: Graf nieskierowany, bez wag; Wyjcie: Wyznaczenie takiej minimalnej liczby k, dla której istnieje podział zbioru V wierzchołków grafu na k zbiorów niezalenych V 1, V 2,..., V k takich, e : V V = dla i j, i, j = 1,2,..., k oraz k V i i = V. i j a) Algorytm najwikszych zbiorów niezalenych =1 Idea Tworzony jest cig klas barwliwoci, które s najwikszymi zbiorami niezalenymi w podgrafach wyznaczonymi przez wierzchołki niepokolorowane. algorytm Max_IndependentSets; U=V; k=; while (U { k=k +1; AMIS(U, W); for (u W) f[u]= k; U=U \ W; } // f - funkcja kolorujca graf

14 Funkcja AMIS(U, W) wyznacza przybliony najliczniejszy podzbiór niezaleny W w grafie indukowanym przez zbiór podzbiór wierzchołków jeszcze niepomalowanych U. algorytm AMIS(U, W); // AMIS approximation of the maximum // independent set U 1 = U; W = ; while (U 1 ) { znale wierzchołek u o minimalnym stopniu w grafie indukowanym przez podzbiór U 1 ; W = W {u}; U 1 = U 1 \ {u}\{v U 1 : (v, u) E}; } Poczynajc od W =, zbiór W jest powikszany w kadym kroku o wierzchołek majcy najmniejszy stopie w podgrafie utworzonym przez wierzchołki nie ssiadujce z elementami zbioru W.

15 Przykład Algorytm dokładny zwraca wynik k = 3. Podział: {1, 6}, {2, 4}, {3, 5} (pokolorowanie zaznaczone w nawiasach kwadratowych). Algorytm przybliony daje wynik k = 4. Podział:{3, 4}, {1, 6}, {2}, {5} (pokolorowanie zaznaczone w nawiasach zwykłych ). Złoono czasowa algorytmu najwikszych zbiorów niezalenych: Mona pokaza, e algorytm ten ma złoono O(n 3 ). Twierdzenie Algorytm aproksymacyjny najwikszych zbiorów niezalenych dla problemu kolorowaniu grafu jest algorytmem aproksymacyjnym z ograniczeniem wzgldnym O(n/logn). C C ( / log n) O n *

16 b) Prosty algorytm sekwencyjny dla problemu kolorowania grafu (algorytm Welsha-Powella) W algorytmie tym bdziemy zakładali, e wierzchołki zostały ponumerowane w kolejnoci nierosncych stopni. Idea Wierzchołek v i jest dodawany do podgrafu indukowanego przez ju pomalowane wierzchołki v 1, v 2,..., v i-1, po czym okrela si nowe pokolorowanie wierzchołków v 1, v 2,..., v i-1, v i. Krok ten jest powtarzany dla i=1, 2,..., n, przy czym dla i=1 podgraf jest pusty. W kadym kroku staramy si uy moliwie najmniej kolorów. W algorytmie tym wierzchołek v i otrzymuje kolor o najniszym numerze. algorytm Welsha-Powella; f[v 1 ] = 1; for (i = 2; i<=n; i++) f[v i ] = min{k: k 1 i f[v j ] k dla kadego v j (1 j i) ssiadujcego z v i }; Zauwamy, e w prostym sekwencyjnym algorytmie, w momencie kolorowania wierzchołka v i, wierzchołki poprzedzajce v i zachowuj swoje kolory.

17 Przykład Prosty algorytm sekwencyjny daje 3-pokolorowanie (zaznaczone w nawiasach kwadratowych). Złoono czasowa prostego algorytmu sekwencyjnego: O(n 2 ). Twierdzenie Prosty algorytm sekwencyjny z załoenie uporzdkowania wierzchołków w kolejnoci nierosncych stopni jest algorytmem aproksymacyjnym z ograniczeniem wzgldnym nie przekraczajcym wartoci 1 max{ deg( vi )} +. Czyli + max{ deg( )} 1 i n oznacza stopie wierzchołka v i. C C * 1, gdzie deg(v i ) v i 1 i n

18 3. Minimalne pokrycie wierzchołkowe Def. Pokryciem wierzchołkowym grafu nieskierowanego G = V, E jest podzbiór V ' V takie, e jeli {u,v} jest krawdzi w grafie, to albo u V ' albo v V ', albo obydwa wierzchołki nale do V. Rozmiar pokrycia wierzchołkowego to liczba nalecych do niego wierzchołków. Problem pokrycia wierzchołkowego polega na znalezieniu w danym grafie nieskierowanym pokrycia wierzchołkowego minimalnego rozmiaru. Wejcie: Graf G = <V, E> nieskierowany bez wag Wyjcie: Minimalne pokrycie wierzchołkowe grafu G a) Algorytm zachłanny Idea Wierzchołki grafu s sortowane nierosnco ze wzgldu na ich stopie. Do pokrycia grafu algorytm wybiera te wierzchołki, które aktualnie posiadaj najwyszy stopie, czyli posiadaj najwiksz ilo połcze z innymi wierzchołkami. Po kadym wybranym wierzchołku, uaktualnia si stopnie wierzchołków połczonych z wybranym wierzchołkiem, zmniejszajc je o jeden. W kolejnym kroku algorytmu rozwaane s wierzchołki, które nie zostały wybrane w poprzednich krokach. Algorytm zatrzymuje si, gdy zbiór wybranych wierzchołków pokrywa V.

19 algorytm Greedy-Vertex-Cover; V = ; C = ; W = V; while (C V { v = wierzchołek o najwikszym stopniu w zbiorze W ; V = V {v}; C = C {v}; W = W {v}; } return V ; Przykład G: for (u Adj(v)) { C = C {u}; deg(u) = deg(u)-1; } v = 3 ; V = {3}; C = {3, 2, 5, 6, 7}; W = {1, 2, 4, 5, 6, 7} v = 2 ; V = {2, 3}; C = {1, 3, 2, 5, 6, 7}; W = {1, 4, 5, 6, 7}

20 v = 1; V = {1, 2, 3}; C = V; W = {4, 5, 6, 7} Dla przykładowego grafu algorytm Greedy-Vertex-Cover zwrócił pokrycie złoone z trzech wierzchołków. Optymalne pokrycie dla tego grafu ma rozmiar 2. V = {1, 3}. Złoono czasowa algorytm Greedy_Vertex_Cover: Jeeli wierzchołek o aktualnie najwyszym stopniu bdziemy wybierali kosztem O(logn) (np. przy pomocy kopca), to łczny koszt algorytmu wyniesie O(m + nlogn). Twierdzenie Liczba wierzchołków wybranych w algorytmie Greedy-Vertex-Cover w stosunku do wyniku optymalnego jest co najwyej dwa razy wiksza.

