struktura atomowa 11 stycznia 2018 struktura atomowa

Wielkość: px
Rozpocząć pokaz od strony:

Download "struktura atomowa 11 stycznia 2018 struktura atomowa"

Transkrypt

1 11 stycznia 2018

2

3 układ okresowy układ Mendelejewa (60 znanych pierwiatków), układ według mas atomowych, z periodycznie powtarzającymi się własnościami chemicznymi, przewidział istnienie: galu (odkrycie 1875), skandu (1879), germanu (1886). zrozumienie przyczyn zachowania periodycznego - odkrycie jądra atomowego, kwantyzacja ładunku jądra (liczba atomowa Z), mechanika kwantowa, lata 20 XXw.

4 lata 20: rozwiązanie problemu atomu wodoru problemy wieloelektronowe - poza zasięgiem ścisłych rachunków analitycznych w stanie podstawowym atomu, elektrony zajmują najniższe powłoki dla atomów wieloelektrowych : zniesienie degeneracji poziomów o różnych wartościach l, E zależy od n i l 1925 do zrozumienia periodyczności w układzie pierwiastów zakaz Pauliego: 2 elektrony nie mogą posiadać dwóch identycznych liczb kwantowych (n, l, m l, m s) zakaz dotyczy cząstek o spinie ułamkowym nazywanych fermionami, nie obowiązuje dla cząstek o spinie całkowitym (bozonów) (nl) - podpowłoka, stany nl degeneracja 2(2l + 1) - krotna ns (l = 0), 2 krotna np (l = 1), 6 krotna nd (l = 2), 10 krotna, itd.

5 na powłoce o danym l zmieści się 2(2l + 1) elektronów grupy - kolumny, okresy - wiersze w pierwszych grupach - metale, w ostatniej - gazy szlachetnie najbardziej aktywne chemicznie pierwiatki w grupie 1-szej i 7-mej pierwsza grupa: metale alkaliczne, walencyjność +1 grupa druga: ziemie alkaliczne przedostatnia grupa: halogenki (walencyjność -1) powłoka d - metale przejściowe - własności magnetyczne lantanowce - podobne własności chemiczne, bardzo różne magnetyczne

6 na powłoce o danym l zmieści się 2(2l + 1) elektronów

7 rozmiar atomów energia jonizacji (wiązania ostatniego elektronu) powinowactwo elektronowe (energia uwalniana przy tworzeniu jonu ujemnego, 1 extra elektron)

8 całkowity moment pędu - 1 elektron elektron: L oraz S całkowity moment pędu J = L + S algebra J jak L i S, J 2 = 2 (j(j + 1)), J z = m j dla danych l oraz s możliwe dwie wartości j = l ± s notacja nl j, np. 2P 12, 2P 32, 3D 52, 3D 32

9 oddziaływanie spin-orbita i struktura subtelna ruch ładunków w przestrzeni rzeczywistej - pole magnetyczne, sprzężenie spinowego momentu magnetycznego oraz orbitalnych stopni - swobody - oddziaływanie spin-orbita zniesienie degeneracji: 2P 12, 2P 32 oraz 3D 52, 3D 32 itd. zasada: stan podstawowy przy minimalnym j, rozszczepienie w atomie wodoru 10 5 ev, tzw. struktura subtelna poziomów atomowych (widoczna w widmie) reguły wyboru: zmiana j oraz L o 1, spin zachowany układ elektronu, pole magnetyczne od ruchu protonu - rozszczepi degenerację stanów s z = ± 1 2

10 widmo sodu pojedynczy elektron walencyjny dla atomu Na, zamknięte powłoki (rdzeń) - zerowy spin i orbitalny moment pędu rozszczepienie subtelne: rzędu 10 3 mev, przejście 3p 3s, z 3P 3/2, 3P 12, około 2.1 ev, λ 3/2 = 589 nm, λ 12 = nm żółty dublet sodowy

