STRATY MOCY W EKRANACH TRÓJFAZOWEGO JEDNOBIEGUNOWEGO TORU WIELKOPRĄDOWEGO
|
|
- Lech Włodarczyk
- 7 lat temu
- Przeglądów:
Transkrypt
1 OZNN UNVE TY OF TE CNOLOGY CDE MC JOUNL No 7 Elctical Eii Zymut ĄTEK Tomasz ZCZEGELNK Daiusz KUK TTY MOCY W EKNC TÓJFZOWEGO JEDNOBEGUNOWEGO TOU WELKOĄDOWEGO Do pzsyłu ii lktycz o użyc pąac stosu się m.i. osłoięt toy wilkopąow. W uząziac to typu pzpływ pąu wywołu kty atuy lktomatycz tmicz oaz yamicz. opaw wyzaczi paamtów lktoyamiczyc ma uż zaczi paktycz. Wyzaczi laci pomięzy tymi paamtami st izbę w pocsi optymalizaci kostukci toów wilkopąowyc. Okśli stat mocy spowoowayc pzz iukowa pąy wiow st koicz szczóli wówczas y staty t staowią zaczą część całkowityc stat mocy w aalizowa kostukci. W pacy kozystaąc z twizia oytia oaz pawa Joul a-lza wyzaczoo staty mocy w kaac obiuowo tóazowo płaskio tou wilkopąowo. W oblicziac uwzlęioo zwętz oaz wwętz zawisko zbliżia.. WTĘ Do pzsyłu ii lktycz o użyc pąac stosu się m.i. osłoięt toy wilkopąow. Jym z ozwiązań kostukcyyc toów wilkopąowyc st tzw. płaski to obiuowy ys. [-6]. zpływ pąu pzmio w uząziac lktotyczyc wywołu kty atuy lktomatycz tmicz i yamicz taki ak: staty mocy azwai się kostukci ukłau i otoczia siły mięzy poszczólymi lmtami ukłau. W pzypaku toów wilkopąowyc okśli paamtów lktoyamiczyc ma uż zaczi paktycz. Zaomość p. stat mocy spowoowayc pzz iukowa pąy wiow st izbęa szczóli wówczas y staty t staowią zaczą część całkowityc stat mocy w aalizowa kostukci [-6]. zko popzcz kaów oaz pzwoów azowyc są uż lato pzy wyzaczaiu stat mocy awt la częstotliwości pzmysłow alży uwzlęić zawisko askókowości oaz zwętz i wwętz zawisko zbliżia [-6]. olitcika Częstocowska.
2 9 Zymut iątk Tomasz zcziliak Daiusz Kusiak. OLE ELEKTOMGNETYCZNE W EKNC TÓJFZOWEGO TOU WELKODOWEGO ozpatzmy pol lktomatycz w kaac tóazowo obiuowo tou wilkopąowo pzstawioo a ysuku. W pzypaku płaski liii kaowa pzstawio a ysuku całkowita ęstość pąu w kai st sumą ęstości pąów wytwozoyc pzz każy z pzwoów czyli J J J J J J μ μ μ L L L ys.. Tóazowy płaski to wilkopąowy Całkowita ęstość pąu J zalży o pąów. Jśli pąy t twozą symtyczą tókę pąów ukłau tóazowo tz. xp[ π] oaz xp[ π] to ęstość pąu J wyaża się wzom w któym b ck J π π zi K K a b β K K b c β c β β atomiast ęstość pąu J okśloa st wzom J J J cos π
3 taty mocy w kaac tóazowo obiuowo tou wilkopąowo 9 zi oaz [ ] a K K b K K pzy czym ukc K K K K i K są zmoyikowaymi ukcami Bssla opowiio piwszo i uio ozau zęu - oaz oblicza ówiż la oaz [7]. Natomiast ωμ γ ozacza zspoloą stałą popaaci ω st pulsacą γ ozacza kouktywość kau a 7 - pzikalość matycza póżi μ π m. Całkowit atężi pola lktyczo w kai możmy wyazić wzom E E E cos πγ 5 W kai piwszym całkowit pol matycz 6 zi w któym b c K 7 π π są polami matyczymi w kai piwszym a i wytwozoymi pzz opowii pąy w pzwoac uim i tzcim. kłaowa pomiiowa pola matyczo 8 Dla symtycz tóki pąów azowyc wypakowa skłaowa pomiiowa pola matyczo si π Wypakowa skłaowa stycza pola matyczo w kai piwszym ma postać 9
4 Zymut iątk Tomasz zcziliak Daiusz Kusiak 9 pzy czym skłaową okślamy wzom 7 atomiast la symtycz tóki pąów ma postać cos π zi K K K K a kłaowa stycza wypakowo pola matyczo w kai piwszym ma zatm postać cos π oobi możmy wyzaczyć pol lktycz i matycz w kai zastępuąc w wzoac 5 i 6 pą pąm atomiast wilkość popzz { } B W pzypaku kau pą zastępumy pąm zaś wilkość popzz C. TTY MOC W EKNC TÓJFZOWEGO JEDNOBEGUNOWEGO TOU WELKOĄDOWEGO Zspoloa moc pozoa kau piwszo wyosi [8] E 5 Z wzou 5 otzymumy 6 zi moc aa st wzom { } π γ l 7 atomiast
5 taty mocy w kaac tóazowo obiuowo tou wilkopąowo 95 [ ] l 8 πγ alitycz wyoębii w wzoz 6 części zczywist mocy czy i części uoo mocy bi st tu z wzlęu a zspoloą stałą popaaci i zspolo zmoyikowa ukc Bssla. Dlato tż o wyzaczia mocy czy posłużymy się wzom [8] J J V γ γ V Z wzou 9 otzymumy zi moc okśloa st wzom a moc l π J J z 9 l a π γ β l a π γ bb pzy czym stał a oaz a b okślo są w pacy [6]. Moc czya wyzilaa w kai bz uwzlęiaia zawiska askókowości l w π γ Wty tż moc czyą wyzilaą w kai piwszym możmy wyazić w ostkac wzlęyc ako stosuk k Zalżość współczyika w k o paamtu α la óżyc watości wzlę ubości β ściaki kau uowo oaz óżyc watości wzlę olłości λ mięzy osiami pzwoów pzstawiamy a ysuku pzy czym α k zaś λ λ <. Moc bią wyzilaą a aktaci wwętz kau uowo wyzaczymy z wzou 5 otzymuąc 5 pzy czym moc okśloa st wzom
6 Zymut iątk Tomasz zcziliak Daiusz Kusiak 96 { } π γ a l 6 a b ys.. Zalżość wzlę mocy czy w kai o paamtu α : a la stał watości paamtu β i óżyc watości λ b stało paamtu λ i óżyc watości β atomiast moc b b a l πγ 7 Jśli wpowazimy moc bią oisiia w w l π μ l ω X 8 wówczas moc bią możmy wyazić w ostkac wzlęyc ako stosuk w k 9 Zalżość współczyika k o paamtu α la óżyc watości paamtu β oaz λ pzstawiamy a ysuku.