21 b) Usprawniony algorytmu Greedy-Vertex-Cover Usprawnienie polega na poszukiwaniu wierzchołków wiszcych grafu, czyli takich których stopie jest równy 1 (posiadaj tylko 1 krawd). W przypadku znalezienia takiego wierzchołka, jego ssiad (wierzchołek połczony z nim krawdzi) automatycznie staje si jednym z wierzchołków pokrywajcych graf. Jeli w danym momencie algorytmu, nie istnieje wierzchołek posiadajcy stopie równy 1, to algorytm wyszukuje i dodaje do listy wierzchołków wiszcych wierzchołek o najwikszym stopniu (czyli tak jak to robi poprzedni algorytm). Przykład G: Wierzchołki wiszce to 7 i 4. Do pokrycia dodawani s ssiedzi tych wierzchołków: V = {3, 1}

22 C = {1, 4, 3, 2, 5, 6, 7}; Poniewa C = V, to algorytm si koczy. Złoono czasowa usprawnionego algorytmu Greedy_Vertex_Cover: Wierzchołki wiszce jestemy w stanie znale i przetworzy (tj. włczy ich ssiadów do wyników i zaktualizowa zbiory V, C i W, a take stopnie wierzchołków) kosztem O(n+m). Zatem łczny koszt algorytmu wyniesie O(m + nlogn). Twierdzenie Liczba wierzchołków wybranych w usprawnionym algorytmie Greedy-Vertex-Cover w stosunku do wyniku optymalnego jest co najwyej dwa razy wiksza.

Temat: Algorytmy aproksymacyjne (przyblione) cz. I. Majc do rozwizania trudny obliczeniowo problem, moemy wybra jedno z dwóch nastpujcych podej:

Temat: Algorytmy aproksymacyjne (przyblione) cz. I. Majc do rozwizania trudny obliczeniowo problem, moemy wybra jedno z dwóch nastpujcych podej: Temat: Algorytmy aproksymacyjne (przyblione) cz. I. 1. Algorytmy aproksymacyjne Majc do rozwizania trudny obliczeniowo problem, moemy wybra jedno z dwóch nastpujcych podej: Zastosowa technik algorytmów

Bardziej szczegółowo

Temat: Problem minimalnego drzewa Steinera. Definicja problemu. Zastosowania. Algorytm dokładny Hakimi. Algorytmy aproksymacyjne.

Temat: Problem minimalnego drzewa Steinera. Definicja problemu. Zastosowania. Algorytm dokładny Hakimi. Algorytmy aproksymacyjne. Temat: Problem minimalnego drzewa Steinera. Definicja problemu. Zastosowania. Algorytm dokładny Hakimi. Algorytmy aproksymacyjne. 1. Definicja problemu Wejcie: Graf spójny niezorientowany G =

Bardziej szczegółowo

1) Grafy eulerowskie własnoci algorytmy. 2) Problem chiskiego listonosza

1) Grafy eulerowskie własnoci algorytmy. 2) Problem chiskiego listonosza 165 1) Grafy eulerowskie własnoci algorytmy 2) Problem chiskiego listonosza 166 Grafy eulerowskie Def. Graf (multigraf, niekoniecznie spójny) jest grafem eulerowskim, jeli zawiera cykl zawierajcy wszystkie

Bardziej szczegółowo

Temat: Problem najkrótszych cieek w grafach waonych, cz. I: Algorytmy typu label - setting.

Temat: Problem najkrótszych cieek w grafach waonych, cz. I: Algorytmy typu label - setting. Temat: Problem najkrótszych cieek w grafach waonych, cz. I: Algorytmy typu label - setting.. Oznaczenia i załoenia Oznaczenia G = - graf skierowany z funkcj wagi s wierzchołek ródłowy t wierzchołek

Bardziej szczegółowo

Skojarzenia. Najliczniejsze skojarzenia: Dokładne skojarzenia o maksymalnej sumie wag w obcionych pełnych grafach dwudzielnych.

Skojarzenia. Najliczniejsze skojarzenia: Dokładne skojarzenia o maksymalnej sumie wag w obcionych pełnych grafach dwudzielnych. 206 Skojarzenia Najliczniejsze skojarzenia: grafy proste dwudzielne, dowolne grafy proste. Dokładne skojarzenia o maksymalnej sumie wag w obcionych pełnych grafach dwudzielnych. 207 Definicje Def Zbiór

Bardziej szczegółowo

Wstp. Warto przepływu to

Wstp. Warto przepływu to 177 Maksymalny przepływ Załoenia: sie przepływow (np. przepływ cieczy, prdu, danych w sieci itp.) bdziemy modelowa za pomoc grafów skierowanych łuki grafu odpowiadaj kanałom wierzchołki to miejsca połcze

Bardziej szczegółowo

Kolorowanie wierzchołków

Kolorowanie wierzchołków 240 Kolorowanie wierzchołków Def. Niech G bdzie grafem prostym. Przez kolorowanie wierzchołków rozumiemy takie etykietowanie elementów V(G) liczbami naturalnymi, e ssiednie wierzchołki otrzymuj róne liczby

Bardziej szczegółowo

oraz spełnia warunki: (*) dla wszystkich wierzchołków

oraz spełnia warunki: (*) dla wszystkich wierzchołków Temat: Problem najtaszego przepływu. Definicja problemu, przykład zastosowania. Algorytm Kleina. Algorytm Busackera Gowena. 1. Definicja problemu najtaszego przepływu Wejcie: Graf zorientowany G =

Bardziej szczegółowo

Temat: Struktury danych do reprezentacji grafów. Wybrane algorytmy grafowe.

Temat: Struktury danych do reprezentacji grafów. Wybrane algorytmy grafowe. Temat: Struktury danych do reprezentacji grafów. Wybrane algorytmy grafowe. Oznaczenia G = V, E - graf bez wag, gdzie V - zbiór wierzchołków, E- zbiór krawdzi V = n - liczba wierzchołków grafu G E = m

Bardziej szczegółowo

Temat: Technika zachłanna. Przykłady zastosowania. Własno wyboru zachłannego i optymalnej podstruktury.

Temat: Technika zachłanna. Przykłady zastosowania. Własno wyboru zachłannego i optymalnej podstruktury. Temat: Technika zachłanna. Przykłady zastosowania. Własno wyboru zachłannego i optymalnej podstruktury. Algorytm zachłanny ( ang. greedy algorithm) wykonuje zawsze działanie, które wydaje si w danej chwili

Bardziej szczegółowo

Szukanie najkrótszych dróg z jednym ródłem

Szukanie najkrótszych dróg z jednym ródłem Szukanie najkrótszych dróg z jednym ródłem Algorytm Dijkstry Załoenia: dany jest spójny graf prosty G z wagami na krawdziach waga w(e) dla kadej krawdzi e jest nieujemna dany jest wyróniony wierzchołek

Bardziej szczegółowo

MATEMATYKA DYSKRETNA - MATERIAŁY DO WYKŁADU GRAFY

MATEMATYKA DYSKRETNA - MATERIAŁY DO WYKŁADU GRAFY ERIAŁY DO WYKŁADU GRAFY Graf nieskierowany Grafem nieskierowanym nazywamy parę G = (V, E), gdzie V jest pewnym zbiorem skończonym (zwanym zbiorem wierzchołków grafu G), natomiast E jest zbiorem nieuporządkowanych

Bardziej szczegółowo

Wektor o pocztku i kocu odpowiednio w punktach. Prosta zawierajca punkty p i q: pq Półprosta zaczynajca si w punkcie p i zawierajca punkt q:.