11 fermiony i bozony cząstki są nierozróżnialne, nie można ich ponumerować Ψ(1, 2, 3,... ) 2 = Ψ(2, 1, 3,... ) 2 = P 12Ψ(1, 2, 3,... ) 2 operator zamiany indeksów cząstek jest hermitowski, wartości własne - rzeczywiste ±1 Ψ(1, 2, 3,... ) = ±Ψ(2, 1, 3,... ), te z - - fermiony, te z + bozony, s - połówkowa - fermiony (elektrony, kwarki) s - całkowita - bozony (fotony, mezony) cząstki złożone z wielu fermionów: z nieparzystej liczby - zachowują sie jak fermiony, z parzystą - jak bozony

12 2e - singlety i tryplety ŝ z χ ms = m s 2 χms dla elektronów m s = ±1 brak sprzężenia spin orbita, Hψ = Eψ, ψ = φ( r)χ ms ( σ) 2 elektrony: H = H 1 + H 2 + e 2 4πɛ 0 r 12 Ψ(1, 2) = Φ( r 1, r 2)χ( σ 1, σ 2) przeciwne symetrie części przestrzennej Φ oraz spinowej χ względem zamiany cząstek części spinowej i przestrzennej

13 2e - singlety i tryplety Ψ(1, 2) = Φ( r 1, r 2)χ( σ 1, σ 2) przeciwne symetrie części przestrzennej Φ oraz spinowej χ względem zamiany cząstek części spinowej i przestrzennej symetryczna spinowa S = 1: χ(σ 1, σ 2) = χ 12 (σ 1)χ 12 (σ 2), m S = 1 χ(σ 1, σ 2) = χ 1 2 (σ 1)χ 1 2 (σ 2), m S = 1 χ(σ 1, σ 2) = 1 2 (χ 1 2 (σ 1)χ 12 (σ 2) + χ 12 (σ 1)χ 1 2 (σ 2)), m S = 0 dla nich Φ T ( r 1, r 2) = Φ T ( r 2, r 1) - stan trypletowy (degeneracja 3-krotna) S = 1 antysymetryczna spinowa S = 0: χ(σ 1, σ 2) = 1 2 (χ 1 2 (σ 1)χ 12 (σ 2) χ 12 (σ 1)χ 1 2 (σ 2)), m S = 0 Φ S ( r 1, r 2) = Φ S ( r 2, r 1)

14 2e - singlety i tryplety Φ T ( r 1, r 2) = Φ T ( r 2, r 1) Φ S ( r 1, r 2) = Φ S ( r 2, r 1) dla 2 orbitali jednoelektronowych Φ T ( r 1, r 2) = 1 2 (φ a(1)φ b (2) φ b (1)φ a(2)) Φ S ( r 1, r 2) = 1 2 (φ a(1)φ b (2) + φ b (1)φ a(2)) zobacz, że dla a = b jest Ψ T = 0 zobacz, że dla Ψ T funkcja znika gdy r 1 = r 2. zakaz Pauliego. wyznacznik Slatera

15 Hel i całka wymiany Φ T ( r 1, r 2) = 1 2 (φ 1s(r 1)φ 2s(r 2) φ 2s(r 1)φ 1s(r 2)) Φ S ( r 1, r 2) = 1 2 (φ 1s(r 1)φ 2s(r 2) + φ 2s(r 1)φ 1s(r 2)) 1 r = C X (minus dla Φ T ) 12 całka kulombowska C = całka wymiany X = w stanie podstawowym: tylko singlet, tylko dla przeciwnych spinów obydwa elektrony potrafią obsadzić stan 1s w stanach wzbudzonych: elektrony mogą obsadzać różne orbitale... φ 1s (r1)φ1s(r1)φ 2s (r2)φ2s(r2) 1 r 12 dr 1dr 2 φ 1s (r1)φ1s(r2)φ 2s (r2)φ2s(r1) 1 r 12 dr 1dr 2 całka kulombowska: oddziaływanie gęstości ładunku jednoelektronowego całka wymiany: poprawka na oddziaływanie kulombowskie wynikające z antysymetrii części przestrzennej, która zabrania im przebywać w tym samym punkcie