7 taty mocy w kaac tóazowo obiuowo tou wilkopąowo 97 a b ys.. Zalżość wzlę mocy bi w kai o paamtu α : a la stał watości paamtu β i óżyc watości λ b stało paamtu λ i óżyc watości β W pooby sposób możmy wyzaczyć staty w kai oaz tóazowo płaskio tou wilkopąowo.. WNOK W pacy wyzaczoo staty tylko w kai obiuowo płaskio tóazowo tou wilkopąowo. oiważ mouły C ozacza to ż staty mocy w kai oaz w kai są akow. Natomiast by okślić poziom stat w kai koicz st powtózi cało toku obliczń. W alizowayc w paktyc toac wilkopąowyc la częstotliwości pzmysłow watość paamtu α zawata st o 5 o. Ozacza to ż staty mocy czy w kai obiuowo płaskio tou wilkopąowo moą być awt zisięciokoti wyższ o stat mocy czy iuwzlęiaąc zwętzo oaz wwętzo zawiska zbliżia ys.. O tym ak uża st óżica pomięzy tymi mocami cyuą paamty omtycz i izycz toż tou. Natomiast moc bia wyzilaa a iukcyości wwętz kau moż być awt tzykoti wyższa o moc bi i uwzlęiaąc zawisk zbliżia ys.. Wyzaczaąc staty mocy alży pamiętać ż wyzaczoa z twizia oytia moc bia związaa st tylko z iukcyością wwętzą kau uowo. By móc okślić całkowitą moc bią wyzilaą w kaac obiuowo płaskio tou wilkopąowo alży ówiż wyzaczyć moc bią wyzilaą a iukcyościac zwętzyc oaz wzamyc.
8 98 Zymut iątk Tomasz zcziliak Daiusz Kusiak LTETU [] Nawowski.: Toy wilkopąow izolowa powitzm lub F 6. Wy. ol. ozański ozań 998. [] iątk Z.: mpacs o i-cut busucts. Wy. ol. Częst. Czstocowa 8. [] Kusiak D.: ol Matycz Dwu i Tóbiuowyc Toów Wilkopąowyc aca Doktoska Częstocowa 8. [] zcziliak T.: taty mocy w ikaowayc i kaowayc uowyc toac wilkopąowyc aca Doktoska Gliwic. [5] iątk Z. zcziliak T. Kusiak D.: taty mocy w płaskim uowym tóazowym toz wilkopąowym Wiaomości Elktotcicz s [6] iątk Z. zcziliak T. Kusiak D.: ow losss i t scs o t symmtical t pas i cut busuct Comput pplicatios i Elctical Eii. E. by ysza Nawowski ozań. [7] Mc Lacla N.W.: Fukc Bssla la iżyiów. WN Waszawa 96. [8] Kakowski M.: Elktotcika totycza. ol lktomatycz. WN WN Waszawa OWE LOE N TE CEEN OF TE NGLE-OLE TEE E G CUENT BUDUCT Dsi o t i cut busucts o i cuts a voltas causs cssity pcis scibi o lctomatic yamic a tmal cts. Kowl o t latios btw lctoyamics a costuctioal paamts is cssay i t optimizatio costuctio pocss o t i cut busucts. omatio about istibutio lctomatic il a pow losss is a bas ito aalysis o lctoyamics a tmal cts i t i cut busucts. t pap usi t oyti tom a Jolul-Lz law t activ a activ pow i t scs o t sil-pol i cut busuct w tmi. to accout w tak ital a xtal poximity ct.
STRATY MOCY W EKRANACH TRÓJFAZOWEGO SYMETRYCZNEGO TORU WIELKOPRĄDOWEGO
OZNAN UNVE TY OF TE CNOLOGY ACAE MC OUNAL No 69 Ectica Egiig Zygmut ĄTE Tomasz ZCZEGELNA aiusz UA TATY MOCY W EANAC TÓFAZOWEGO YMETYCZNEGO TOU WELOĄOWEGO o pzsyłu gii ktycz o użych pąach stosu się m.i.
