Kolorowanie wierzchołków

Wielkość: px
Rozpocząć pokaz od strony:

Download "Kolorowanie wierzchołków"

Transkrypt

1 240 Kolorowanie wierzchołków Def. Niech G bdzie grafem prostym. Przez kolorowanie wierzchołków rozumiemy takie etykietowanie elementów V(G) liczbami naturalnymi, e ssiednie wierzchołki otrzymuj róne liczby (kolory, etykiety). Def. Liczba chromatyczna grafu G jest to najmniejsza liczba k taka, e istnieje pokolorowanie G za pomoc k kolorów i jest oznaczana symbolem χ(g). Przykład Optymalne (zuywajce minimaln liczb kolorów) pokolorowania grafów C 5, W 6, K 5.

2 241 Kolorowanie wierzchołków Uwaga Problem wyznaczania liczby chromatycznej jest w ogólnoci NPtrudny. Zatem, w praktyce uyteczne s oszacowania. Def. Klik grafu G nazywamy jego podgraf pełny. Lemat Prawdziwe jest nastpujce oszacowanie dolne: χ(g) ω, gdzie ω jest rozmiarem maksymalnej kliki grafu G. Uwaga Powysze oszacowanie ma dwie wady: 2 n ω jest parametrem trudnym do wyliczenia. Ze zwizku ω 2 n 2m otrzymujemy oszacowanie mniej dokładne, lecz łatwe do obliczenia. rónica pomidzy χ(g) a ω moe by dowolnie dua, na co przykładem s grafy Mycielskiego.

3 242 Kolorowanie wierzchołków Tw. Dla dowolnego grafu o maksymalnym stopniu wierzchołka zachodzi oszacowanie χ(g) + 1. Dowód: Przeprowadzimy indukcj wzgldem n. Jeli n = 1, to nierówno oczywicie zachodzi. Zakładamy, e twierdzenie jest prawdziwe dla pewnego n > 0. Dowodzimy przypadek, gdy graf G ma n + 1 wierzchołków. Usumy z G dowolny wierzchołek v. Dla grafu G v z załoenia indukcyjnego mamy: χ(g v) + 1. Wierzchołek v ma w grafie G co najwyej ssiadów, wic jeden sporód +1 kolorów jest dla v dostpny, co pozwala uzyska pokolorowanie G za pomoc co najwyej +1 barw. Tw (Brooks, 1941) Istniej dwie klasy grafów, dla których χ(g) = + 1: grafy pełne oraz cykle o nieparzystej liczbie wierzchołków. Wniosek Jeli G K n oraz 3, to χ(g).

4 243 Kolorowanie wierzchołków Uwaga Oszacowanie χ(g) moe by bardzo niedokładne, zwłaszcza dla gwiazd, dla których χ(k 1,s ) = 2 oraz (K 1,s ) = s. Tw. Dla grafu G o m krawdziach zachodz oszacowania: ( G) ( G) 2m + 1, + 1, gdzie λ jest długoci najdłuszej drogi w grafie G. Uwaga Pierwsze z powyszych oszacowa moe by niedokładne, gdy dla grafów pełnych dwudzielnych K k,k rónica moe przyjmowa dowolnie du warto. 2k ( G) = 2k 1 Uwaga Drugie z oszacowa jest niedokładne dla cieki P n, dla której χ(p n ) = 2 oraz λ(p n ) = n 1.

5 244 Kolorowanie grafów planarnych Tw. Kady graf planarny jest 6-barwny. Dowód: Zastosujemy indukcj wzgldem liczby wierzchołków grafu. Jeli n = 1, to twierdzenie jest oczywicie prawdziwe. Zakładamy, e własno zachodzi dla wszystkich (n 1)- wierzchołkowych grafów planarnych. Niech G bdzie grafem planarnym o n wierzchołkach. Wiemy, e G posiada co najmniej jeden pk v (wierzchołek o stopniu mniejszym lub równym 5). Po usuniciu v mamy (n 1)-wierzchołkowy graf planarny G v, do którego stosujemy załoenie indukcyjne otrzymujc jego 6- pokolorowanie. Wierzchołek v ma w G co najwyej 5 ssiadów, wic jeden z szeciu kolorów bdzie dla v dostpny. Std G jest 6-barwny.

6 245 Kolorowanie grafów planarnych Tw. (Heawood, 1890) Kady graf planarny jest 5-barwny. Dowód: Podobnie jak w poprzednim twierdzeniu, stosujemy indukcj wzgldem n. Jeli wyznaczymy (z zał. ind.) 5-pokolorowanie G v (gdzie v jest pkiem) i wierzchołek v jest incydentny z co najwyej 4 kolorami, to twierdzenie zachodzi. W przeciwnym wypadku rozwaamy 2 sytuacje (kolory 1 czerwony, 2 zielony, 3 niebieski, 4 fioletowy): Przypadek 1: Wierzchołki o kolorach 1,3 (ssiedzi v) nale do rónych składowych grafu indukowanego przez wierzchołki o kolorach 1,3 (w całym grafie G v) Wtedy zamieniamy kolory 1 i 3 w składowej zawierajcej wierzchołek o kolorze 1 (ssiedni z v) v otrzymuje kolor 1 v v

7 246 Kolorowanie grafów planarnych Dowód (c.d.): Przypadek 2: Wierzchołki o kolorach 1,3 (ssiedzi v) wraz z v tworz cykl w G Wtedy w składowej spójnoci zawierajcej ssiada v o kolorze 2 moemy zamieni kolory 2 i 4 v otrzymuje kolor 2 v v Tw. (Appel, Haken + komputer, 1976) Kady graf planarny jest 4-barwny.

8 247 Algorytmy przyblione Przez A(G) oznaczmy liczb kolorów, któr algorytm A uywa podczas kolorowania grafu G. Wyróniamy nastpujce parametry, uwzgldniane podczas opisu algorytmu przyblionego A: 1) Złoono obliczeniowa. 2) Funkcja dobroci zdefiniowana jako: A(n) = max{ A(G)/χ(G) : G ma n wierzchołków }. Najgorsz moliw funkcj dobroci jest A(n)=n, najlepsz za A(n)=1. 3) Najmniejszy dotrudny graf najmniejszy graf G, dla którego algorytm moe uy wicej kolorów ni χ(g). 4) Najmniejszy trudny graf najmniejszy graf G, dla którego algorytm musi uy wicej kolorów ni χ(g).

9 248 Algorytm sekwencyjny Algorytm sekwencyjny S mona opisa nastpujco: Uporzdkuj w dowolny sposób wierzchołki grafu G v 1,...,v n. Koloruj wierzchołki zachłannie zgodnie z przyjt permutacj Własnoci: 1) algorytm statyczny kolejno wierzchołków ustalona na pocztku nie zmienia si podczas realizacji algorytmu 2) cieka P 4 jest najmniejszym do trudnym grafem 3) Graf trudny nie istnieje 4) Funkcja dobroci jest liniowa. Jej oczekiwana warto wynika z oszacowania: S(G) (2 + ε) χ(g) 5) Złoono O(n + m)

10 249 Algorytm LF Algorytm LF (largest first) mona opisa nastpujco: Uporzdkuj wierzchołki grafu G nierosnco według stopni v 1,...,v n. Koloruj wierzchołki zachłannie zgodnie z przyjt permutacj Własnoci: 1) algorytm statyczny kolejno wierzchołków ustalona na pocztku nie zmienia si podczas realizacji algorytmu 2) cieka P 6 jest najmniejszym do trudnym grafem: v 1 v 2 v 3 v 4 v 5 v 6 Kolejno wierzchołków: v 2, v 5, v 3, v 4, v 1, v 6.