16 reguły Hunda reguły obsadzeń dla stanu podstawowego 0. powłoki zapełniane są kolejno. powłoka niższa w pełni zapełniona nim następna zaczyna być obsadzana. (źródło: decydująca rola potencjału jądrowego) 1. na ostatniej powłoce maksymalizowany spin (źródło: oddziaływanie wymiany) Ni: 1s 2 2s 2 2p 3 O: 1s 2 2s 2 2p 4 źródło rysunku: ChemWiki 2. Dla danego S maxymalizowany moment pędu (źródło: oddziaływanie kulombowskie, interpretacja klasyczna: elektrony obracają się w tym samym kierunku by rzadziej się spotykać) 3. Dla podpowłoki zapełnionej w połowie lub mniej stan podstawowy ma minimalny całkowity moment pędu J = L + S. Dla powłok zapełnionych w połowie lub bardziej: maxymalny J - źródło - oddziaływanie spin-orbita.

17 cząsteczki atomy - poza pierwiastkami gazów szlachetnych - tworzą stabilne złożone, związane układy powód : minimalizacja energii całkowitej wiązanie atomu wodoru: p+e=h+13.6 ev wiązanie cząsteczki wodoru: H+H=H ev najsilniejsze wiązania: kowalencyjne słabsze jonowe (często wiązania mają obydwie składowe) słabsze: wodorowe, van der Vaalsa w większych obiektach niż molekuły (metaliczne ciała stałe - wiązanie metaliczne)

18 wiązania molekularne wiązanie jonowe (np. NaCl) wiązanie kowalencyjne (np. diament) dopełnienie powłok + oddziaływanie kulombowskie uwspólnienie elektronów: główny zysk energetyczny z obniżenia stopnia lokalizacji elektronów i związanej z nią energii kinetycznej

19 wiązania jonowe kryształy jonowe: twarde, izolatory, rozpuszczalne w wodzie, po rozpuszczeniu przewodzą wiązania jonowe: dla atomów o różnym powinnowactwie elektronowym rdzenie: sferyczne energia kulombowska NaCl: e U c = 6 2 4πɛ 0 r + 12 e 2 + NaCl 4πɛ 0 2rNaCl = α e2 4πɛ 0 r, gdzie α - stała Madelunga rdzeń odpychający : jony nie są punktowe, chmury elektronowe nie mogą się przenikać, parametryzacja U r = B r n energia kohezji (wiązania na atom, NaCl 3.28 ev)

20 wiązania kowalencyjne stabilne formy węgla: walencyjne: uwspólnione elektrony, najsilniejsze z wiązań (energia kohezji 7.4 ev/ atom, diament) charakter: kierunkowy (patrz wykład o molekułach) bardzo twarde, półprzewodniki przerwa energetyczna między stanem podstawowym (obsadzone pasmo walencyjne)

21 wiązanie metaliczne metaliczne dla sodu energia kohezji 1.1 ev/ atom zysk energetyczny: delokalizacja słabo związanych elektronów dobra przewodność elektryczna i cieplna, kowalne

22 wiązania van der Vaalsa wiązanie van der Waalsa (nazywane również molekularnym) : cząstki neutralne, które wzajemnie indukują momenty dipolowe, potencjał oddziaływania 1 r 6 krystalizacja: gazów szlachetnych w bardzo niskich temperaturach, CH 4 w formie krystalicznej w niskiej temperaturze, energia kohezji 0.1 ev/cząsteczkę wiązanie między płaszczyznami węglowymi w graficie - typu van der Waalsa poza tym: oddziaływania sond skanujących (AFM) z powierzchnią, popularny potencjał dla dynamiki molekularnej