ANALIZA GĘSTOŚCI PRĄDÓW W NIEOSŁONIĘTYM TRÓJFAZOWYM TORZE WIELKOPRĄDOWYM
POZNAN UNVE STY OF TE CHNOLOGY ACADE MC OUNALS No 77 Electical Egieeig 04 Tomasz SZCZEGELNAK* Zygmut PĄTEK* Daiusz KUSAK* ANALZA GĘSTOŚC PĄDÓW W NEOSŁONĘTYM TÓFAZOWYM TOZE WELKOPĄDOWYM Pzy optymalym poektowaiu
POLE MAGNETYCZNE RUROWEGO OSŁONIĘTEGO PRZEWODU FAZOWEGO W UKŁADZIE Z UZIEMIONYM LUB ZWARTYM EKRANEM CZĘŚĆ II
PONAN UNVE STY OF TE CNOLOGY ACADE MC JOUNALS No 77 Elctcal Egg Dausz USA* ygmut PĄTE* Tomasz SCEGELNA* Pawł JABŁOŃS* POLE MAGNETYCNE UOWEGO OSŁONĘTEGO PEWODU FAOWEGO W UŁADE UEMONYM LUB WATYM EANEM CĘŚĆ
Przykłady procesów nieodwracalnych: wyrównywanie się temperatur, gęstości i różnicy potencjałów.
modynamika pocsów niodwacalnych modynamika klasyczna - tmostatyka - opis pocsów odwacalnych Ni można na podstawi otzymać wniosków dotyczących pzbigu w czasi pocsów niodwacalnych Pzykłady pocsów niodwacalnych:
Procedura wymiarowania mimośrodowo ściskanego słupa żelbetowego wg PN-EN-1992:2008
Poua wymiaowaia mimośoowo śikago łupa żlbtowgo wg P-E-99:8. Utalamy zy łup jt mukły zy kępy a) wyzazamy ługość obliziową i mukłość łupa (5.8.3.) 3 bh I I i (jżli watość ϕ i jt zaa, moża pzyjąć,7) +,ϕ S
Zakres materiału obowiązujący do egzaminu poprawkowego z matematyki klasa 3 technikum str 1
Zks mtłu oowązuąy o zmu popwkowo z mtmtyk kls tkum st Dzł pomowy Dotyzy klsy Zks lz Wyksy włsoś uk wykłz symptot uk wykłz Fuk wykłz Pzsuę wyksu uk wykłz o wkto I loytmy Poę loytmu włsoś loytmów Olz loytmów,
Elementy matematyki finansowej
Elmty matmatyki fiasowj RZEDMIIOT : EFEKTYWNOŚĆ SYSTEMÓW IINFORMATYCZNYCH Elmty matmatyki fiasowj Wykład: Elmty Matmatyki Fiasowj la Wykładu Tmat: Elmty matmatyki fiasowj Zaczi czasu w oci fktywości iwstycji
3b. ELEKTROSTATYKA. r r. 4πε. 3.4 Podstawowe pojęcia. kqq0 E =
3b. LKTROTATYKA 3.4 Postawowe pojęcia Zasaa zachowania łaunku umayczny łaunek ukłau elektycznie izolowanego jest stały. Pawo Coulomba - siła oziaływania elektostatycznego 4 1 18 F C A s ˆ gzie : k 8,85*1
Eikonał Optyczny.doc Strona 1 z 6. Eikonał Optyczny
Eikonał Optyczny.doc Stona z 6 Eikonał Optyczny µ µ Rozpatzmy ośodk bz ładunków i pądów z polm o pulsacji ω Uwaga: ni zakłada się jdnoodności ośodka: ε ε xyz,,, Równania Maxwlla: H iωε ε E ikc ε ε E E
Wytrzymałość śruby wysokość nakrętki
Wyzymałość śuby wysoość aęi Wpowazeie zej Wie Działająca w śubie siła osiowa jes pzeoszoa pzez zeń i zwoje gwiu. owouje ozciągaie lub ścisaie zeia śuby, zgiaie i ściaie zwojów gwiu oaz wywołuje acisi a
II.6. Wahadło proste.
II.6. Wahadło poste. Pzez wahadło poste ozumiemy uch oscylacyjny punktu mateialnego o masie m po dolnym łuku okęgu o pomieniu, w stałym polu gawitacyjnym g = constant. Fig. II.6.1. ozkład wektoa g pzyśpieszenia
ANALIZA STRAT MOCY W TRÓJFAZOWYCH TORACH WIELKOPRĄDOWYCH
OZNAN UNIVE RSITY OF TE CHNOLOGY ACADE MIC JOURNALS No 8 Elctrical Egirig 5 Tomasz SZCZEGIELNIAK Zygmut IĄTEK Dariusz KUSIAK ANALIZA STRAT MOCY W TRÓJFAZOWYCH TORACH WIELKORĄDOWYCH Do przsyłu rgii lktryczj
σ r z wektorem n r wynika
Wyład Napęża głów Pozuamy płazczyzy dowol achylo do o uładu wpółzędych o t właośc by wto apęża a t płazczyź był wpółoowy z wtom wtom tóy otu tę płazczyzę w pztz (wtom do omalym). a) pzypad ogóly b) płazczyza
Rozdział 1. Nazwa i adres Zamawiającego Gdyńskie Centrum Sportu jednostka budżetowa Rozdział 2. Informacja o trybie i stosowaniu przepisów
Z n a k s p r a w y G C S D Z P I 2 7 1 01 82 0 1 5 S P E C Y F I K A C J A I S T O T N Y C H W A R U N K Ó W Z A M Ó W I E N I A P r o m o c j a G m i n y M i a s t a G d y n i a p r z e z z e s p óp
Podstawowe rozkłady zmiennych losowych typu dyskretnego
Podstawowe rozkłady zmieych losowych typu dyskretego. Zmiea losowa X ma rozkład jedopuktowy, skocetroway w pukcie x 0 (ozaczay przez δ(x 0 )), jeżeli P (X = x 0 ) =. EX = x 0, V arx = 0. e itx0.. Zmiea
W Wymiana ciepła. Opór r cieplny Przewodzenie ciepła Konwekcja Promieniowanie Ekranowanie ciepła. Termodynamika techniczna
W0 56 Opó ciplny Pzwodzni cipła Konwkcja Pominiowani Ekanowani cipła w0 Waunkim pzpływu cipła a między dwoma ośodkami o jst óŝnica tmpatu Cipło o pzpływa z ośodka o o tmpatuz wyŝszj do ośodka o o tmpatuz
CHARAKTERYSTYKI GEOMETRYCZNE FIGUR PŁASKICH
Politecnika Rzeszowska Wydział Budowy Maszyn i Lotnictwa Kateda Samolotów i Silników Lotniczyc Pomoce dydaktyczne Wytzymałość Mateiałów CHRKTERYSTYKI GEOMETRYCZNE FIGUR PŁSKICH Łukasz Święc Rzeszów, 18
Rozdział 1. Nazwa i adres Zamawiającego Gdyński Ośrodek Sportu i Rekreacji jednostka budżetowa Rozdział 2.