Wektor o pocztku i kocu odpowiednio w punktach. Prosta zawierajca punkty p i q: pq Półprosta zaczynajca si w punkcie p i zawierajca punkt q:. Temat: Geometria obliczeniowa, cz I. Podstawowe algorytmy geometryczne. Problem sprawdzania przynalenoci punktu do wielokta. Problem otoczki wypukłej algorytmy Grahama, i Jarvisa. 1. Oznaczenia Punkty

Bardziej szczegółowo

Zad. 1 Zad. 2 Zad. 3 Zad. 4 Zad. 5 SUMA. W obu podpunktach zakªadamy,»e kolejno± ta«ców jest wa»na.

Zad. 1 Zad. 2 Zad. 3 Zad. 4 Zad. 5 SUMA. W obu podpunktach zakªadamy,»e kolejno± ta«ców jest wa»na. Zad. 1 Zad. 2 Zad. 3 Zad. 4 Zad. 5 SUMA Zadanko 1 (12p.) Na imprezie w Noc Kupaªy s 44 dziewczyny. Nosz one 11 ró»nych imion, a dla ka»dego imienia s dokªadnie 4 dziewczyny o tym imieniu przy czym ka»da

Bardziej szczegółowo

Problem decyzyjny naley do klasy NP. (Polynomial), jeeli moe by rozwizany w czasie conajwyej wielomianowym przez algorytm A dla DTM.

Problem decyzyjny naley do klasy NP. (Polynomial), jeeli moe by rozwizany w czasie conajwyej wielomianowym przez algorytm A dla DTM. WYKŁAD : Teoria NP-zupełnoci. Problem decyzyjny naley do klasy P (Polynomial), jeeli moe by rozwizany w czasie conajwyej wielomianowym przez algorytm A dla DTM. (przynaleno ta jest zachowana równie dla

Bardziej szczegółowo

Struktury danych i złożoność obliczeniowa Wykład 5. Prof. dr hab. inż. Jan Magott

Struktury danych i złożoność obliczeniowa Wykład 5. Prof. dr hab. inż. Jan Magott Struktury danych i złożoność obliczeniowa Wykład. Prof. dr hab. inż. Jan Magott Algorytmy grafowe: podstawowe pojęcia, reprezentacja grafów, metody przeszukiwania, minimalne drzewa rozpinające, problemy

Bardziej szczegółowo

Kolorowanie wierzchołków grafu

Kolorowanie wierzchołków grafu Kolorowanie wierzchołków grafu Niech G będzie grafem prostym. Przez k-kolorowanie właściwe wierzchołków grafu G rozumiemy takie przyporządkowanie wierzchołkom grafu liczb naturalnych ze zbioru {1,...,

Bardziej szczegółowo

Przykłady grafów. Graf prosty, to graf bez pętli i bez krawędzi wielokrotnych.

Przykłady grafów. Graf prosty, to graf bez pętli i bez krawędzi wielokrotnych. Grafy Graf Graf (ang. graph) to zbiór wierzchołków (ang. vertices), które mogą być połączone krawędziami (ang. edges) w taki sposób, że każda krawędź kończy się i zaczyna w którymś z wierzchołków. Graf

Bardziej szczegółowo

Drzewa spinające MST dla grafów ważonych Maksymalne drzewo spinające Drzewo Steinera. Wykład 6. Drzewa cz. II

Drzewa spinające MST dla grafów ważonych Maksymalne drzewo spinające Drzewo Steinera. Wykład 6. Drzewa cz. II Wykład 6. Drzewa cz. II 1 / 65 drzewa spinające Drzewa spinające Zliczanie drzew spinających Drzewo T nazywamy drzewem rozpinającym (spinającym) (lub dendrytem) spójnego grafu G, jeżeli jest podgrafem

Bardziej szczegółowo

a) 7 b) 19 c) 21 d) 34

a) 7 b) 19 c) 21 d) 34 Zadanie 1. Pytania testowe dotyczące podstawowych własności grafów. Zadanie 2. Przy każdym z zadań może się pojawić polecenie krótkiej charakterystyki algorytmu. Zadanie 3. W zadanym grafie sprawdzenie

Bardziej szczegółowo

Graf. Definicja marca / 1

Graf. Definicja marca / 1 Graf 25 marca 2018 Graf Definicja 1 Graf ogólny to para G = (V, E), gdzie V jest zbiorem wierzchołków (węzłów, punktów grafu), E jest rodziną krawędzi, które mogą być wielokrotne, dokładniej jednoelementowych

Bardziej szczegółowo

E ' E G nazywamy krawędziowym zbiorem

E ' E G nazywamy krawędziowym zbiorem Niech G będzie grafem spójnym. Wierzchołek x nazywamy rozcinającym, jeśli G\{x} jest niespójny. Niech G będzie grafem spójnym. V ' V G nazywamy zbiorem rozcinającym jeśli G\V' jest niespójny Niech G będzie

Bardziej szczegółowo

Matematyka dyskretna. Andrzej Łachwa, UJ, B/14

Matematyka dyskretna. Andrzej Łachwa, UJ, B/14 Matematyka dyskretna Andrzej Łachwa, UJ, 2019 andrzej.lachwa@uj.edu.pl 1B/14 Drogi w grafach Marszruta (trasa) w grafie G z wierzchołka w do wierzchołka u to skończony ciąg krawędzi w postaci. W skrócie

Bardziej szczegółowo

Temat: Algorytmy zachłanne

Temat: Algorytmy zachłanne Temat: Algorytmy zachłanne Algorytm zachłanny ( ang. greedy algorithm) wykonuje zawsze działanie, które wydaje si w danej chwili najkorzystniejsze. Wybiera zatem lokalnie optymaln moliwo w nadziei, e doprowadzi

Bardziej szczegółowo

Kolorowanie wierzchołków Kolorowanie krawędzi Kolorowanie regionów i map. Wykład 8. Kolorowanie

Kolorowanie wierzchołków Kolorowanie krawędzi Kolorowanie regionów i map. Wykład 8. Kolorowanie Wykład 8. Kolorowanie 1 / 62 Kolorowanie wierzchołków - definicja Zbiory niezależne Niech G będzie grafem bez pętli. Definicja Mówimy, że G jest grafem k kolorowalnym, jeśli każdemu wierzchołkowi możemy

Bardziej szczegółowo

Struktury danych i złożoność obliczeniowa Wykład 7. Prof. dr hab. inż. Jan Magott

Struktury danych i złożoność obliczeniowa Wykład 7. Prof. dr hab. inż. Jan Magott Struktury danych i złożoność obliczeniowa Wykład 7 Prof. dr hab. inż. Jan Magott Problemy NP-zupełne Transformacją wielomianową problemu π 2 do problemu π 1 (π 2 π 1 ) jest funkcja f: D π2 D π1 spełniająca

Bardziej szczegółowo

Gramatyki regularne i automaty skoczone

Gramatyki regularne i automaty skoczone Gramatyki regularne i automaty skoczone Alfabet, jzyk, gramatyka - podstawowe pojcia Co to jest gramatyka regularna, co to jest automat skoczony? Gramatyka regularna Gramatyka bezkontekstowa Translacja

Bardziej szczegółowo

Algorytmika Problemów Trudnych

Algorytmika Problemów Trudnych Algorytmika Problemów Trudnych Wykład 9 Tomasz Krawczyk krawczyk@tcs.uj.edu.pl Kraków, semestr letni 2016/17 plan wykładu Algorytmy aproksymacyjne: Pojęcie algorytmu aproksymacyjnego i współczynnika aproksymowalności.