11 250 Algorytm LF Własnoci algorytm LF (c.d.): 3) najmniejszym trudnym grafem do kolorowania jest koperta, która jest grafem 3-barwnym, natomiast LF zuywa czterech kolorów: (3) 2 3(1) 2(3) 1 3(2) 1(2) 3 2(1) Koperta wraz z oznaczonymi stopniami wierzchołków a) Szeregujemy wierzchołki stopnia 4 b) Kolorujemy te wierzchołki c) W kadym przypadku wybór wierzch. stopnia 3 jest symetryczny d) We wszystkich przyp. wymagany kolor nr 4

12 251 Algorytm LF Własnoci algorytm LF (cd.): 4) funkcja dobroci to O(n). Zdefiniujmy k-ty graf Johnsona J k jako K k,k M, gdzie M = {{u i,v i }: u i V 1 (K k,k ),v i V 2 (K k,k )}. Przykład grafu J 4 pokazuje rysunek (wraz z pokolorowaniem utworzonym przez algorytm LF). u 1 u 2 u 3 u 4 v 1 v 2 v 3 v 4 χ(j k ) = 2, gdy grafy Johnsona s dwudzielne. Dla permutacji wierzchołków u 1, v 1, u 2, v 2,..., u k, u k algorytm LF uywa k kolorów. Std LF( J k ) n / 2 n = = ( J ) 2 4 k

13 252 Algorytm SL Algorytm SL (smallest last) składa si z dwóch etapów: 1) faza redukcji grafu: znajdujemy wierzchołek o minimalnym stopniu i usuwamy go z grafu (powtarzamy dopóki graf nie jest pusty). 2) kolorujemy wierzchołki zachłannie w kolejnoci ustalonej w poprzednim kroku, zaczynajc od wierzchołków usuwanych póniej. Własnoci: Algorytm statyczny Złoono algorytmu: O(n+ m) Funkcja dobroci jest liniowa Przypadki pozytywne: drzewa, cykle, grafy jednocykliczne, kola, grafy Mycielskiego, grafy Johnsona, grafy planarne

14 253 Algorytm SL Własnoci (cd.) : Przypadki półpozytywne: grafy planarne (za pomoc szeciu kolorów w czasie O(n)) Przypadki negatywne: grafy dwudzielne, grafy Colemana-Moore a r 1 permutacja SL to: q 1,s 1,...,q k,s k, p 1,r 1,...,p k,r k, u 1,v 1,...,u k,v k, p 1 u 1 v 1 q 1 s 1 SL(CM 3 ) = 4 r 2 p 2 u 2 v 2 q 2 s 2 Ogólnie: r 3 p 3 u 3 v 3 q 3 s 3 SL(CM k ) = k+1 χ(cm k ) = 2

15 254 Algorytm SL Własnoci algorytmu (cd.): Najmniejszym do trudnym grafem jest pryzma a b c d e f Permutacja: d c a b c d e f a b c d e f e a b c d e f f a b c d e f b a b c d e f a a b c d e f a b c d e f Najmniejszym trudnym grafem jest pryzmatoid :

16 255 Algorytm SLF Algorytm SLF (saturacyjny LF) mona opisa nastpujco: while istniej niepokolorowane wierzchołki do begin znajd wierzchołek o maksymalnym stopniu sporód wierzchołków o maksymalnym stopniu nasycenia; pokoloruj znaleziony wierzchołek zachłannie; end Uwaga Stopie nasycenia wierzchołka to ilo rónych kolorów incydentnych z tym wierzchołkiem. Przypadki pozytywne: grafy dwudzielne (w tym drzewa i grafy Johnsona), cykle, koła, kaktusy Przypadki negatywne: grafy trójdzielne

17 256 Własnoci algorytmu: Złoono: O(mlogn) Algorytm SLF Najmniejszy do trudny graf: Najmniejszy trudny graf: Pozostałe wierzchołki mog by kolorowane w dowolnej kolejnoci, co zawsze prowadzi do uycia czwartego koloru.

18 257 Kolorowanie krawdzi Def. Funkcja c:e(g) {1,...,k} jest k-pokolorowaniem krawdziowym grafu G, o ile dla kadej pary ssiednich krawdzi e i e zachodzi c(e) c(e ). Najmniejsze k, dla którego istnieje krawdziowe k-pokolorowanie nazywamy indeksem chromatycznym grafu G i oznaczamy symbolem χ (G) Uwaga Pokolorowanie wierzchołków oznaczało rozbicie V na zbiory niezalene, natomiast pokolorowanie krawdzi k kolorami jest rozbiciem grafu na k skojarze. Uwaga Problem kolorowania krawdzi jest równowany kolorowaniu wierzchołków grafu krawdziowego. Przykład χ (G) = 2 dla cieek i cykli parzystych χ (G) = 3 dla drzew binarnych o > 2 i cykli nieparzystych

19 258 Oszacowania dolne Tw. Zachodzi oszacowanie χ (G) Dowód: Wynika std, i wszystkie krawdzie incydentne z tym samym wierzchołkiem musz otrzyma parami róne kolory. Tw. Zachodzi oszacowaniem/t χ (G), gdzie t jest rozmiarem maksymalnego skojarzenia. Dowód: Niech bdzie dane pewne pokolorowanie grafu G. Zauwamy, e kady z k kolorów jest przydzielony co najwyej t krawdziom grafu G. Redukujemy graf, usuwajc krawdzie o pewnym ustalonym kolorze. W kadym takim kroku usuniemy co najwyej t krawdzi, co oznacza, e musimy wykona co najmniej m/t powyszych kroków, aby zredukowa graf do grafu pustego. Ilo kroków jest równa iloci kolorów, co koczy dowód.

20 259 Oszacowania górne Tw. χ (G) max{, deg(u) + deg(v) + deg(w)/2 }, gdzie maksimum jest obliczane wzgldem wszystkich dróg elementarnych długoci 2. Tw (Shannon, 1949). χ (G) 3 /2 Tw (Vizing, 1964). χ (G) + µ, gdzie µ jest maksymalnym zwielokrotnieniem krawdzi w grafie, tzn. µ jest najwiksz liczb k tak, e wystpuje para wierzchołków połczonych k krawdziami. Uwaga Dla duych wartoci parametru µ i specyficznych grafów (np. dwuwierzchołkowych), oszacowanie Vizing a jest słabsze od oszacowania Ore go. Dla µ = 1 oszacowanie Vizing a jest bardzo dokładne jako, e χ (G).

21 260 Tw. Vizinga Wniosek Dla grafów prostych G zachodzi χ (G) + 1. Uwaga Grafy, dla których χ (G) = nazywamy grafami klasy 1. Przykłady to grafy dwudzielne, pełne o parzystej liczbie wierzchołków, planarne o 8, nieparzystego rzdu z gwiazd spinajc. Grafy klasy 2, to takie, dla których χ (G) = +1. Przykładami s nieparzyste cykle, pełne nieparzystego rzdu, regularne nieparzystego rzdu. Uwaga Grafów klasy 1 jest znacznie wicej. Np. sporód 112 grafów rzdu 6, tylko 3 s klasy 2.

22 261 Algorytm NC Algorytm w kadym kroku wybiera dowoln krawd i przydziela jej najniszy kolor, sporód kolorów, które nie zostały uyte do pokolorowania krawdzi ssiednich. Własnoci: Złoono algorytmu to O(m ) Najmniejszym do trudnym grafem jest cieka P 5 Najmniejszy trudny graf nie istnieje Algorytm jest 2-przybliony, tzn. NC(G) < 2χ (G). Uzasadnienie: Jeli algorytm NC koloruje pewn krawd e = {u,v}, to w najgorszym przypadku s deg(u) + deg(v) 2 zabronione kolory dla e. Oznacza to, e kolor przydzielony e jest nie wikszy ni deg(u) + deg(v) 1. Std: NC(G) max{ deg(u) + deg(u) 1 : {u,v} E(G) } 2 1 < 2 2χ (G).

23 262 Algorytm NTL Def. Kolor brakujcy dla wierzchołka v grafu G to kolor, który nie został przydzielony adnej krawdzi incydentnej do v. M(v) oznacza zbiór wszystkich kolorów brakujcych dla v. Def. Dla kadego wierzchołka v ustalamy pewien jego kolor brakujcy m(v). Wachlarzem F przy wierzchołku v rozpoczynajcym si krawdzi {v,w 0 } nazywamy taki cig krawdzi {v,w 0 }, {v,w 1 },..., {v,w s }, e {v,w i } ma przydzielony kolor m(w i 1 ), i > 0. Liczba s to rozpito wachlarza. Uwaga Jeli wybrana krawd {u,v} nie jest pokolorowana, to kady z wierzchołków u,v ma przynajmniej dwa kolory brakujce.