Z n a k s p r a w y G O S I R D Z P I 2 70 1 3 7 2 0 1 4 S P E C Y F I K A C J A I S T O T N Y C H W A R U N K Ó W Z A M Ó W I E N I A f U d o s t p n i e n i e w r a z z r o z s t a w i e n i e m o g
Równania różniczkowe liniowe rzędu pierwszego
Katedra Matematyki i Ekonomii Matematycznej SGH 21 kwietnia 2016 Wstęp Definicja Równanie różniczkowe + p (x) y = q (x) (1) nazywamy równaniem różniczkowym liniowym pierwszego rzędu. Jeśli q (x) 0, to
(0) Rachunek zaburzeń
Wyłd XII Rch zbzń Mchi wtow Rch zbzń st podstwową mtodą zdowi pzybliżoych ozwiązń óżgo odz ówń występących w fizyc Tt zsti pzdstwioy ch zbzń w zstosowi do ówi Schödig bz czs Ogiczymy się pzy tym do tzw
L.Kowalski Systemy obsługi SMO
SMO Systy asow obsługi zastosowai procsu urodzń i śirci - przyłady: - ctrala tlfoicza, - staca bzyowa, - asa biltowa, - syst iforatyczy. Założia: - liczba staowis obsługi, - liczba isc w poczali. - struiń
FILTRY FILTR. - dziedzina pracy filtru = { t, f, ω } Filtr przekształca w sposób poŝądany sygnał wejściowy w sygnał wyjściowy: Filtr: x( ) => y( ).
FILTRY Sygał wejściowy FILTR y( ) F[x( )] Sygał wyjściowy - dziedzia pracy filtru { t, f, } Filtr przekształca w sposób poŝąday sygał wejściowy w sygał wyjściowy: Filtr: x( ) > y( ). Działaie filtru moŝe
Arkusze maturalne poziom podstawowy
Akusze matualne poziom postawowy zaania zamknięte N zaania 5 7 8 9 0 Pawiłowa opowieź a c a b c b a Liczba punktów zaania otwate N zaania Pawiłowa opowieź Punkty Q mg 00 N Z III zasay ynamiki wynika, że
1 3. N i e u W y w a ć w o d y d o d o g a s z a n i a g r i l l a! R e k o m e n d o w a n y j e s t p i a s e k Z a w s z e u p e w n i ć s i
M G 4 2 7 v.1 2 0 1 6 G R I L L P R O S T O K Ą T N Y R U C H O M Y 5 2 x 6 0 c m z p o k r y w ą M G 4 2 7 I N S T R U K C J A M O N T A 7 U I B E Z P I E C Z N E G O U 7 Y T K O W A N I A S z a n o w
Przejmowanie ciepła przy kondensacji pary
d iż. Michał Stzeszewski 004-01 Pzejowaie ciepła pzy kodesacji pay Zadaia do saodzielego ozwiązaia v. 0.9 1. powadzeie Jeżeli paa (asycoa lub pzegzaa) kotaktuje się z powiezchią o tepeatuze T s iższej
Fotonika. Plan: Wykład 3: Polaryzacja światła
Fotonika Wykład 3: Polaryzacja światła Plan: Równania Maxwella w ośrodku optycznie liniowym Równania Maxwella dla fal monochromatycznych Polaryzacja światła Fala płaska spolaryzowana Polaryzacje liniowe,
Ćw. 4 SprzęŜenie zwrotne
Ćw. 4 SpzęŜni zwotn 1. Cl ćwicznia Clm ćwicznia jst uguntowani wiadomości dotyczącyc lmntanj toii spzęŝnia zwotngo w układac lktonicznyc. 2. Wymagan infomacj Budowa wzmacniacza tanzystoowgo i jgo paamty
MODELOWANIE OPTYCZNEGO ELEMENTU PRZEŁĄCZNICY OXC OPARTEGO NA KĄTOWYM NAPĘDZIE ELEKTROSTATYCZNYM MEMS
Rnata SULIMA MODELOWANIE OPTYCZNEGO ELEMENTU PRZEŁĄCZNICY OXC OPARTEGO NA KĄTOWYM NAPĘDZIE ELEKTROSTATYCZNYM MEMS STRESZCZENIE Pzłączniki optyczn MEMS wypiają otychczasow pzłączniki lktoniczn. Ninijszy
POLE ELEKTROSTATYCZNE W PRÓŻNI - CD. Dipol charakteryzuje się przez podanie jego dipolowego momentu elektrycznego p (5.1)
POL LKTROTATYCZN W PRÓŻNI - CD Dio ktyczny q + q Dio ktyczny to ukła ównych co o watości unktowych łaunków ktycznych zciwngo znaku ozmiszczonych w stałj ogłości o sibi Dio chaaktyzuj się zz oani jgo ioowgo
Matematyka ubezpieczeń majątkowych r.