Bardziej szczegółowo

Znajdowanie skojarzeń na maszynie równoległej

Znajdowanie skojarzeń na maszynie równoległej 11 grudnia 2008 Spis treści 1 Skojarzenia w różnych klasach grafów Drzewa Grafy gęste Grafy regularne dwudzielne Claw-free graphs 2 Drzewa Skojarzenia w drzewach Fakt Wybierajac krawędź do skojarzenia

Bardziej szczegółowo

Złożoność obliczeniowa klasycznych problemów grafowych

Złożoność obliczeniowa klasycznych problemów grafowych Złożoność obliczeniowa klasycznych problemów grafowych Oznaczenia: G graf, V liczba wierzchołków, E liczba krawędzi 1. Spójność grafu Graf jest spójny jeżeli istnieje ścieżka łącząca każdą parę jego wierzchołków.

Bardziej szczegółowo

Kolorowanie wierzchołków

Kolorowanie wierzchołków Kolorowanie wierzchołków Mając dany graf, pokolorować jego wierzchołki w taki sposób, aby każde dwa wierzchołki sąsiednie miały inny kolor. Każda krawędź łączy wierzchołki różnych kolorów. Takie pokolorowanie

Bardziej szczegółowo

EGZAMIN - Wersja A. ALGORYTMY I STRUKTURY DANYCH Lisek89 opracowanie kartki od Pani dr E. Koszelew

EGZAMIN - Wersja A. ALGORYTMY I STRUKTURY DANYCH Lisek89 opracowanie kartki od Pani dr E. Koszelew 1. ( pkt) Dany jest algorytm, który dla dowolnej liczby naturalnej n, powinien wyznaczyd sumę kolejnych liczb naturalnych mniejszych od n. Wynik algorytmu jest zapisany w zmiennej suma. Algorytm i=1; suma=0;

Bardziej szczegółowo

WYŻSZA SZKOŁA INFORMATYKI STOSOWANEJ I ZARZĄDZANIA

WYŻSZA SZKOŁA INFORMATYKI STOSOWANEJ I ZARZĄDZANIA DRZEWA i LASY Drzewem nazywamy graf spójny nie zawierający cykli elementarnych. Lasem nazywamy graf nie zawierający cykli elementarnych. Przykłady drzew i lasów takie krawędzie są wykluczone drzewo las

Bardziej szczegółowo

Teoria grafów i jej zastosowania. 1 / 126

Teoria grafów i jej zastosowania. 1 / 126 Teoria grafów i jej zastosowania. 1 / 126 Mosty królewieckie W Królewcu, na rzece Pregole znajduj si dwie wyspy poª czone ze sob, a tak»e z brzegami za pomoc siedmiu mostów, tak jak pokazuje rysunek 2

Bardziej szczegółowo

Problemy optymalizacyjne - zastosowania

Problemy optymalizacyjne - zastosowania Problemy optymalizacyjne - zastosowania www.qed.pl/ai/nai2003 PLAN WYKŁADU Zło ono obliczeniowa - przypomnienie Problemy NP-zupełne klika jest NP-trudna inne problemy NP-trudne Inne zadania optymalizacyjne

Bardziej szczegółowo

Temat: Geometria obliczeniowa cz II. Para najmniej odległych punktów. Sprawdzenie, czy istnieje para przecinajcych si odcinków.

Temat: Geometria obliczeniowa cz II. Para najmniej odległych punktów. Sprawdzenie, czy istnieje para przecinajcych si odcinków. Temat: Geometria obliczeniowa cz II. Para najmniej odległych punktów. Sprawdzenie, czy istnieje para przecinajcych si odcinków. 1. Para najmniej odległych punktów WP: Dany jest n - elementowy zbiór punktów

Bardziej szczegółowo

Algorytmy Równoległe i Rozproszone Część V - Model PRAM II

Algorytmy Równoległe i Rozproszone Część V - Model PRAM II Algorytmy Równoległe i Rozproszone Część V - Model PRAM II Łukasz Kuszner pokój 209, WETI http://www.sphere.pl/ kuszner/ kuszner@sphere.pl Oficjalna strona wykładu http://www.sphere.pl/ kuszner/arir/ 2005/06

Bardziej szczegółowo

Algorytmiczna teoria grafów

Algorytmiczna teoria grafów Przedmiot fakultatywny 20h wykładu + 20h ćwiczeń 21 lutego 2014 Zasady zaliczenia 1 ćwiczenia (ocena): kolokwium, zadania programistyczne (implementacje algorytmów), praca na ćwiczeniach. 2 Wykład (egzamin)

Bardziej szczegółowo

Algorytmy grafowe. Wykład 1 Podstawy teorii grafów Reprezentacje grafów. Tomasz Tyksiński CDV

Algorytmy grafowe. Wykład 1 Podstawy teorii grafów Reprezentacje grafów. Tomasz Tyksiński CDV Algorytmy grafowe Wykład 1 Podstawy teorii grafów Reprezentacje grafów Tomasz Tyksiński CDV Rozkład materiału 1. Podstawowe pojęcia teorii grafów, reprezentacje komputerowe grafów 2. Przeszukiwanie grafów

Bardziej szczegółowo

Matematyczne Podstawy Informatyki

Matematyczne Podstawy Informatyki Matematyczne Podstawy Informatyki dr inż. Andrzej Grosser Instytut Informatyki Teoretycznej i Stosowanej Politechnika Częstochowska Rok akademicki 2013/2014 Twierdzenie 2.1 Niech G będzie grafem prostym

Bardziej szczegółowo

Temat: Liniowe uporzdkowane struktury danych: stos, kolejka. Specyfikacja, przykładowe implementacje i zastosowania. Struktura słownika.