24 263 Algorytm NTL Nazwa metody pochodzi od pierwszych liter nazwisk jej twórców (Nishizeki, Terada, Leven) Procedure AlgorytmNTL( G ) begin if (G) 2 then koloruj optymalnie trawersujc cieki i cykle; else begin q := (G) + 1; G := (V(G), ); for kada e E(G) do begin G := G + e; if e = {u,v} nie moe otrzyma wspólnego koloru brakujcego w u i v then Recolor( u, v ); koloruj e; end end end

25 264 Procedura Recolor zamierzamy pokolorowa krawd {u,v}; wyznaczamy maksymalny wachlarz F ( t.. w 0 =u) przy wierzchołku v przypadek 1: m(w s ) M(v), gdzie s to rozpito wachlarza wówczas kolorujemy krawd {v,w i } barw m(w i ) dla kadego i=1,...,s. przypadek 2: m(w i ) M(v) niech P bdzie ciek w grafie G zaczynajc si w w s złoon z krawdzi pokolorowanych barwami m(v) i m(w s ) przypadek 2a: P nie osiga wierzchołka v: wówczas zamieniamy kolory znajdujce si na ciece, {v,w s } otrzymuje kolor m(v) i pozostałe krawdzie {v,w i }otrzymuj kolory m(w i ); przypadek 2b: P osiga v: niech w j, gdzie j {0,...,s 2}bdzie wierzchołkiem takim, e m(w j 1 )=m(w s ). cieka P koczy si w wierzchołku w j. Zmieniamy kolory wachlarza tak, e krawd {v,w i } otrzymuje kolor m(w i ) dla i<j 1. Zamieniamy kolory na ciece P i ostatecznie malujemy {v,w j 1 } kolorem m(v).

Kolorowanie wierzchołków grafu

Kolorowanie wierzchołków grafu Kolorowanie wierzchołków grafu Niech G będzie grafem prostym. Przez k-kolorowanie właściwe wierzchołków grafu G rozumiemy takie przyporządkowanie wierzchołkom grafu liczb naturalnych ze zbioru {1,...,

Bardziej szczegółowo

1) Grafy eulerowskie własnoci algorytmy. 2) Problem chiskiego listonosza

1) Grafy eulerowskie własnoci algorytmy. 2) Problem chiskiego listonosza 165 1) Grafy eulerowskie własnoci algorytmy 2) Problem chiskiego listonosza 166 Grafy eulerowskie Def. Graf (multigraf, niekoniecznie spójny) jest grafem eulerowskim, jeli zawiera cykl zawierajcy wszystkie

Bardziej szczegółowo

Skojarzenia. Najliczniejsze skojarzenia: Dokładne skojarzenia o maksymalnej sumie wag w obcionych pełnych grafach dwudzielnych.

Skojarzenia. Najliczniejsze skojarzenia: Dokładne skojarzenia o maksymalnej sumie wag w obcionych pełnych grafach dwudzielnych. 206 Skojarzenia Najliczniejsze skojarzenia: grafy proste dwudzielne, dowolne grafy proste. Dokładne skojarzenia o maksymalnej sumie wag w obcionych pełnych grafach dwudzielnych. 207 Definicje Def Zbiór

Bardziej szczegółowo

Wstp. Warto przepływu to

Wstp. Warto przepływu to 177 Maksymalny przepływ Załoenia: sie przepływow (np. przepływ cieczy, prdu, danych w sieci itp.) bdziemy modelowa za pomoc grafów skierowanych łuki grafu odpowiadaj kanałom wierzchołki to miejsca połcze

Bardziej szczegółowo

Szukanie najkrótszych dróg z jednym ródłem

Szukanie najkrótszych dróg z jednym ródłem Szukanie najkrótszych dróg z jednym ródłem Algorytm Dijkstry Załoenia: dany jest spójny graf prosty G z wagami na krawdziach waga w(e) dla kadej krawdzi e jest nieujemna dany jest wyróniony wierzchołek

Bardziej szczegółowo

Kolorowanie wierzchołków Kolorowanie krawędzi Kolorowanie regionów i map. Wykład 8. Kolorowanie

Kolorowanie wierzchołków Kolorowanie krawędzi Kolorowanie regionów i map. Wykład 8. Kolorowanie Wykład 8. Kolorowanie 1 / 62 Kolorowanie wierzchołków - definicja Zbiory niezależne Niech G będzie grafem bez pętli. Definicja Mówimy, że G jest grafem k kolorowalnym, jeśli każdemu wierzchołkowi możemy

Bardziej szczegółowo

WYŻSZA SZKOŁA INFORMATYKI STOSOWANEJ I ZARZĄDZANIA

WYŻSZA SZKOŁA INFORMATYKI STOSOWANEJ I ZARZĄDZANIA DRZEWA i LASY Drzewem nazywamy graf spójny nie zawierający cykli elementarnych. Lasem nazywamy graf nie zawierający cykli elementarnych. Przykłady drzew i lasów takie krawędzie są wykluczone drzewo las

Bardziej szczegółowo

Wykłady z Matematyki Dyskretnej

Wykłady z Matematyki Dyskretnej Wykłady z Matematyki Dyskretnej dla kierunku Informatyka dr Instytut Informatyki Politechnika Krakowska Wykłady na bazie materiałów: dra hab. Andrzeja Karafiata dr hab. Joanny Kołodziej, prof. PK Kolorowanie

Bardziej szczegółowo

SKOJARZENIA i ZBIORY WEWN. STABILNE WIERZCH. Skojarzeniem w grafie G nazywamy dowolny podzbiór krawędzi parami niezależnych.

SKOJARZENIA i ZBIORY WEWN. STABILNE WIERZCH. Skojarzeniem w grafie G nazywamy dowolny podzbiór krawędzi parami niezależnych. SKOJARZENIA i ZBIORY WEWN. STABILNE WIERZCH. Rozważamy graf G = (V, E) Dwie krawędzie e, e E nazywamy niezależnymi, jeśli nie są incydentne ze wspólnym wierzchołkiem. Skojarzeniem w grafie G nazywamy dowolny

Bardziej szczegółowo

Temat: Problem najkrótszych cieek w grafach waonych, cz. I: Algorytmy typu label - setting.

Temat: Problem najkrótszych cieek w grafach waonych, cz. I: Algorytmy typu label - setting. Temat: Problem najkrótszych cieek w grafach waonych, cz. I: Algorytmy typu label - setting.. Oznaczenia i załoenia Oznaczenia G = - graf skierowany z funkcj wagi s wierzchołek ródłowy t wierzchołek

Bardziej szczegółowo

c Marcin Sydow Wst p Grafy i Zastosowania Wierzchoªki 8: Kolorowanie Grafów Mapy Kraw dzie Zliczanie Podsumowanie

c Marcin Sydow Wst p Grafy i Zastosowania Wierzchoªki 8: Kolorowanie Grafów Mapy Kraw dzie Zliczanie Podsumowanie 8: Kolorowanie Grafów Spis zagadnie«kolorowanie wierzchoªków Kolorowanie map Kolorowanie kraw dzi Wielomian chromatyczny Zastosowania Problem kolorowania grafów ma wiele odmian (np. kolorowanie wierzchoªków,

Bardziej szczegółowo

E ' E G nazywamy krawędziowym zbiorem

E ' E G nazywamy krawędziowym zbiorem Niech G będzie grafem spójnym. Wierzchołek x nazywamy rozcinającym, jeśli G\{x} jest niespójny. Niech G będzie grafem spójnym. V ' V G nazywamy zbiorem rozcinającym jeśli G\V' jest niespójny Niech G będzie

Bardziej szczegółowo

Temat: Problem minimalnego drzewa Steinera. Definicja problemu. Zastosowania. Algorytm dokładny Hakimi. Algorytmy aproksymacyjne.

Temat: Problem minimalnego drzewa Steinera. Definicja problemu. Zastosowania. Algorytm dokładny Hakimi. Algorytmy aproksymacyjne. Temat: Problem minimalnego drzewa Steinera. Definicja problemu. Zastosowania. Algorytm dokładny Hakimi. Algorytmy aproksymacyjne. 1. Definicja problemu Wejcie: Graf spójny niezorientowany G =

Bardziej szczegółowo

Podstawowe własności grafów. Wykład 3. Własności grafów

Podstawowe własności grafów. Wykład 3. Własności grafów Wykład 3. Własności grafów 1 / 87 Suma grafów Niech będą dane grafy proste G 1 = (V 1, E 1) oraz G 2 = (V 2, E 2). 2 / 87 Suma grafów Niech będą dane grafy proste G 1 = (V 1, E 1) oraz G 2 = (V 2, E 2).