Zadanie. W kolejnych okesach czasu t =,,3,... ubezpieczony, chaakteyzujący się paametem yzyka Λ, geneuje szkód. Dla danego Λ = λ zmienne N t N, N, N 3,... są waunkowo niezależne i mają (bzegowe) ozkłady
4.5. PODSTAWOWE OBLICZENIA HAŁASOWE 4.5.1. WPROWADZENIE
4.5. PODTAWOWE OBCZENA HAŁAOWE 4.5.. WPROWADZENE Z dotychczasowych ozważań wiemy już dużo w zakesie oisu, watościowaia i omiau hałasu w zemyśle. Wato więc tę wiedzę odsumować w jedym zwatym ukcie, co umożliwi
Podstawowe konstrukcje tranzystorów bipolarnych
Tanzystoy Podstawowe konstukcje tanzystoów bipolanych Zjawiska fizyczne występujące w tanzystoach bipolanych, a w związku z tym właściwości elektyczne tych tanzystoów, zaleŝą od ich konstukcji i technologii
Wektory w przestrzeni
Wektory w przestrzeni Informacje pomocnicze Denicja 1. Wektorem nazywamy uporz dkowan par punktów. Pierwszy z tych punktów nazywamy pocz tkiem wektora albo punktem zaczepienia wektora, a drugi - ko«cem
ROZKŁAD OBJĘTOŚCI SUMARYCZNEJ W SYSTEMIE M/M/n/m
ROZKŁAD OBJĘTOŚC SUMARYCZNEJ W SYSTEME M/M// Wtę Wy ż badzo zadko oży uzykać wzoy aw a dytybuatę obętośc uaycz zgłozń zaduących ę w tacoay yt obług chocaż w otatch latach udało ę coś zobć w ty kuku Chodz
WYDZIAŁ FIZYKI, MATEMATYKI I INFORMATYKI POLITECHNIKI KRAKOWSKIEJ Instytut Fizyki LABORATORIUM PODSTAW ELEKTROTECHNIKI, ELEKTRONIKI I MIERNICTWA
WYDZIAŁ FIZYKI, MATEMATYKI I INFORMATYKI POITEHNIKI KRAKOWSKIEJ Instytut Fizyki ABORATORIUM PODSTAW EEKTROTEHNIKI, EEKTRONIKI I MIERNITWA ĆWIZENIE 7 Pojemność złącza p-n POJĘIA I MODEE potzebne do zozumienia
Przejścia międzypasmowe
Pzjścia iędzypasow Funcja diltyczna Pzjścia iędzypasow związan są z polayzacją cuy ltonowj wwnątz dzni atoowyc - są odpowidzialn za część funcji diltycznj ε Wóćy do foalizu funcji diltycznj: ε las N (
Rozdział 1. Nazwa i adres Zamawiającego Gdyński Ośrodek Sportu i Rekreacji jednostka budżetowa Rozdział 2.
Z n a k s p r a w y G O S i R D Z P I 2 7 1 0 3 62 0 1 4 S P E C Y F I K A C J A I S T O T N Y C H W A R U N K Ó W Z A M Ó W I E N I A Z a p e w n i e n i e z a s i l a n i ea n e r g e t y c z ne g o
METODA CIASNEGO (silnego) WIĄZANIA (TB)
MEODA CIASEGO silnego WIĄZAIA B W FE elektony taktujemy jak swobone, tylko zabuzone słabym peioycznym potencjałem; latego FE jest obym moelem metalu w B uważamy, że elektony są silnie związane z maciezystymi
1 Płaska fala elektromagnetyczna
1 Płaska fala elektromagnetyczna 1.1 Fala w wolnej przestrzeni Rozwiązanie równań Maxwella dla zespolonych amplitud pól przemiennych sinusoidalnie, reprezentujące płaską falę elektromagnetyczną w wolnej
Elektrodynamika Część 8 Fale elektromagnetyczne Ryszard Tanaś Zakład Optyki Nieliniowej, UAM
Elektrodynamika Część 8 Fale elektromagnetyczne Ryszard Tanaś Zakład Optyki Nieliniowej, UAM http://zon8.physd.amu.edu.pl/~tanas Spis treści 9 Fale elektromagnetyczne 3 9.1 Fale w jednym wymiarze.................
podsumowanie (E) E l Eds 0 V jds
e-8.6.7 fale podsumowanie () Γ dl 1 ds ρ d S ε V D ds ρ d S ( ϕ ) 1 ρ ε D ρ D ρ V D ( D εε ) εε S jds V ρ d t j ρ t j σ podsumowanie (H) Bdl Γ μ S jds B μ j S Bds B ( B A) Hdl Γ S jds H j ( B μμ H ) ε
( ) Praca. r r. Praca jest jednąz form wymiany energii między ciałami. W przypadku, gdy na ciało
Paca i enegia Paca Paca jest jenąz fom wymiany enegii mięzy ciałami. pzypaku, gy na ciało bęące punktem mateialnym ziała stała siła F const oaz uch ciała obywa się o punktu A o B po linii postej bez zawacania
Fizyka 1 Wróbel Wojciech. w poprzednim odcinku
w popzednim odcinku 1 8 gudnia KOLOKWIUM W pzyszłym tygodniu więcej infomacji o pytaniach i tym jak pzepowadzimy te kolokwium 2 Moment bezwładności Moment bezwładności masy punktowej m pouszającej się
GEOMETRIA PŁASZCZYZNY
GEOMETRIA PŁASZCZYZNY. Oblicz pole tapezu ównoamiennego, któego podstawy mają długość cm i 0 cm, a pzekątne są do siebie postopadłe.. Dany jest kwadat ABCD. Punkty E i F są śodkami boków BC i CD. Wiedząc,
MMF ćwiczenia nr 1 - Równania różnicowe
MMF ćwiczeia - Rówaia óżicowe Rozwiązać ówaia óżicowe piewszego zędu: (a) y + y =, y = (b) y + y =!, y = Wsk Podzielić ówaie pzez! i podstawić z = y /( )! Rozwiązać ówaia óżicowe dugiego zędu: (a) + 6,
I. Metoda Klasyczna. Podstawy Elektrotechniki - Stany nieustalone. Zadanie k.1 Wyznaczyć prąd i w na wyłączniku. R RI E
Podsawy lkohnk - Sany nsalon. Moda Klasyzna Zadan k. Wyznazyć pąd w na wyłąznk. w? kładay ównana na podsaw sha. ównan haakysyzn: w d d w w d d d d d d p p p w Zadan k. Znalźć aką hwlę zas x aby spłnony
Schematy zastępcze tranzystorów
haty zastępz tanzystoów kst tn pztawa kótko zasady spoządzana odl zastępzyh dla tanzystoów bpolanyh oaz unpolanyh Nalży paętać, ż są to odl ałosynałow, a wę słuszn tylko wyłązn pzy założnu, ż dany lnt
LINIA PRZESYŁOWA PRĄDU STAŁEGO
oitechnia Białostoca Wydział Eetyczny Kateda Eetotechnii Teoetycznej i Metoogii nstucja do zajęć aboatoyjnych Tytuł ćwiczenia LNA RZEYŁOWA RĄD TAŁEGO Nume ćwiczenia E Auto: mg inŝ. Łuasz Zaniewsi Białysto
Projekt ze statystyki
Projekt ze statystyki Opracowaie: - - Spis treści Treść zaia... Problem I. Obliczeia i wioski... 4 Samochó I... 4 Miary położeia... 4 Miary zmieości... 5 Miary asymetrii... 6 Samochó II... 8 Miary położeia:...