Temat: Liniowe uporzdkowane struktury danych: stos, kolejka. Specyfikacja, przykładowe implementacje i zastosowania. Struktura słownika. Temat: Liniowe uporzdkowane struktury danych: stos, kolejka. Specyfikacja, przykładowe implementacje i zastosowania. Struktura słownika. 1. Pojcie struktury danych Nieformalnie Struktura danych (ang. data

Bardziej szczegółowo

Zofia Kruczkiewicz, Algorytmu i struktury danych, Wykład 14, 1

Zofia Kruczkiewicz, Algorytmu i struktury danych, Wykład 14, 1 Wykład Algorytmy grafowe metoda zachłanna. Właściwości algorytmu zachłannego:. W przeciwieństwie do metody programowania dynamicznego nie występuje etap dzielenia na mniejsze realizacje z wykorzystaniem

Bardziej szczegółowo

WYŻSZA SZKOŁA INFORMATYKI STOSOWANEJ I ZARZĄDZANIA

WYŻSZA SZKOŁA INFORMATYKI STOSOWANEJ I ZARZĄDZANIA DROGI i CYKLE w grafach Dla grafu (nieskierowanego) G = ( V, E ) drogą z wierzchołka v 0 V do v t V nazywamy ciąg (naprzemienny) wierzchołków i krawędzi grafu: ( v 0, e, v, e,..., v t, e t, v t ), spełniający

Bardziej szczegółowo

Pojcie grafu. { {v 1, v 2 }, {v 2, v 3 }, {v 3, v 4 }, {v 4, v 1 },{v 2, v 4 } } )

Pojcie grafu. { {v 1, v 2 }, {v 2, v 3 }, {v 3, v 4 }, {v 4, v 1 },{v 2, v 4 } } ) 1 Pojcie grafu Def. Graf prosty G=(V,E) jest uporzdkowan par dwóch elementów: zbioru wierzchołków V oraz zbioru krawdzi E V V. Krawd pomidzy wierzchołkami u oraz v oznaczamy {u,v}. Graf prosty nie zawiera

Bardziej szczegółowo

Wykład 8. Drzewo rozpinające (minimum spanning tree)

Wykład 8. Drzewo rozpinające (minimum spanning tree) Wykład 8 Drzewo rozpinające (minimum spanning tree) 1 Minimalne drzewo rozpinające - przegląd Definicja problemu Własności minimalnych drzew rozpinających Algorytm Kruskala Algorytm Prima Literatura Cormen,

Bardziej szczegółowo

Opracowanie prof. J. Domsta 1

Opracowanie prof. J. Domsta 1 Opracowanie prof. J. Domsta 1 Algorytm FLEURY'ego: Twierdzenie 6.5 G-graf eulerowski. Wtedy cykl Eulera otrzymujemy nastepująco: a) Start w dowolnym wierzchołku b) Krawędzie w dowolnej kolejności po przebyciu

Bardziej szczegółowo

Minimalne drzewa rozpinaj ce

Minimalne drzewa rozpinaj ce y i y i drzewa Spis zagadnie«y i drzewa i lasy cykle fundamentalne i rozci cia fundamentalne wªasno±ci cykli i rozci minimalne drzewa algorytm algorytm Drzewo y i spójnego, nieskierowanego grafu prostego

Bardziej szczegółowo

Wykłady z Matematyki Dyskretnej

Wykłady z Matematyki Dyskretnej Wykłady z Matematyki Dyskretnej dla kierunku Informatyka dr Instytut Informatyki Politechnika Krakowska Wykłady na bazie materiałów: dra hab. Andrzeja Karafiata dr hab. Joanny Kołodziej, prof. PK Kolorowanie

Bardziej szczegółowo

Suma dwóch grafów. Zespolenie dwóch grafów

Suma dwóch grafów. Zespolenie dwóch grafów Suma dwóch grafów G 1 = ((G 1 ), E(G 1 )) G 2 = ((G 2 ), E(G 2 )) (G 1 ) i (G 2 ) rozłączne Suma G 1 G 2 graf ze zbiorem wierzchołków (G 1 ) (G 2 ) i rodziną krawędzi E(G 1 ) E(G 2 ) G 1 G 2 G 1 G 2 Zespolenie

Bardziej szczegółowo

Matematyka dyskretna

Matematyka dyskretna Matematyka dyskretna Wykład 13: Teoria Grafów Gniewomir Sarbicki Literatura R.J. Wilson Wprowadzenie do teorii grafów Definicja: Grafem (skończonym, nieskierowanym) G nazywamy parę zbiorów (V (G), E(G)),

Bardziej szczegółowo

Przykªady problemów optymalizacji kombinatorycznej

Przykªady problemów optymalizacji kombinatorycznej Przykªady problemów optymalizacji kombinatorycznej Problem Komiwoja»era (PK) Dane: n liczba miast, n Z +, c ji, i, j {1,..., n}, i j odlegªo± mi dzy miastem i a miastem j, c ji = c ij, c ji R +. Zadanie:

Bardziej szczegółowo

Sposoby przekazywania parametrów w metodach.

Sposoby przekazywania parametrów w metodach. Temat: Definiowanie i wywoływanie metod. Zmienne lokalne w metodach. Sposoby przekazywania parametrów w metodach. Pojcia klasy i obiektu wprowadzenie. 1. Definiowanie i wywoływanie metod W dotychczas omawianych

Bardziej szczegółowo

Grafy i Zastosowania. 5: Drzewa Rozpinające. c Marcin Sydow. Drzewa rozpinające. Cykle i rozcięcia fundamentalne. Zastosowania

Grafy i Zastosowania. 5: Drzewa Rozpinające. c Marcin Sydow. Drzewa rozpinające. Cykle i rozcięcia fundamentalne. Zastosowania Grafy i Grafy i 5: Rozpinające Spis zagadnień Grafy i i lasy cykle fundamentalne i własności cykli i rozcięć przestrzenie cykli i rozcięć* : zastosowanie w sieciach elektrycznych minimalne * algorytm Kruskala*

Bardziej szczegółowo

Zad. 1 Zad. 2 Zad. 3 Zad. 4 Zad. 5 SUMA

Zad. 1 Zad. 2 Zad. 3 Zad. 4 Zad. 5 SUMA Zad. 1 Zad. 2 Zad. 3 Zad. 4 Zad. 5 SUMA Zad. 1 (12p.)Niech n 3k > 0. Zbadać jaka jest najmniejsza możliwa liczba krawędzi w grafie, który ma dokładnie n wierzchołków oraz dokładnie k składowych, z których

Bardziej szczegółowo

Czy istnieje zamknięta droga spaceru przechodząca przez wszystkie mosty w Królewcu dokładnie jeden raz?