Bardziej szczegółowo

Temat: Struktury danych do reprezentacji grafów. Wybrane algorytmy grafowe.

Temat: Struktury danych do reprezentacji grafów. Wybrane algorytmy grafowe. Temat: Struktury danych do reprezentacji grafów. Wybrane algorytmy grafowe. Oznaczenia G = V, E - graf bez wag, gdzie V - zbiór wierzchołków, E- zbiór krawdzi V = n - liczba wierzchołków grafu G E = m

Bardziej szczegółowo

Znajdowanie skojarzeń na maszynie równoległej

Znajdowanie skojarzeń na maszynie równoległej 11 grudnia 2008 Spis treści 1 Skojarzenia w różnych klasach grafów Drzewa Grafy gęste Grafy regularne dwudzielne Claw-free graphs 2 Drzewa Skojarzenia w drzewach Fakt Wybierajac krawędź do skojarzenia

Bardziej szczegółowo

6d. Grafy dwudzielne i kolorowania

6d. Grafy dwudzielne i kolorowania 6d. Grafy dwudzielne i kolorowania Grzegorz Kosiorowski Uniwersytet Ekonomiczny w Krakowie zima 2016/2017 rzegorz Kosiorowski (Uniwersytet Ekonomiczny w6d. Krakowie) Grafy dwudzielne i kolorowania zima

Bardziej szczegółowo

Zad. 1 Zad. 2 Zad. 3 Zad. 4 Zad. 5 SUMA. W obu podpunktach zakªadamy,»e kolejno± ta«ców jest wa»na.

Zad. 1 Zad. 2 Zad. 3 Zad. 4 Zad. 5 SUMA. W obu podpunktach zakªadamy,»e kolejno± ta«ców jest wa»na. Zad. 1 Zad. 2 Zad. 3 Zad. 4 Zad. 5 SUMA Zadanko 1 (12p.) Na imprezie w Noc Kupaªy s 44 dziewczyny. Nosz one 11 ró»nych imion, a dla ka»dego imienia s dokªadnie 4 dziewczyny o tym imieniu przy czym ka»da

Bardziej szczegółowo

Temat: Algorytmy aproksymacyjne (przyblione) cz. I. Majc do rozwizania trudny obliczeniowo problem, moemy wybra jedno z dwóch nastpujcych podej:

Temat: Algorytmy aproksymacyjne (przyblione) cz. I. Majc do rozwizania trudny obliczeniowo problem, moemy wybra jedno z dwóch nastpujcych podej: Temat: Algorytmy aproksymacyjne (przyblione) cz. I. 1. Algorytmy aproksymacyjne Majc do rozwizania trudny obliczeniowo problem, moemy wybra jedno z dwóch nastpujcych podej: Zastosowa technik algorytmów

Bardziej szczegółowo

Kolorowanie wierzchołków

Kolorowanie wierzchołków Kolorowanie wierzchołków Mając dany graf, pokolorować jego wierzchołki w taki sposób, aby każde dwa wierzchołki sąsiednie miały inny kolor. Każda krawędź łączy wierzchołki różnych kolorów. Takie pokolorowanie

Bardziej szczegółowo

Problem decyzyjny naley do klasy NP. (Polynomial), jeeli moe by rozwizany w czasie conajwyej wielomianowym przez algorytm A dla DTM.

Problem decyzyjny naley do klasy NP. (Polynomial), jeeli moe by rozwizany w czasie conajwyej wielomianowym przez algorytm A dla DTM. WYKŁAD : Teoria NP-zupełnoci. Problem decyzyjny naley do klasy P (Polynomial), jeeli moe by rozwizany w czasie conajwyej wielomianowym przez algorytm A dla DTM. (przynaleno ta jest zachowana równie dla

Bardziej szczegółowo

Graf. Definicja marca / 1

Graf. Definicja marca / 1 Graf 25 marca 2018 Graf Definicja 1 Graf ogólny to para G = (V, E), gdzie V jest zbiorem wierzchołków (węzłów, punktów grafu), E jest rodziną krawędzi, które mogą być wielokrotne, dokładniej jednoelementowych

Bardziej szczegółowo

Matematyczne Podstawy Informatyki

Matematyczne Podstawy Informatyki Matematyczne Podstawy Informatyki dr inż. Andrzej Grosser Instytut Informatyki Teoretycznej i Stosowanej Politechnika Częstochowska Rok akademicki 2013/2014 Twierdzenie 2.1 Niech G będzie grafem prostym

Bardziej szczegółowo

Zad. 1 Zad. 2 Zad. 3 Zad. 4 Zad. 5 SUMA

Zad. 1 Zad. 2 Zad. 3 Zad. 4 Zad. 5 SUMA Zad. 1 Zad. 2 Zad. 3 Zad. 4 Zad. 5 SUMA Zad. 1 (12p.)Niech n 3k > 0. Zbadać jaka jest najmniejsza możliwa liczba krawędzi w grafie, który ma dokładnie n wierzchołków oraz dokładnie k składowych, z których

Bardziej szczegółowo

Teoria grafów i jej zastosowania. 1 / 126

Teoria grafów i jej zastosowania. 1 / 126 Teoria grafów i jej zastosowania. 1 / 126 Mosty królewieckie W Królewcu, na rzece Pregole znajduj si dwie wyspy poª czone ze sob, a tak»e z brzegami za pomoc siedmiu mostów, tak jak pokazuje rysunek 2

Bardziej szczegółowo

WYŻSZA SZKOŁA INFORMATYKI STOSOWANEJ I ZARZĄDZANIA

WYŻSZA SZKOŁA INFORMATYKI STOSOWANEJ I ZARZĄDZANIA DROGI i CYKLE w grafach Dla grafu (nieskierowanego) G = ( V, E ) drogą z wierzchołka v 0 V do v t V nazywamy ciąg (naprzemienny) wierzchołków i krawędzi grafu: ( v 0, e, v, e,..., v t, e t, v t ), spełniający

Bardziej szczegółowo

Temat: Algorytmy aproksymacyjne dla wybranych NP-trudnych problemów grafowych

Temat: Algorytmy aproksymacyjne dla wybranych NP-trudnych problemów grafowych Temat: Algorytmy aproksymacyjne dla wybranych NP-trudnych problemów grafowych 1. Problem komiwojaera Wejcie: Graf G = pełny, zorientowany z dodatnimi wagami; w - funkcja wag grafu Wyjcie: Najtaszy

Bardziej szczegółowo

Pojcie grafu. { {v 1, v 2 }, {v 2, v 3 }, {v 3, v 4 }, {v 4, v 1 },{v 2, v 4 } } )

Pojcie grafu. { {v 1, v 2 }, {v 2, v 3 }, {v 3, v 4 }, {v 4, v 1 },{v 2, v 4 } } ) 1 Pojcie grafu Def. Graf prosty G=(V,E) jest uporzdkowan par dwóch elementów: zbioru wierzchołków V oraz zbioru krawdzi E V V. Krawd pomidzy wierzchołkami u oraz v oznaczamy {u,v}. Graf prosty nie zawiera

Bardziej szczegółowo

MATEMATYKA DYSKRETNA - MATERIAŁY DO WYKŁADU GRAFY

MATEMATYKA DYSKRETNA - MATERIAŁY DO WYKŁADU GRAFY ERIAŁY DO WYKŁADU GRAFY Graf nieskierowany Grafem nieskierowanym nazywamy parę G = (V, E), gdzie V jest pewnym zbiorem skończonym (zwanym zbiorem wierzchołków grafu G), natomiast E jest zbiorem nieuporządkowanych

Bardziej szczegółowo

Nieklasyczne modele kolorowania grafów

Nieklasyczne modele kolorowania grafów 65 Nieklasycze modele kolorowaia grafów 66 Kolorowaie sprawiedliwe Def. Jeli wierzchołki grafu G moa podzieli a k takich zbiorów iezaleych C,...,C k, e C i C j dla wszystkich i,j,...,k, to mówimy, e G

Bardziej szczegółowo

Matematyka dyskretna. Andrzej Łachwa, UJ, /14

Matematyka dyskretna. Andrzej Łachwa, UJ, /14 Matematyka dyskretna Andrzej Łachwa, UJ, 2016 andrzej.lachwa@uj.edu.pl 13/14 Grafy podstawowe definicje Graf to para G=(V, E), gdzie V to niepusty i skończony zbiór, którego elementy nazywamy wierzchołkami

Bardziej szczegółowo

Temat: Liniowe uporzdkowane struktury danych: stos, kolejka. Specyfikacja, przykładowe implementacje i zastosowania. Struktura słownika.