Indukcja elektromagnetyczna
nukcja elektromagnetyczna Prawo inukcji elektromagnetycznej Faraaya Φ B N Φ B Dla N zwojów eguła enza eguła enza Prą inukowany ma taki kierunek, że wywołane przez niego pole magnetyczne przeciwstawia się
OBLICZANIE SIŁ WEWNĘTRZNYCH W POWŁOKACH ZBIORNIKÓW OSIOWO-SYMETRYCZNYCH
Politechnika Poznańska Wyział Buownictwa i InŜynierii Śroowiska Instytut onstrukcji Buowlanych Zakła echaniki Buowli Stuia Stacjonarne II Stopnia I rok Semestr II / OBLICZANIE SIŁ WEWNĘTRZNYCH W POWŁOACH
Pole magnetyczne. 5.1 Oddziaływanie pola magnetycznego na ładunki. przewodniki z prądem. 5.1.1 Podstawowe zjawiska magnetyczne
Rozdział 5 Pole magnetyczne 5.1 Oddziaływanie pola magnetycznego na ładunki i pzewodniki z pądem 5.1.1 Podstawowe zjawiska magnetyczne W obecnym ozdziale ozpatzymy niektóe zagadnienia magnetostatyki. Magnetostatyką
PRZEMIANA ENERGII ELEKTRYCZNEJ W CIELE STAŁYM
PRZEMIANA ENERGII ELEKTRYCZNE W CIELE STAŁYM Anaizowane są skutki pzepływu pądu pzemiennego o natężeniu I pzez pzewodnik okągły o pomieniu. Pzyęto wstępne założenia upaszcząace: - kształt pądu est sinusoidany,
Dokumentacja techniczna IQ3 Sterownik z dostępem poprzez Internet IQ3 Sterownik z dostępem poprzez Internet Opis Charakterystyka
Elektrodynamika. Część 9. Potencjały i pola źródeł zmiennych w czasie. Ryszard Tanaś
Elektrodynamika Część 9 Potencjały i pola źródeł zmiennych w czasie Ryszard Tanaś Zakład Optyki Nieliniowej, UAM http://zon8.physd.amu.edu.pl/~tanas Spis treści 10 Potencjały i pola źródeł zmiennych w
1. SZCZEGÓLNE PRZYPADKI ŁUKÓW.
Olga Kopacz, Aam Łoygowski, Kzysztof Tymbe, ichał Płotkowiak, Wojciech Pawłowski Konsultacje naukowe: pof. hab. Jezy Rakowski Poznań /. SZCZEGÓLNE PRZYPADKI ŁUKÓW.. Łuk jenopzegubowy kołowy. Dla łuku jak
Wzmacniacze tranzystorowe prądu stałego
Wzmacniacze tanzystoo pądu stałego Wocław 03 kład Dalingtona (układ supe-β) C kład stosowany gdy potzebne duże wzmocnienie pądo (np. do W). C C C B T C B B T C C + β ' B B C β + ( ) C B C β β β B B β '
3. Struktura pasmowa
3. Stutua pasmowa Funcja Blocha Quasi-pęd, sić odwotna Pzybliżni pawi swobodngo ltonu Dziua w paśmi walncyjnym Masa ftywna Stutua pasmowa (), pzyłady Półpzwodnii miszan lton w ysztal sfomułowani poblmu
7. M i s a K o ł o
S U P 4 1 2 v. 2 0 16 G R I L L K O C I O Ł E K 5 R E D N I C A 4 2 c m, R U C H O M Y S U P 4 1 2 I N S T R U K C J A M O N T A 7 U I B E Z P I E C Z N E G O U 7 Y T K O W A N I A S z a n o w n i P a
Podstawy Fizyki IV Optyka z elementami fizyki współczesnej. wykład 6, Radosław Chrapkiewicz, Filip Ozimek
Podstawy Fizyki IV Optyka z elementami fizyki współczesnej wykład 6, 0.03.01 wykład: pokazy: ćwiczenia: Czesław Radzewicz Radosław Chrapkiewicz, Filip Ozimek Ernest Grodner Wykład 5 - przypomnienie ciągłość
= µ. Niech ponadto. M( s) oznacza funkcję tworzącą momenty. zmiennej T( x), dla pewnego wieku x, w populacji A. Wówczas e x wyraża się wzorem: 1