Czy istnieje zamknięta droga spaceru przechodząca przez wszystkie mosty w Królewcu dokładnie jeden raz? DROGI i CYKLE EULERA w grafach Czy istnieje zamknięta droga spaceru przechodząca przez wszystkie mosty w Królewcu dokładnie jeden raz? Czy można narysować podaną figurę nie odrywając ołówka od papieru

Bardziej szczegółowo

c Marcin Sydow Wst p Grafy i Zastosowania Wierzchoªki 8: Kolorowanie Grafów Mapy Kraw dzie Zliczanie Podsumowanie

c Marcin Sydow Wst p Grafy i Zastosowania Wierzchoªki 8: Kolorowanie Grafów Mapy Kraw dzie Zliczanie Podsumowanie 8: Kolorowanie Grafów Spis zagadnie«kolorowanie wierzchoªków Kolorowanie map Kolorowanie kraw dzi Wielomian chromatyczny Zastosowania Problem kolorowania grafów ma wiele odmian (np. kolorowanie wierzchoªków,

Bardziej szczegółowo

TEORETYCZNE PODSTAWY INFORMATYKI

TEORETYCZNE PODSTAWY INFORMATYKI 1 TEORETYCZNE PODSTAWY INFORMATYKI WFAiS UJ, Informatyka Stosowana I rok studiów, I stopień Wykład 14c 2 Definicje indukcyjne Twierdzenia dowodzone przez indukcje Definicje indukcyjne Definicja drzewa

Bardziej szczegółowo

Metodydowodzenia twierdzeń

Metodydowodzenia twierdzeń 1 Metodydowodzenia twierdzeń Przez zdanie rozumiemy dowolne stwierdzenie, które jest albo prawdziwe, albo faªszywe (nie mo»e by ono jednocze±nie prawdziwe i faªszywe). Tradycyjnie b dziemy u»ywali maªych

Bardziej szczegółowo

I Powiatowy Konkurs Matematyka, Fizyka i Informatyka w Technice Etap finałowy 10 kwietnia 2013 grupa elektryczno-elektroniczna

I Powiatowy Konkurs Matematyka, Fizyka i Informatyka w Technice Etap finałowy 10 kwietnia 2013 grupa elektryczno-elektroniczna I Powiatowy Konkurs Matematyka, Fizyka i Informatyka w Technice Etap finałowy 10 kwietnia 2013 grupa elektryczno-elektroniczna (imi i nazwisko uczestnika) (nazwa szkoły) Arkusz zawiera 6 zada. Zadania

Bardziej szczegółowo

SKOJARZENIA i ZBIORY WEWN. STABILNE WIERZCH. Skojarzeniem w grafie G nazywamy dowolny podzbiór krawędzi parami niezależnych.

SKOJARZENIA i ZBIORY WEWN. STABILNE WIERZCH. Skojarzeniem w grafie G nazywamy dowolny podzbiór krawędzi parami niezależnych. SKOJARZENIA i ZBIORY WEWN. STABILNE WIERZCH. Rozważamy graf G = (V, E) Dwie krawędzie e, e E nazywamy niezależnymi, jeśli nie są incydentne ze wspólnym wierzchołkiem. Skojarzeniem w grafie G nazywamy dowolny

Bardziej szczegółowo

Podejście zachłanne, a programowanie dynamiczne

Podejście zachłanne, a programowanie dynamiczne Podejście zachłanne, a programowanie dynamiczne Algorytm zachłanny pobiera po kolei elementy danych, za każdym razem wybierając taki, który wydaje się najlepszy w zakresie spełniania pewnych kryteriów

Bardziej szczegółowo

Matematyka dyskretna. Andrzej Łachwa, UJ, /14

Matematyka dyskretna. Andrzej Łachwa, UJ, /14 Matematyka dyskretna Andrzej Łachwa, UJ, 2016 andrzej.lachwa@uj.edu.pl 13/14 Grafy podstawowe definicje Graf to para G=(V, E), gdzie V to niepusty i skończony zbiór, którego elementy nazywamy wierzchołkami

Bardziej szczegółowo

Digraf. 13 maja 2017

Digraf. 13 maja 2017 Digraf 13 maja 2017 Graf skierowany, digraf, digraf prosty Definicja 1 Digraf prosty G to (V, E), gdzie V jest zbiorem wierzchołków, E jest rodziną zorientowanych krawędzi, między różnymi wierzchołkami,

Bardziej szczegółowo

Podstawowe własności grafów. Wykład 3. Własności grafów

Podstawowe własności grafów. Wykład 3. Własności grafów Wykład 3. Własności grafów 1 / 87 Suma grafów Niech będą dane grafy proste G 1 = (V 1, E 1) oraz G 2 = (V 2, E 2). 2 / 87 Suma grafów Niech będą dane grafy proste G 1 = (V 1, E 1) oraz G 2 = (V 2, E 2).

Bardziej szczegółowo

Reprezentacje grafów nieskierowanych Reprezentacje grafów skierowanych. Wykład 2. Reprezentacja komputerowa grafów

Reprezentacje grafów nieskierowanych Reprezentacje grafów skierowanych. Wykład 2. Reprezentacja komputerowa grafów Wykład 2. Reprezentacja komputerowa grafów 1 / 69 Macierz incydencji Niech graf G będzie grafem nieskierowanym bez pętli o n wierzchołkach (x 1, x 2,..., x n) i m krawędziach (e 1, e 2,..., e m). 2 / 69

Bardziej szczegółowo

Matematyczne Podstawy Informatyki

Matematyczne Podstawy Informatyki Matematyczne Podstawy Informatyki dr inż. Andrzej Grosser Instytut Informatyki Teoretycznej i Stosowanej Politechnika Częstochowska Rok akademicki 03/0 Przeszukiwanie w głąb i wszerz I Przeszukiwanie metodą

Bardziej szczegółowo

TEORIA GRAFÓW I SIECI

TEORIA GRAFÓW I SIECI TEORIA GRAFÓW I SIECI Temat nr : Grafy Berge a dr hab. inż. Zbigniew TARAPATA, prof. WAT e-mail: zbigniew.tarapata@wat.edu.pl http://tarapata.edu.pl tel.: 6-83-95-0, p.5/00 Zakład Badań Operacyjnych i

Bardziej szczegółowo

Wykład 4. Droga i cykl Eulera i Hamiltona

Wykład 4. Droga i cykl Eulera i Hamiltona Wykład 4. i Hamiltona Wykład 4. i Hamiltona 1 / 35 Grafy Eulera Niech G będzie grafem spójnym. Definicja Jeżeli w grafie G istnieje zamknięta droga prosta zawierająca wszystkie krawędzie grafu, to taką

Bardziej szczegółowo

Algorytmy grafowe 2. Andrzej Jastrz bski. Akademia ETI. Politechnika Gda«ska Algorytmy grafowe 2

Algorytmy grafowe 2. Andrzej Jastrz bski. Akademia ETI. Politechnika Gda«ska Algorytmy grafowe 2 Algorytmy grafowe 2 Andrzej Jastrz bski Akademia ETI Minimalne drzewo spinaj ce Drzewem nazywamy spójny graf nie posiadaj cy cyklu. Liczba wierzchoªków drzewa jest o jeden wi ksza od liczby jego kraw dzi.

Bardziej szczegółowo

10. Kolorowanie wierzchołków grafu

10. Kolorowanie wierzchołków grafu p. 10. Kolorowanie wierzchołków grafu 10.1 Definicje i twierdzenia Przez k-kolorowanie wierzchołków grafu G rozumiemy przyporzadkowanie każdemu wierzchołkowi grafu G jednego z k kolorów 1, 2,...,k. p.