Temat: Liniowe uporzdkowane struktury danych: stos, kolejka. Specyfikacja, przykładowe implementacje i zastosowania. Struktura słownika. Temat: Liniowe uporzdkowane struktury danych: stos, kolejka. Specyfikacja, przykładowe implementacje i zastosowania. Struktura słownika. 1. Pojcie struktury danych Nieformalnie Struktura danych (ang. data

Bardziej szczegółowo

oraz spełnia warunki: (*) dla wszystkich wierzchołków

oraz spełnia warunki: (*) dla wszystkich wierzchołków Temat: Problem najtaszego przepływu. Definicja problemu, przykład zastosowania. Algorytm Kleina. Algorytm Busackera Gowena. 1. Definicja problemu najtaszego przepływu Wejcie: Graf zorientowany G =

Bardziej szczegółowo

Sortowanie topologiczne skierowanych grafów acyklicznych

Sortowanie topologiczne skierowanych grafów acyklicznych Sortowanie topologiczne skierowanych grafów acyklicznych Metody boolowskie w informatyce Robert Sulkowski http://robert.brainusers.net 23 stycznia 2010 1 Definicja 1 (Cykl skierowany). Niech C = (V, A)

Bardziej szczegółowo

TEORIA GRAFÓW I SIECI

TEORIA GRAFÓW I SIECI TEORIA GRAFÓW I SIECI Temat nr : Kolorowanie grafów dr hab. inż. Zbigniew TARAPATA, prof. WAT e-mail: zbigniew.tarapata@wat.edu.pl http://tarapata.edu.pl tel.: -8-9-, p./ Zakład Badań Operacyjnych i Wspomagania

Bardziej szczegółowo

Grafy. Graf ( graf ogólny) to para G( V, E), gdzie:

Grafy. Graf ( graf ogólny) to para G( V, E), gdzie: Graf ( graf ogólny) to para G( V, E), gdzie: V jest zbiorem wierzchołków, ( czasami zwanymi węzłami lub punktami grafu) E jest rodziną ( być może powtarzających się) krawędzi, czyli jedno- i dwu- elementowych

Bardziej szczegółowo

10. Kolorowanie wierzchołków grafu

10. Kolorowanie wierzchołków grafu p. 10. Kolorowanie wierzchołków grafu 10.1 Definicje i twierdzenia Przez k-kolorowanie wierzchołków grafu G rozumiemy przyporzadkowanie każdemu wierzchołkowi grafu G jednego z k kolorów 1, 2,...,k. p.

Bardziej szczegółowo

Struktury danych i złożoność obliczeniowa Wykład 7. Prof. dr hab. inż. Jan Magott

Struktury danych i złożoność obliczeniowa Wykład 7. Prof. dr hab. inż. Jan Magott Struktury danych i złożoność obliczeniowa Wykład 7 Prof. dr hab. inż. Jan Magott Problemy NP-zupełne Transformacją wielomianową problemu π 2 do problemu π 1 (π 2 π 1 ) jest funkcja f: D π2 D π1 spełniająca

Bardziej szczegółowo

Temat: Technika zachłanna. Przykłady zastosowania. Własno wyboru zachłannego i optymalnej podstruktury.

Temat: Technika zachłanna. Przykłady zastosowania. Własno wyboru zachłannego i optymalnej podstruktury. Temat: Technika zachłanna. Przykłady zastosowania. Własno wyboru zachłannego i optymalnej podstruktury. Algorytm zachłanny ( ang. greedy algorithm) wykonuje zawsze działanie, które wydaje si w danej chwili

Bardziej szczegółowo

Metodydowodzenia twierdzeń

Metodydowodzenia twierdzeń 1 Metodydowodzenia twierdzeń Przez zdanie rozumiemy dowolne stwierdzenie, które jest albo prawdziwe, albo faªszywe (nie mo»e by ono jednocze±nie prawdziwe i faªszywe). Tradycyjnie b dziemy u»ywali maªych

Bardziej szczegółowo

Wektor o pocztku i kocu odpowiednio w punktach. Prosta zawierajca punkty p i q: pq Półprosta zaczynajca si w punkcie p i zawierajca punkt q:.

Wektor o pocztku i kocu odpowiednio w punktach. Prosta zawierajca punkty p i q: pq Półprosta zaczynajca si w punkcie p i zawierajca punkt q:. Temat: Geometria obliczeniowa, cz I. Podstawowe algorytmy geometryczne. Problem sprawdzania przynalenoci punktu do wielokta. Problem otoczki wypukłej algorytmy Grahama, i Jarvisa. 1. Oznaczenia Punkty

Bardziej szczegółowo

Przekroje Dedekinda 1

Przekroje Dedekinda 1 Przekroje Dedekinda 1 O liczbach wymiernych (tj. zbiorze Q) wiemy,»e: 1. zbiór Q jest uporz dkowany relacj mniejszo±ci < ; 2. zbiór liczb wymiernych jest g sty, tzn.: p, q Q : p < q w : p < w < q 3. 2

Bardziej szczegółowo

Matematyka dyskretna. Andrzej Łachwa, UJ, A/14

Matematyka dyskretna. Andrzej Łachwa, UJ, A/14 Matematyka dyskretna Andrzej Łachwa, UJ, 2019 andrzej.lachwa@uj.edu.pl 1A/14 Literatura obowiązkowa [1] K.A.Ross, Ch.R.B.Wright: Matematyka Dyskretna. Wydawnictwo Naukowe PWN, Warszawa 1996 [2] R.L.Graham,

Bardziej szczegółowo

Matematyka dyskretna. Andrzej Łachwa, UJ, B/14

Matematyka dyskretna. Andrzej Łachwa, UJ, B/14 Matematyka dyskretna Andrzej Łachwa, UJ, 2019 andrzej.lachwa@uj.edu.pl 1B/14 Drogi w grafach Marszruta (trasa) w grafie G z wierzchołka w do wierzchołka u to skończony ciąg krawędzi w postaci. W skrócie

Bardziej szczegółowo

Czy istnieje zamknięta droga spaceru przechodząca przez wszystkie mosty w Królewcu dokładnie jeden raz?

Czy istnieje zamknięta droga spaceru przechodząca przez wszystkie mosty w Królewcu dokładnie jeden raz? DROGI i CYKLE EULERA w grafach Czy istnieje zamknięta droga spaceru przechodząca przez wszystkie mosty w Królewcu dokładnie jeden raz? Czy można narysować podaną figurę nie odrywając ołówka od papieru

Bardziej szczegółowo

Drzewa. Jeżeli graf G jest lasem, który ma n wierzchołków i k składowych, to G ma n k krawędzi. Własności drzew

Drzewa. Jeżeli graf G jest lasem, który ma n wierzchołków i k składowych, to G ma n k krawędzi. Własności drzew Drzewa Las - graf, który nie zawiera cykli Drzewo - las spójny Jeżeli graf G jest lasem, który ma n wierzchołków i k składowych, to G ma n k krawędzi. Własności drzew Niech T graf o n wierzchołkach będący

Bardziej szczegółowo

Algorytmy grafowe 2. Andrzej Jastrz bski. Akademia ETI. Politechnika Gda«ska Algorytmy grafowe 2

Algorytmy grafowe 2. Andrzej Jastrz bski. Akademia ETI. Politechnika Gda«ska Algorytmy grafowe 2 Algorytmy grafowe 2 Andrzej Jastrz bski Akademia ETI Minimalne drzewo spinaj ce Drzewem nazywamy spójny graf nie posiadaj cy cyklu. Liczba wierzchoªków drzewa jest o jeden wi ksza od liczby jego kraw dzi.