1. W populacji B natężenie wymierania µ ( B ) x jest większe od natężenia wymierania ( A) µ x w populacji A, jednostajnie o µ > 0, dla każdego wieku x tzn. ( B) ( A) µ µ x = µ. Niech ponadto x M( s) oznacza
Przykłady obliczeń belek i słupów złożonych z zastosowaniem łączników mechanicznych wg PN-EN-1995
Politechnika Gdańska Wydział Inżynierii Lądowej i Środowiska Przykłady obliczeń belek i słupów złożonych z zastosowaniem łączników mechanicznych wg PN-EN-1995 Jerzy Bobiński Gdańsk, wersja 0.32 (2014)
magnetyzm ver
e-8.6.7 agnetyz pądy poste pądy elektyczne oddziałują ze soą. doświadczenie Apèe a (18): Ι Ι 1 F ~ siła na jednostkę długości pzewodów pądy poste w póżni jednostki w elektyczności A ape - natężenie pądu
PRÓBNA MATURA ZADANIA PRZYKŁADOWE
ZESPÓŁ SZKÓŁ HOTELARSKO TURYSTYCZNO GASTRONOMICZNYCH NR UL. KRASNOŁĘCKA 3, WARSZAWA Z A D AN I A Z A M K N I Ę T E ) Liczba, której 5% jest równe 6, to : A. 0,3 C. 30. D. 0 5% 6 II sposób: x nieznana liczba
A. ZałoŜenia projektowo konstrukcyjne
Projekt przekłani pasowej ZADANIE KONSTRUKCYJNE Zaanie polega na opracowaniu konstrukcji przekłani pasowej przenoszącej moment obrotowy z wałka silnika na wał napęowy zespołu obrabiarki. A. ZałoŜenia projektowo
Atom (cząsteczka niepolarna) w polu elektrycznym
Dieektyki Dieektyki substancje, w któych nie występują swobodne nośniki ładunku eektycznego (izoatoy). Może być w nich wytwozone i utzymane bez stat enegii poe eektyczne. dieektyk Faaday Wpowadzenie do
Gdyńskim Ośrodkiem Sportu i Rekreacji jednostką budżetową Zamawiającym Wykonawcą
W Z Ó R U M O W Y n r 1 4 k J Bk 2 0 Z a ł» c z n i k n r 5 z a w a r t a w G d y n i w d n i u 1 4 ro ku p o m i 2 0d z y G d y s k i m O r o d k i e m S p o r t u i R e k r e a c j ei d n o s t k» b
Kształty żłobków stojana
Kztałty żłobów tojana Kztałty żłobów winia: a), b), c) lati olewane Al. ) - i) lati lutowane z pętów Cu Wymiay żłoba oplowego Kąt zbieżności ściane żłoba: Śenica mniejza: = π + h )in in ( b Śenica więza:
Wybrane zagadnienia z elektryczności
Wybane zaganienia z elektyczności Pomia łaunku elektycznego oświaczenie Millikana atomize płaszczyzna (+) bateia kople oleju mikoskop F el F g płaszczyzna (-) F g F el mg mg e.6 0 9 C Łaunek elektyczny
Ć ó Ó Ę ć ć ć ó ć Ó ó Ó Ó ć Ó ć Ó Ó
ó ó Ó ó Ę Ć ó Ó Ę ć ć ć ó ć Ó ó Ó Ó ć Ó ć Ó Ó ć ó ó ó Ź Ó ó Ó Ą Ó Ą Ó ć ć ć ć ó ć ó Ć ó ć Ó Ź ć ó ó ć ó Ó ó ó Ć ó ć ó ó ó ó ó ó Ź ó ó Ą ó ó ć ó ó ć Ą ó ó ć Ó ć ć Ź ć Ź Ć ć Ź ó ó ć Ą ż Ź Ź óź ó ć ó Ą ó
Tradycyjne mierniki ryzyka
Tadycyjne mieniki yzyka Pzykład 1. Ryzyko w pzypadku potfela inwestycyjnego Dwie inwestycje mają następujące stopy zwotu, zależne od sytuacji gospodaczej: Sytuacja Pawdopodobieństwo R R Recesja 0, 9,0%
Ę Ę Ę Ó Ę Ę Ó Ź ć Ł Ś Ó Ó Ł Ł Ż ć ć Ż Ą Ż ć Ę Ę ź ć ź Ą Ę Ż ć Ł Ę ć Ż Ę Ę ć ć Ż Ż Ę Ż Ż ć Ó Ę Ę ć Ę ć Ę Ę Ż Ż Ż Ż ź Ż Ę Ę ź Ę ź Ę Ż ć ć Ą Ę Ę ć Ę ć ć Ź Ą Ę ć Ę Ą Ę Ę Ę ć ć ć ć Ć Ą Ą ć Ę ć Ż ć Ę ć ć ć Ą