Bardziej szczegółowo

Nieklasyczne modele kolorowania grafów

Nieklasyczne modele kolorowania grafów 65 Nieklasycze modele kolorowaia grafów 66 Kolorowaie sprawiedliwe Def. Jeli wierzchołki grafu G moa podzieli a k takich zbiorów iezaleych C,...,C k, e C i C j dla wszystkich i,j,...,k, to mówimy, e G

Bardziej szczegółowo

Ogólne wiadomości o grafach

Ogólne wiadomości o grafach Ogólne wiadomości o grafach Algorytmy i struktury danych Wykład 5. Rok akademicki: / Pojęcie grafu Graf zbiór wierzchołków połączonych za pomocą krawędzi. Podstawowe rodzaje grafów: grafy nieskierowane,

Bardziej szczegółowo

Bazy danych. Plan wykładu. Zalenoci funkcyjne. Wykład 4: Relacyjny model danych - zalenoci funkcyjne. SQL - podzapytania A B

Bazy danych. Plan wykładu. Zalenoci funkcyjne. Wykład 4: Relacyjny model danych - zalenoci funkcyjne. SQL - podzapytania A B Plan wykładu Bazy danych Wykład 4: Relacyjny model danych - zalenoci funkcyjne. SQL - podzapytania Definicja zalenoci funkcyjnych Klucze relacji Reguły dotyczce zalenoci funkcyjnych Domknicie zbioru atrybutów

Bardziej szczegółowo

Algorytmy kodowania predykcyjnego

Algorytmy kodowania predykcyjnego Algorytmy kodowania predykcyjnego 1. Zasada kodowania 2. Algorytm JPEG-LS 3. Algorytmy CALIC, LOCO-I 4. Algorytmy z wielokrotn rozdzielczoci. Progresywna transmisja obrazów Kompresja obrazów - zestawienie

Bardziej szczegółowo

Programowanie dynamiczne i algorytmy zachłanne

Programowanie dynamiczne i algorytmy zachłanne Programowanie dynamiczne i algorytmy zachłanne Tomasz Głowacki tglowacki@cs.put.poznan.pl Zajęcia finansowane z projektu "Rozwój i doskonalenie kształcenia na Politechnice Poznańskiej w zakresie technologii

Bardziej szczegółowo

Zadania z egzaminów z Algorytmiki

Zadania z egzaminów z Algorytmiki 1 Najkrótsze ścieżki Zadania z egzaminów z Algorytmiki Zadanie 1 Dany jest spójny graf nieskierowany G = (V, E) z wagami na krawędziach w : E N oraz cztery wyróżnione wierzchołki a, b, c, d. Należy wybrać

Bardziej szczegółowo

Interpolacja funkcjami sklejanymi

Interpolacja funkcjami sklejanymi Interpolacja funkcjami sklejanymi Funkcje sklejane: Zaªó»my,»e mamy n + 1 w zªów t 0, t 1,, t n takich,»e t 0 < t 1 < < t n Dla danej liczby caªkowitej, nieujemnej k funkcj sklejan stopnia k nazywamy tak

Bardziej szczegółowo

Bazy danych. Plan wykładu. Metody organizacji pliku rekordów. Pojcie indeksu. Wykład 11: Indeksy. Pojcie indeksu - rodzaje indeksów

Bazy danych. Plan wykładu. Metody organizacji pliku rekordów. Pojcie indeksu. Wykład 11: Indeksy. Pojcie indeksu - rodzaje indeksów Plan wykładu Bazy Wykład 11: Indeksy Pojcie indeksu - rodzaje indeksów Metody implementacji indeksów struktury statyczne struktury dynamiczne Małgorzata Krtowska Katedra Oprogramowania e-mail: mmac@ii.pb.bialystok.pl

Bardziej szczegółowo

SPÓJNOŚĆ. ,...v k. }, E={v 1. v k. i v k. ,...,v k-1. }. Wierzchołki v 1. v 2. to końce ścieżki.

SPÓJNOŚĆ. ,...v k. }, E={v 1. v k. i v k. ,...,v k-1. }. Wierzchołki v 1. v 2. to końce ścieżki. SPÓJNOŚĆ Graf jest spójny, gdy dla każdego podziału V na dwa rozłączne podzbiory A i B istnieje krawędź z A do B. Definicja równoważna: Graf jest spójny, gdy każde dwa wierzchołki są połączone ścieżką

Bardziej szczegółowo

Grafem nazywamy strukturę G = (V, E): V zbiór węzłów lub wierzchołków, Grafy dzielimy na grafy skierowane i nieskierowane:

Grafem nazywamy strukturę G = (V, E): V zbiór węzłów lub wierzchołków, Grafy dzielimy na grafy skierowane i nieskierowane: Wykład 4 grafy Grafem nazywamy strukturę G = (V, E): V zbiór węzłów lub wierzchołków, E zbiór krawędzi, Grafy dzielimy na grafy skierowane i nieskierowane: Formalnie, w grafach skierowanych E jest podzbiorem

Bardziej szczegółowo

Planowanie adresacji IP dla przedsibiorstwa.

Planowanie adresacji IP dla przedsibiorstwa. Planowanie adresacji IP dla przedsibiorstwa. Wstp Przy podejciu do planowania adresacji IP moemy spotka si z 2 głównymi przypadkami: planowanie za pomoc adresów sieci prywatnej przypadek, w którym jeeli

Bardziej szczegółowo

Plan wykładu. Reguły asocjacyjne. Przykłady asocjacji. Reguły asocjacyjne. Jeli warunki to efekty. warunki efekty

Plan wykładu. Reguły asocjacyjne. Przykłady asocjacji. Reguły asocjacyjne. Jeli warunki to efekty. warunki efekty Plan wykładu Reguły asocjacyjne Marcin S. Szczuka Wykład 6 Terminologia dla reguł asocjacyjnych. Ogólny algorytm znajdowania reguł. Wyszukiwanie czstych zbiorów. Konstruowanie reguł - APRIORI. Reguły asocjacyjne

Bardziej szczegółowo

Algorytmiczna teoria grafów Przepływy w sieciach.

Algorytmiczna teoria grafów Przepływy w sieciach. Algorytmiczna teoria grafów Sieć przepływowa Siecią przepływową S = (V, E, c) nazywamy graf zorientowany G = (V,E), w którym każdy łuk (u, v) E ma określoną przepustowość c(u, v) 0. Wyróżniamy dwa wierzchołki:

Bardziej szczegółowo

6.2. Baza i wymiar. V nazywamy baz-

6.2. Baza i wymiar. V nazywamy baz- 62 Baza i wymiar V nazywamy baz- Definicja 66 Niech V bdzie przestrzeni, liniow, nad cia/em F Podzbiór B przestrzeni V, je2eli: () B jest liniowo niezale2ny, (2) B jest generuj,cy, tzn lin(b) =V Przyk/ady:

Bardziej szczegółowo

Zadania z egzaminów z Algorytmiki

Zadania z egzaminów z Algorytmiki Zadania z egzaminów z Algorytmiki 1 Geometria obliczeniowa Zadanie 1 Zaprojektuj efektywny algorytm dla następującego problemu. Dany jest zbior n prostokątów na płaszczyźnie (o bokach niekoniecznie równoległych