Bardziej szczegółowo

a) 7 b) 19 c) 21 d) 34

a) 7 b) 19 c) 21 d) 34 Zadanie 1. Pytania testowe dotyczące podstawowych własności grafów. Zadanie 2. Przy każdym z zadań może się pojawić polecenie krótkiej charakterystyki algorytmu. Zadanie 3. W zadanym grafie sprawdzenie

Bardziej szczegółowo

BADANIA OPERACYJNE. Zastosowania kolorowania grafów w problemie układania rozkładów zajęć. Maciej Kupczak 1 i Paweł Szołtysek 2

BADANIA OPERACYJNE. Zastosowania kolorowania grafów w problemie układania rozkładów zajęć. Maciej Kupczak 1 i Paweł Szołtysek 2 BADANIA OPERACYJNE Zastosowania kolorowania grafów w problemie układania rozkładów zajęć Maciej Kupczak 1 i Paweł Szołtysek 2 Politechnika Wrocławska Streszczenie W niniejszej pracy rozważony zostanie

Bardziej szczegółowo

Matematyka dyskretna

Matematyka dyskretna Matematyka dyskretna Wykład 13: Teoria Grafów Gniewomir Sarbicki Literatura R.J. Wilson Wprowadzenie do teorii grafów Definicja: Grafem (skończonym, nieskierowanym) G nazywamy parę zbiorów (V (G), E(G)),

Bardziej szczegółowo

c Marcin Sydow Spójno± Grafy i Zastosowania Grafy Eulerowskie 2: Drogi i Cykle Grafy Hamiltonowskie Podsumowanie

c Marcin Sydow Spójno± Grafy i Zastosowania Grafy Eulerowskie 2: Drogi i Cykle Grafy Hamiltonowskie Podsumowanie 2: Drogi i Cykle Spis Zagadnie«drogi i cykle spójno± w tym sªaba i silna k-spójno± (wierzchoªkowa i kraw dziowa) dekompozycja grafu na bloki odlegªo±ci w grae i poj cia pochodne grafy Eulera i Hamiltona

Bardziej szczegółowo

Matematyka dyskretna. Andrzej Łachwa, UJ, /15

Matematyka dyskretna. Andrzej Łachwa, UJ, /15 Matematyka dyskretna Andrzej Łachwa, UJ, 2013 andrzej.lachwa@uj.edu.pl 14/15 Grafy podstawowe definicje Graf to para G=(V, E), gdzie V to niepusty i skończony zbiór, którego elementy nazywamy wierzchołkami

Bardziej szczegółowo

Temat: Algorytmy zachłanne

Temat: Algorytmy zachłanne Temat: Algorytmy zachłanne Algorytm zachłanny ( ang. greedy algorithm) wykonuje zawsze działanie, które wydaje si w danej chwili najkorzystniejsze. Wybiera zatem lokalnie optymaln moliwo w nadziei, e doprowadzi

Bardziej szczegółowo

.! $ Stos jest list z trzema operacjami: dodawanie elementów na wierzch stosu, zdejmowanie elementu z wierzchu stosu, sprawdzanie czy stos jest pusty.

.! $ Stos jest list z trzema operacjami: dodawanie elementów na wierzch stosu, zdejmowanie elementu z wierzchu stosu, sprawdzanie czy stos jest pusty. !"! " #$%& '()#$$ &%$! #$ %$ &%$& &$&! %&'" )$$! *$$&%$! +,- +-.! $ Celem wiczenia jest zapoznanie studenta ze strukturami: lista, stos, drzewo oraz ich implementacja w jzyku ANSI C. Zrozumienie działania

Bardziej szczegółowo

Matematyka dyskretna. Andrzej Łachwa, UJ, /14

Matematyka dyskretna. Andrzej Łachwa, UJ, /14 Matematyka dyskretna Andrzej Łachwa, UJ, 2012 andrzej.lachwa@uj.edu.pl 13/14 Grafy podstawowe definicje Graf to para G=(V, E), gdzie V to niepusty i skończony zbiór, którego elementy nazywamy wierzchołkami

Bardziej szczegółowo

Lista 4. Kamil Matuszewski 22 marca 2016

Lista 4. Kamil Matuszewski 22 marca 2016 Lista 4 Kamil Matuszewski 22 marca 2016 1 2 3 4 5 6 7 8 9 10 Zadanie 2 Ułóż algorytm który dla danego n-wierzchołkowego drzewa i liczby k pokoloruje jak najwięcej wierzchołków tak, by na każdej ścieżce

Bardziej szczegółowo

Matematyczne Podstawy Informatyki

Matematyczne Podstawy Informatyki Matematyczne Podstawy Informatyki dr inż. Andrzej Grosser Instytut Informatyki Teoretycznej i Stosowanej Politechnika Częstochowska Rok akademicki 03/0 Przeszukiwanie w głąb i wszerz I Przeszukiwanie metodą

Bardziej szczegółowo

SPÓJNOŚĆ. ,...v k. }, E={v 1. v k. i v k. ,...,v k-1. }. Wierzchołki v 1. v 2. to końce ścieżki.

SPÓJNOŚĆ. ,...v k. }, E={v 1. v k. i v k. ,...,v k-1. }. Wierzchołki v 1. v 2. to końce ścieżki. SPÓJNOŚĆ Graf jest spójny, gdy dla każdego podziału V na dwa rozłączne podzbiory A i B istnieje krawędź z A do B. Definicja równoważna: Graf jest spójny, gdy każde dwa wierzchołki są połączone ścieżką

Bardziej szczegółowo

Teoria grafów II. Materiały pomocnicze do wykładu. wykładowca: dr Magdalena Kacprzak

Teoria grafów II. Materiały pomocnicze do wykładu. wykładowca: dr Magdalena Kacprzak Teoria grafów II Materiały pomocnicze do wykładu wykładowca: dr Magdalena Kacprzak Graf planarny Graf planarny Graf, który może być narysowany tak, by uniknąć przecinania się krawędzi, nazywamy grafem

Bardziej szczegółowo

Matematyka dyskretna. Andrzej Łachwa, UJ, /15

Matematyka dyskretna. Andrzej Łachwa, UJ, /15 Matematyka dyskretna Andrzej Łachwa, UJ, 2013 andrzej.lachwa@uj.edu.pl 15/15 Twierdzenie Dla grafu prostego następujące warunki są równoważne: 1) jest drzewem, 2) nie zawiera cykli i ma krawędzi, 3)

Bardziej szczegółowo

Matematyka Dyskretna - zadania

Matematyka Dyskretna - zadania zad. 1. Chcemy zdefiniować rekurencyjnie zbiór Z wszystkich trójkątów równoramiennych ABC, gdzie współrzędne wierzchołków będą liczbami całkowitymi, wierzchołek A zawsze będzie leżeć w początku układu

Bardziej szczegółowo

Grafem nazywamy strukturę G = (V, E): V zbiór węzłów lub wierzchołków, Grafy dzielimy na grafy skierowane i nieskierowane:

Grafem nazywamy strukturę G = (V, E): V zbiór węzłów lub wierzchołków, Grafy dzielimy na grafy skierowane i nieskierowane: Wykład 4 grafy Grafem nazywamy strukturę G = (V, E): V zbiór węzłów lub wierzchołków, E zbiór krawędzi, Grafy dzielimy na grafy skierowane i nieskierowane: Formalnie, w grafach skierowanych E jest podzbiorem

Bardziej szczegółowo

Wojciech Guzicki. Konferencja SEM(Kolory matematyki) Sielpia, 26 października 2018 r.

Wojciech Guzicki. Konferencja SEM(Kolory matematyki) Sielpia, 26 października 2018 r. 1 O KOLOROWANIU Wojciech Guzicki Konferencja SEM(Kolory matematyki) Sielpia, 26 października 2018 r. W. Guzicki: O kolorowaniu 2 KILKA ZADAŃ OLIMPIJSKICH NA DOBRY POCZĄTEK W. Guzicki: O kolorowaniu 3 Zadanie

Bardziej szczegółowo

Matematyka dyskretna. Andrzej Łachwa, UJ, /15

Matematyka dyskretna. Andrzej Łachwa, UJ, /15 Matematyka dyskretna Andrzej Łachwa, UJ, 2014 andrzej.lachwa@uj.edu.pl 8/15 Grafy podstawowe definicje Graf to para G=(V, E), gdzie V to niepusty i skończony zbiór, którego elementy nazywamy wierzchołkami

Bardziej szczegółowo

A = n. 2. Ka»dy podzbiór zbioru sko«czonego jest zbiorem sko«czonym. Dowody tych twierdze«(elementarne, lecz nieco nu» ce) pominiemy.