ż ż ć ż Ż ż ż ć Ł ń ń ź ć ń Ś ż Ł ć ż Ź ż ń ż Ż Ś ć ź ż ć Ś ń ń ź ż ź ń Ś ń Ś ż ń ń ż ć ż ż Ą ć ń ń ń ć ż ć Ś ż Ć ć ż Ś Ś ć Ż ż Ś ć Ż Ż Ż Ą ń ń ć ń Ż ć ń ż Ż ń ż Ś ń Ś Ś ć Ż Ż Ć Ó Ż Ść ż Ż ż ż ń Ż Ż ć
ń ń ź ź ć ń ń Ą Ź ń Ą ĄĄ Ą ń ź Ł Ł ń ć Ó Ą Ą ń ń ć ń ć ź ć ć Ó ć Ó ć Ś ć Ó ń ć ć ć ź ć Ą Ó Ź Ź Ź Ą ź Ó Ą ń ń Ź Ó Ź Ń ć Ń ć ź ń ń ń ń ń ń Ń ń Ź ń Ź Ź Ź ń ń ń Ą Ź Ó ĄĄ ń Ą ń ń Ó Ń Ó Ó ń Ą Ó ź ń ź Ą Ó Ą ź
Ą Ą Ś Ż Ą ć Ź ć Ó Ś Ż Ź Ó ć Ś Ż ć Ś Ź Ó ć Ż Ż Ź Ż Ó Ź Ó Ż Ż Ż Ż Ż Ś Ź Ś ć ć ć Ź ć ć Ó Ó Ó Ś Ą ć ć Ź Ż Ż Ż Ż ź Ż ź Ó Ś Ą Ź Ż Ż ć Ź Ó Ż Ó Ś Ą Ś Ś Ź Ż Ś Ż Ż Ź Ó ć Ś Ś Ść Ś Ż Ź Ó Ś Ó Ź Ó Ż Ź Ó Ś Ś Ż Ź Ż Ś
Ę Ł ć Ą ż Ł Ł Ą Ó ż Ł Ś Ę Ś Ó Ł Ń Ą Ą Ł Ą ĄĄ ż ć Ś Ź ć ć Ł ć ć ć Ś Ó Ś Ś ć ć ć ć Ó ć ć ć Ś ż Ł Ą ż Ś ż Ł ć ć Ó ć ć Ą ć Ś ć ż ć ć Ś ć Ł Ń ć ć Ę ć ć ć Ó ć ć ć ć ć ć ź ć ć Ó ć ć ć ć ć ż ć ć ć ć Ł ć ć ć ć
Ą Ł Ą Ą ś ś ż Ż ś ś ś ść ś ś Ą ś Ż ś ć ż ś ś ż ś ż Ć Ł Ż ż Ź ć ĄĄ Ż Ą Ż Ą Ź Ż Ł Ł Ę ś ś ś ż Ą ś Ą ś Ą Ż Ą Ż Ą Ć Ż Ż ś Ż Ą Ć Ł Ł Ę ś ż Ż ć ś ś ś ś Ż Ć ż ż ś ś ż ś ś Ż Ż ś ś ś ś ś Ż ż Ż ś ś Ż Ę ż ś ż Ź Ę
Ż ź ź ź ź ź ć ć Ą Ą ć Ą ź ź ć Ż Ś ź ć ć Ę ć ź ź ć ź Ą ĄĄ Ń Ą Ń ć ć ć ć Ę ć Ń ć ć ć ć Ą ć ć ć ć ć Ń Ń ć ć ź ź ć Ę Ę ć Ą ć ć ć ć ć Ń Ę ć ć ć ć ć ć ć ć ć ź ć ź Ą ć ć ć Ń ć ć ć ć ź ć ć ć Ń Ń ć ź ź ć ź ź ć
Ę Ę Ę Ę Ę Ź Ą Ę Ą Ę Ą Ą Ę ć Ś ć Ę Ą ź Ą Ź ć Ę Ź Ę ć Ą Ę Ś Ę Ę Ź Ą Ę ć ź Ą Ź Ę ź Ę Ą Ś Ł Ą Ź Ę Ę Ę Ę ć Ę Ą Ę Ę Ą Ś Ą Ę ź ć Ę Ę Ę ź Ź ź Ą Ź Ę Ź ź Ź ć ć Ę Ę Ę Ą Ą Ą Ę ć Ę Ę ć Ę Ę Ą Ę Ą Ę Ę Ę Ą Ę Ś ć Ą ć ć
Ł Ą Ś Ą Ą ź ć ź Ł Ą ć ć ć ć ź Ś ć ć ć Ą Ł ć ź ć ć ć ć Ł ć ć ć ć ć Ł Ą ć Ś Ś Ż ć ź Ą ź ź ź ć ź ć ć ć ć ź ź ć ź ź ź Ś ź ź ć ć ć ć Ś ć ź ź ć ć Ą ź ź ź ź ź ć ć ć ć Ś ć ć ć Ś ć Ż Ł Ś Ł Ł Ł Ł Ż Ł Ś Ś ź ć Ą
Prawo Gaussa. Potencjał elektryczny.
Pawo Gaussa. Potencjał elektyczny. Wykład 3 Wocław Univesity of Technology 7-3- Inne spojzenie na pawo Coulomba Pawo Gaussa, moŝna uŝyć do uwzględnienia szczególnej symetii w ozwaŝanym zagadnieniu. Dla
Spędź czas w Dortmundzie korzystając z autobusu i kolei
ęź z Dz zyją z Tä z D 0 0 0 0 0 0 0 * 0 0 0 0 0 0 0 0 0 00 0 0 0 z y D! D J z ł Dz yzyj j jją ł zy ć ó D j Pń zę yjy ż, y y zć! Dz żj ją zz zł D z żj jy zzó zy y jyz zó j ż zć Pń zł, jż Pń ży, z Pń zz
1. Liczby zespolone Zadanie 1.1. Przedstawić w postaci a + ib, a, b R, następujące liczby zespolone (1) 1 i (2) (5)
. Liczby zespolone Zadanie.. Przedstawić w postaci a + ib, a, b R, następujące liczby zespolone () i +i, () 3i, (3) ( + i 3) 6, (4) (5) ( +i ( i) 5, +i 3 i ) 4. Zadanie.. Znaleźć moduł i argument główny
Siła tarcia. Tarcie jest zawsze przeciwnie skierowane do kierunku ruchu (do prędkości). R. D. Knight, Physics for scientists and engineers
Siła tacia Tacie jest zawsze pzeciwnie skieowane do kieunku uchu (do pędkości). P. G. Hewitt, Fizyka wokół nas, PWN R. D. Knight, Physics fo scientists and enginees Symulacja molekulanego modelu tacia