Bardziej szczegółowo

Problem skoczka szachowego i inne cykle Hamiltona na szachownicy n x n

Problem skoczka szachowego i inne cykle Hamiltona na szachownicy n x n i inne cykle Hamiltona na szachownicy n x n Uniwersytet Warszawski 15 marca 2007 Agenda 1 2 naiwne Prosty algorytm liniowy 3 Problem znany był już od bardzo dawna, jako łamigłówka logiczna. Był też stosowany

Bardziej szczegółowo

Równoległy algorytm wyznaczania bloków dla cyklicznego problemu przepływowego z przezbrojeniami

Równoległy algorytm wyznaczania bloków dla cyklicznego problemu przepływowego z przezbrojeniami Równoległy algorytm wyznaczania bloków dla cyklicznego problemu przepływowego z przezbrojeniami dr inż. Mariusz Uchroński Wrocławskie Centrum Sieciowo-Superkomputerowe Agenda Cykliczny problem przepływowy

Bardziej szczegółowo

Teoria grafów podstawy. Materiały pomocnicze do wykładu. wykładowca: dr Magdalena Kacprzak

Teoria grafów podstawy. Materiały pomocnicze do wykładu. wykładowca: dr Magdalena Kacprzak Teoria grafów podstawy Materiały pomocnicze do wykładu wykładowca: dr Magdalena Kacprzak Grafy zorientowane i niezorientowane Przykład 1 Dwa pociągi i jeden most problem wzajemnego wykluczania się Dwa

Bardziej szczegółowo

Grafy. Graf ( graf ogólny) to para G( V, E), gdzie:

Grafy. Graf ( graf ogólny) to para G( V, E), gdzie: Graf ( graf ogólny) to para G( V, E), gdzie: V jest zbiorem wierzchołków, ( czasami zwanymi węzłami lub punktami grafu) E jest rodziną ( być może powtarzających się) krawędzi, czyli jedno- i dwu- elementowych

Bardziej szczegółowo

Algorytmy i Struktury Danych.

Algorytmy i Struktury Danych. Algorytmy i Struktury Danych. Grafy Bożena Woźna-Szcześniak bwozna@gmail.com Jan Długosz University, Poland Wykład 8 Bożena Woźna-Szcześniak (AJD) Algorytmy i Struktury Danych. Wykład 8 1 / 39 Plan wykładu

Bardziej szczegółowo

Teoria grafów II. Materiały pomocnicze do wykładu. wykładowca: dr Magdalena Kacprzak

Teoria grafów II. Materiały pomocnicze do wykładu. wykładowca: dr Magdalena Kacprzak Teoria grafów II Materiały pomocnicze do wykładu wykładowca: dr Magdalena Kacprzak Graf planarny Graf planarny Graf, który może być narysowany tak, by uniknąć przecinania się krawędzi, nazywamy grafem

Bardziej szczegółowo

TEORIA GRAFÓW I SIECI

TEORIA GRAFÓW I SIECI TEORIA GRAFÓW I SIECI Temat nr 7: Przydziały w grafach i sieciach dr hab. inż. Zbigniew TARAPATA, prof. WAT e-mail: zbigniew.tarapata@wat.edu.pl http://tarapata.edu.pl tel.: 26-83-95-04, p.225/00 Zakład

Bardziej szczegółowo

Projektowanie i analiza zadaniowa interfejsu na przykładzie okna dialogowego.

Projektowanie i analiza zadaniowa interfejsu na przykładzie okna dialogowego. Projektowanie i analiza zadaniowa interfejsu na przykładzie okna dialogowego. Jerzy Grobelny Politechnika Wrocławska Projektowanie zadaniowe jest jednym z podstawowych podej do racjonalnego kształtowania

Bardziej szczegółowo

PREZENTACJA DZIAŁANIA KLASYCZNEGO ALGORYTMU GENETYCZNEGO

PREZENTACJA DZIAŁANIA KLASYCZNEGO ALGORYTMU GENETYCZNEGO Piotr Borowiec PREZENTACJA DZIAŁANIA KLASYCZNEGO ALGORYTMU GENETYCZNEGO Sporód wielu metod sztucznej inteligencji obliczeniowej algorytmy genetyczne doczekały si wielu implementacji. Mona je wykorzystywa

Bardziej szczegółowo

Wybrane podstawowe rodzaje algorytmów

Wybrane podstawowe rodzaje algorytmów Wybrane podstawowe rodzaje algorytmów Tomasz Głowacki tglowacki@cs.put.poznan.pl Zajęcia finansowane z projektu "Rozwój i doskonalenie kształcenia na Politechnice Poznańskiej w zakresie technologii informatycznych

Bardziej szczegółowo

0. ELEMENTY LOGIKI. ALGEBRA BOOLE A

0. ELEMENTY LOGIKI. ALGEBRA BOOLE A WYKŁAD 5() ELEMENTY LOGIKI ALGEBRA BOOLE A Logika podstawowe pojęcia: zdania i funktory, reguły wnioskowania, zmienne zdaniowe, rachunek zdań Matematyka zbudowana jest z pierwotnych twierdzeń (nazywamy

Bardziej szczegółowo

Wykład 10 Grafy, algorytmy grafowe

Wykład 10 Grafy, algorytmy grafowe . Typy złożoności obliczeniowej Wykład Grafy, algorytmy grafowe Typ złożoności oznaczenie n Jedna operacja trwa µs 5 logarytmiczna lgn. s. s.7 s liniowa n. s.5 s. s Logarytmicznoliniowa nlgn. s.8 s.4 s

Bardziej szczegółowo

Wprowadzenie do algorytmów. START

Wprowadzenie do algorytmów. START 1 / 15 ALGORYMIKA 2 / 15 ALGORYMIKA Wprowadzenie do algorytmów. SAR 1. Podstawowe okrelenia. Algorytmika dział informatyki, zajmujcy si rónymi aspektami tworzenia i analizowania algorytmów. we: a,b,c delta:=b

Bardziej szczegółowo

Drzewa. Jeżeli graf G jest lasem, który ma n wierzchołków i k składowych, to G ma n k krawędzi. Własności drzew

Drzewa. Jeżeli graf G jest lasem, który ma n wierzchołków i k składowych, to G ma n k krawędzi. Własności drzew Drzewa Las - graf, który nie zawiera cykli Drzewo - las spójny Jeżeli graf G jest lasem, który ma n wierzchołków i k składowych, to G ma n k krawędzi. Własności drzew Niech T graf o n wierzchołkach będący

Bardziej szczegółowo

PRAWIDŁOWE ODPOWIEDZI DO ZADA ZAMKNITYCH

PRAWIDŁOWE ODPOWIEDZI DO ZADA ZAMKNITYCH %!%*+,-.*+,/ 0103 6'7 PRAWIDŁOWE ODPOWIEDZI DO ZADA ZAMKNITYCH zadanie odpowied punkty 1 A D 3 D 4 E 5 C 6 A 7 A 8 B 9 6 10 zadania 6 11 otwarte 6 1 maksymalna moliwa łczna liczba punktów 6 40 strona 1

Bardziej szczegółowo