A = n. 2. Ka»dy podzbiór zbioru sko«czonego jest zbiorem sko«czonym. Dowody tych twierdze«(elementarne, lecz nieco nu» ce) pominiemy. Logika i teoria mnogo±ci, konspekt wykªad 12 Teoria mocy, cz ± II Def. 12.1 Ka»demu zbiorowi X przyporz dkowujemy oznaczany symbolem X obiekt zwany liczb kardynaln (lub moc zbioru X) w taki sposób,»e ta

Bardziej szczegółowo

Suma dwóch grafów. Zespolenie dwóch grafów

Suma dwóch grafów. Zespolenie dwóch grafów Suma dwóch grafów G 1 = ((G 1 ), E(G 1 )) G 2 = ((G 2 ), E(G 2 )) (G 1 ) i (G 2 ) rozłączne Suma G 1 G 2 graf ze zbiorem wierzchołków (G 1 ) (G 2 ) i rodziną krawędzi E(G 1 ) E(G 2 ) G 1 G 2 G 1 G 2 Zespolenie

Bardziej szczegółowo

c Marcin Sydow Przepªywy Grafy i Zastosowania Podsumowanie 12: Przepªywy w sieciach

c Marcin Sydow Przepªywy Grafy i Zastosowania Podsumowanie 12: Przepªywy w sieciach 12: w sieciach Spis zagadnie«sieci przepªywowe przepªywy w sieciach ±cie»ka powi kszaj ca tw. Forda-Fulkersona Znajdowanie maksymalnego przepªywu Zastosowania przepªywów Sieci przepªywowe Sie przepªywowa

Bardziej szczegółowo

Matematyka od zaraz zatrudnię

Matematyka od zaraz zatrudnię Uniwersytet Jagielloński Gdzie jest matematyka? Soczewka, 26-28 listopada 2010 Kolorowanie grafów Dobre kolorowanie wierzchołków grafu, to nadanie im kolorów w taki sposób, że każde dwa wierzchołki połaczone

Bardziej szczegółowo

Wykład 4. Droga i cykl Eulera i Hamiltona

Wykład 4. Droga i cykl Eulera i Hamiltona Wykład 4. i Hamiltona Wykład 4. i Hamiltona 1 / 35 Grafy Eulera Niech G będzie grafem spójnym. Definicja Jeżeli w grafie G istnieje zamknięta droga prosta zawierająca wszystkie krawędzie grafu, to taką

Bardziej szczegółowo

Równoległy algorytm wyznaczania bloków dla cyklicznego problemu przepływowego z przezbrojeniami

Równoległy algorytm wyznaczania bloków dla cyklicznego problemu przepływowego z przezbrojeniami Równoległy algorytm wyznaczania bloków dla cyklicznego problemu przepływowego z przezbrojeniami dr inż. Mariusz Uchroński Wrocławskie Centrum Sieciowo-Superkomputerowe Agenda Cykliczny problem przepływowy

Bardziej szczegółowo

Temat: Geometria obliczeniowa cz II. Para najmniej odległych punktów. Sprawdzenie, czy istnieje para przecinajcych si odcinków.

Temat: Geometria obliczeniowa cz II. Para najmniej odległych punktów. Sprawdzenie, czy istnieje para przecinajcych si odcinków. Temat: Geometria obliczeniowa cz II. Para najmniej odległych punktów. Sprawdzenie, czy istnieje para przecinajcych si odcinków. 1. Para najmniej odległych punktów WP: Dany jest n - elementowy zbiór punktów

Bardziej szczegółowo

stopie szaro ci piksela ( x, y)

stopie szaro ci piksela ( x, y) I. Wstp. Jednym z podstawowych zada analizy obrazu jest segmentacja. Jest to podział obrazu na obszary spełniajce pewne kryterium jednorodnoci. Jedn z najprostszych metod segmentacji obrazu jest progowanie.

Bardziej szczegółowo

Luty 2001 Algorytmy (4) 2000/2001

Luty 2001 Algorytmy (4) 2000/2001 Mając dany zbiór elementów, chcemy znaleźć w nim element największy (maksimum), bądź najmniejszy (minimum). We wszystkich naturalnych metodach znajdywania najmniejszego i największego elementu obecne jest

Bardziej szczegółowo

Projektowanie algorytmów rekurencyjnych

Projektowanie algorytmów rekurencyjnych C9 Projektowanie algorytmów rekurencyjnych wiczenie 1. Przeanalizowa działanie poniszego algorytmu dla parametru wejciowego n = 4 (rysunek 9.1): n i i

Bardziej szczegółowo

Algorytmy Równoległe i Rozproszone Część V - Model PRAM II

Algorytmy Równoległe i Rozproszone Część V - Model PRAM II Algorytmy Równoległe i Rozproszone Część V - Model PRAM II Łukasz Kuszner pokój 209, WETI http://www.sphere.pl/ kuszner/ kuszner@sphere.pl Oficjalna strona wykładu http://www.sphere.pl/ kuszner/arir/ 2005/06

Bardziej szczegółowo

Algorytmy równoległe. Rafał Walkowiak Politechnika Poznańska Studia inżynierskie Informatyka 2010

Algorytmy równoległe. Rafał Walkowiak Politechnika Poznańska Studia inżynierskie Informatyka 2010 Algorytmy równoległe Rafał Walkowiak Politechnika Poznańska Studia inżynierskie Informatyka Znajdowanie maksimum w zbiorze n liczb węzły - maksimum liczb głębokość = 3 praca = 4++ = 7 (operacji) n - liczność

Bardziej szczegółowo

Matematyka dyskretna - 6.Grafy

Matematyka dyskretna - 6.Grafy Matematyka dyskretna - 6.Grafy W tym rozdziale zajmiemy się grafami. Są to wykresy zawierające rozmaite informacje, przedstawiające połączenia pomiędzy różnymi swoimi elementami. Algorytmy na nich oparte

Bardziej szczegółowo

13 Zastosowania Lematu Szemerédiego

13 Zastosowania Lematu Szemerédiego 13 Zastosowania Lematu Szemerédiego 13.1 Twierdzenie Erdősa-Stone a (Rozdzia ly 7.1 i 7.5 podre cznika) Jednym z g lównych zagadnień ekstremalnej teorii grafów jest wyznaczenie parametru ex(n, H) = max{

Bardziej szczegółowo

Spis treści Podstawowe definicje Wielomian charakterystyczny grafu Grafy silnie regularne

Spis treści Podstawowe definicje Wielomian charakterystyczny grafu Grafy silnie regularne Spis treści 1 Podstawowe definicje 4 1.1 Grafy................................ 4 1.2 Przykłady grafów......................... 12 1.2.1 Grafy puste i pełne.................... 12 1.2.2 Grafy dwudzielne.....................

Bardziej szczegółowo

JAO - J zyki, Automaty i Obliczenia - Wykªad 1. JAO - J zyki, Automaty i Obliczenia - Wykªad 1

JAO - J zyki, Automaty i Obliczenia - Wykªad 1. JAO - J zyki, Automaty i Obliczenia - Wykªad 1 J zyki formalne i operacje na j zykach J zyki formalne s abstrakcyjnie zbiorami sªów nad alfabetem sko«czonym Σ. J zyk formalny L to opis pewnego problemu decyzyjnego: sªowa to kody instancji (wej±cia)

Bardziej szczegółowo

Złożoność obliczeniowa klasycznych problemów grafowych

Złożoność obliczeniowa klasycznych problemów grafowych Złożoność obliczeniowa klasycznych problemów grafowych Oznaczenia: G graf, V liczba wierzchołków, E liczba krawędzi 1. Spójność grafu Graf jest spójny jeżeli istnieje ścieżka łącząca każdą parę jego wierzchołków.

Bardziej szczegółowo

Struktury danych i złożoność obliczeniowa Wykład 5. Prof. dr hab. inż. Jan Magott

Struktury danych i złożoność obliczeniowa Wykład 5. Prof. dr hab. inż. Jan Magott Struktury danych i złożoność obliczeniowa Wykład. Prof. dr hab. inż. Jan Magott Algorytmy grafowe: podstawowe pojęcia, reprezentacja grafów, metody przeszukiwania, minimalne drzewa rozpinające, problemy

Bardziej szczegółowo

Matematyczne kolorowanki. Tomasz Szemberg. Wykład dla studentów IM UP Kraków, 18 maja 2016

Matematyczne kolorowanki. Tomasz Szemberg. Wykład dla studentów IM UP Kraków, 18 maja 2016 Wykład dla studentów IM UP Kraków, 18 maja 2016 Gra wstępna Dany jest prostokąt podzielony na 8 pól. Gracze zamalowują pola na zmianę. Jeden na kolor czerwony, a drugi na kolor niebieski. Gra wstępna Dany

Bardziej szczegółowo

Zbiory i odwzorowania

Zbiory i odwzorowania Zbiory i odwzorowania 1 Sposoby okre±lania zbiorów 1) Zbiór wszystkich elementów postaci f(t), gdzie t przebiega zbiór T : {f(t); t T }. 2) Zbiór wszystkich elementów x zbioru X speªniaj cych warunek ϕ(x):

Bardziej szczegółowo

TEORETYCZNE PODSTAWY INFORMATYKI

TEORETYCZNE PODSTAWY INFORMATYKI 1 TEORETYCZNE PODSTAWY INFORMATYKI WFAiS UJ, Informatyka Stosowana I rok studiów, I stopień Wykład 14c 2 Definicje indukcyjne Twierdzenia dowodzone przez indukcje Definicje indukcyjne Definicja drzewa

Bardziej szczegółowo

Bazy danych. Plan wykładu. Zalenoci funkcyjne. Wykład 4: Relacyjny model danych - zalenoci funkcyjne. SQL - podzapytania A B

Bazy danych. Plan wykładu. Zalenoci funkcyjne. Wykład 4: Relacyjny model danych - zalenoci funkcyjne. SQL - podzapytania A B Plan wykładu Bazy danych Wykład 4: Relacyjny model danych - zalenoci funkcyjne. SQL - podzapytania Definicja zalenoci funkcyjnych Klucze relacji Reguły dotyczce zalenoci funkcyjnych Domknicie zbioru atrybutów

Bardziej szczegółowo

Przykłady grafów. Graf prosty, to graf bez pętli i bez krawędzi wielokrotnych.

Przykłady grafów. Graf prosty, to graf bez pętli i bez krawędzi wielokrotnych. Grafy Graf Graf (ang. graph) to zbiór wierzchołków (ang. vertices), które mogą być połączone krawędziami (ang. edges) w taki sposób, że każda krawędź kończy się i zaczyna w którymś z wierzchołków. Graf

Bardziej szczegółowo

Bazy danych. Plan wykładu. Proces modelowania i implementacji bazy danych. Elementy ERD. Wykład 2: Diagramy zwizków encji (ERD)

Bazy danych. Plan wykładu. Proces modelowania i implementacji bazy danych. Elementy ERD. Wykład 2: Diagramy zwizków encji (ERD) Plan wykładu Bazy danych Wykład 2: Diagramy zwizków encji (ERD) Diagramy zwizków encji elementy ERD licznoci zwizków podklasy klucze zbiory słabych encji Małgorzata Krtowska Katedra Oprogramowania e-mail:

Bardziej szczegółowo

Metody teorii gier. ALP520 - Wykład z Algorytmów Probabilistycznych p.2

Metody teorii gier. ALP520 - Wykład z Algorytmów Probabilistycznych p.2 Metody teorii gier ALP520 - Wykład z Algorytmów Probabilistycznych p.2 Metody teorii gier Cel: Wyprowadzenie oszacowania dolnego na oczekiwany czas działania dowolnego algorytmu losowego dla danego problemu.

Bardziej szczegółowo

Drzewa spinające MST dla grafów ważonych Maksymalne drzewo spinające Drzewo Steinera. Wykład 6. Drzewa cz. II

Drzewa spinające MST dla grafów ważonych Maksymalne drzewo spinające Drzewo Steinera. Wykład 6. Drzewa cz. II Wykład 6. Drzewa cz. II 1 / 65 drzewa spinające Drzewa spinające Zliczanie drzew spinających Drzewo T nazywamy drzewem rozpinającym (spinającym) (lub dendrytem) spójnego grafu G, jeżeli jest podgrafem

Bardziej szczegółowo

Kolorowanie płaszczyzny, prostych i okręgów

Kolorowanie płaszczyzny, prostych i okręgów Kolorowanie płaszczyzny, prostych i okręgów Jadwiga Czyżewska Pisane pod kierunkiem W.Guzickiego W 2013 roku na II etapie VIII edycji Olimpiady Matematycznej Gimnazjalistów pojawiło się zadanie o następującej

Bardziej szczegółowo

Opracowanie prof. J. Domsta 1

Opracowanie prof. J. Domsta 1 Opracowanie prof. J. Domsta 1 Algorytm FLEURY'ego: Twierdzenie 6.5 G-graf eulerowski. Wtedy cykl Eulera otrzymujemy nastepująco: a) Start w dowolnym wierzchołku b) Krawędzie w dowolnej kolejności po przebyciu

Bardziej szczegółowo

Problemy optymalizacyjne - zastosowania

Problemy optymalizacyjne - zastosowania Problemy optymalizacyjne - zastosowania www.qed.pl/ai/nai2003 PLAN WYKŁADU Zło ono obliczeniowa - przypomnienie Problemy NP-zupełne klika jest NP-trudna inne problemy NP-trudne Inne zadania optymalizacyjne

Bardziej szczegółowo

Przeszukiwanie przestrzeni stanów. Wprowadzenie do Sztucznej Inteligencji. Podstawowe problemy teorii przeszukiwania przestrzeni stanów

Przeszukiwanie przestrzeni stanów. Wprowadzenie do Sztucznej Inteligencji. Podstawowe problemy teorii przeszukiwania przestrzeni stanów Przeszukiwanie przestrzeni stanów Wprowadzenie do Sztucznej Inteligencji Wykład Informatyka Studia Inynierskie Przestrze stanów jest to czwórka uporzdkowana [N,, S, GD], gdzie: N jest zbiorem wierzchołków

Bardziej szczegółowo

Listy i operacje pytania

Listy i operacje pytania Listy i operacje pytania Iwona Polak iwona.polak@us.edu.pl Uniwersytet l ski Instytut Informatyki pa¹dziernika 07 Który atrybut NIE wyst puje jako atrybut elementów listy? klucz elementu (key) wska¹nik

Bardziej szczegółowo

Zadania z ćwiczeń #18 (pon. 7 maja) Matematyka Dyskretna

Zadania z ćwiczeń #18 (pon. 7 maja) Matematyka Dyskretna Zadania z ćwiczeń #18 (pon. 7 maja) Matematyka Dyskretna Q1.: Mamy dany zbiór artykułów, z których każdy ma co najmniej k z n możliwych tagów. Chcemy bardzo z grubsza pokategoryzować artykuły w jak najmniejszą

Bardziej szczegółowo

Bazy danych. Plan wykładu. Podzapytania - wskazówki. Podzapytania po FROM. Wykład 5: Zalenoci wielowartociowe. Sprowadzanie do postaci normalnych.

Bazy danych. Plan wykładu. Podzapytania - wskazówki. Podzapytania po FROM. Wykład 5: Zalenoci wielowartociowe. Sprowadzanie do postaci normalnych. Plan wykładu azy danych Wykład 5: Zalenoci wielowartociowe. Sprowadzanie do postaci normalnych. Dokoczenie SQL Zalenoci wielowartociowe zwarta posta normalna Dekompozycja do 4NF Przykład sprowadzanie do

Bardziej szczegółowo

Mosty królewieckie, chi«ski listonosz i... kojarzenie maª»e«stw

Mosty królewieckie, chi«ski listonosz i... kojarzenie maª»e«stw Mosty królewieckie, chi«ski listonosz i... kojarzenie maª»e«stw 3 kwietnia 2014 roku 1 / 106 Mosty królewieckie W Królewcu, na rzece Pregole znajduj si dwie wyspy poª czone ze sob, a tak»e z brzegami za

Bardziej szczegółowo

Metody dowodzenia twierdze«

Metody dowodzenia twierdze« Metody dowodzenia twierdze«1 Metoda indukcji matematycznej Je±li T (n) jest form zdaniow okre±lon w zbiorze liczb naturalnych, to prawdziwe jest zdanie (T (0) n N (T (n) T (n + 1))) n N T (n). 2 W przypadku

Bardziej szczegółowo

Lab. 02: Algorytm Schrage

Lab. 02: Algorytm Schrage Lab. 02: Algorytm Schrage Andrzej Gnatowski 5 kwietnia 2015 1 Opis zadania Celem zadania laboratoryjnego jest zapoznanie si z jednym z przybli»onych algorytmów sªu» cych do szukania rozwi za«znanego z

Bardziej szczegółowo