23 wiązania wodorowe wodór, o ile występuje w związku oddaje większość ładunku elektronowego do pozostałych atomów molekuły dodatni ładunek na H, ujemny poza nim, trwałe momenty dipolowe - wiązania

24 najprostsze wiązanie kowalencyjne : H + 2 zjonizowana cząsteczka wodoru, lub atom wodoru potrafi związać dodatkowy proton. fcje elektronowe: z określoną parzystością : parzyste (wiążące) i nieparzyste (antywiążące) tzw. orbital wiążący φ = φ a + φ b

25 najprostsze wiązanie kowalencyjne : H + 2 zjonizowana cząsteczka wodoru, lub atom wodoru potrafi związać dodatkowy proton tzw. orbital antywiążący φ = φ a φ b

26 najprostsze wiązanie kowalencyjne : H + 2 orbital antywiążący : nie daje wiązania dla tej cząsteczki

27 H 2 wiązanie H ev, wiązanie H2 4.5 ev 2e: singlet i tryplet, w singlecie podwójnie obsadzony stan wiążący, w tryplecie 1 wiążący, drugi antywiążący wiązanie tylko w singlecie

28 harmoniki sferyczne/kubiczne Ψ 210 = R 21(r)Y 0 1 (θ, φ) = R21(r) cos(θ) Ψ 21±1 = R 21(r)Y ±1 1 (θ, φ) = R21(r) sin(θ) exp(±imφ) często baza x,y,z (harmoniki kubiczne) zamiast Y l m (harmoniki sferyczne) wygodniejsza możliwe dowolne zmiany bazy bez utraty stacjonarnoci stanów o ile degeneracja względem m (tj. B = 0) p z = Ψ 210 p x = Ψ Ψ 21 1 p y = Ψ 211 Ψ 21 1 orbitale d, l = 2: z 2 r 2 czyli Y 0 2, xz dla (Y 1 2 Y 1 2 ), yz dla Y 1 2 Y 1 2, xy dla (Y 2 2 Y 2 2 ), x2 y 2 dla Y Y 2 2.

29 cząsteczki złożone o charakterze wiązania decyduje powłoka walencyjna atomu (poza rdzeniem) notacja π, σ, δ wg magnetycznej liczby kwantowej względem osi wiązania

30 H 2 O zamiast 90 jest wiązanie spσ

31 hybrydyzacja orbitali dla węgla mieszanie orbitali 2s oraz 2p pod wpływem zaburzenia (obcego atomu) hybrydyzacja: sp 3 ) ψ 1 = 1 2 (ψ s + ψ px + ψ py + ψ pz, 3 pozostałe z innymi znakami. metan

32 hybrydyzacja orbitali dla węgla mieszanie orbitali 2s oraz 2p pod wpływem zaburzenia (obcego atomu) hybrydyzacja: sp 2 : hybrydyzacja płaska, mieszanie: s, px, py podczas gdy p z bez zmiany jedna kreska - wiązanie π, drugie σ etylen

33 hybrydyzacja orbitali dla węgla mieszanie orbitali 2s oraz 2p pod wpływem zaburzenia (obcego atomu) hybrydyzacja: sp 2 : hybrydyzacja płaska, mieszanie: s, px, py podczas gdy p z bez zmiany kółko: wiązanie π benzen grafen: również sp 2

34 wzbudzenia molekuł wzbudzenia elektronowe: rzędu ev niskoenergetyczne wzbudzenia związane z ruchem rdzeni atomowych (jądra + silniej związane elektronu): obroty i wibracje molekuły poziomy rotacyjne z odleglością między poziomami 10 3 ev poziomy wibracyjne z odległością 0.1 ev.

35 przypomnienie z wykładu z fizyki statystycznej każdy stopień swobody pojawiający się w kwadracie w wyrażeniu na energię wnosi w warunkach równowagi k B T 2 do energii całkowitej. liczba stopni swobody: liczba zmiennych wchodzących do wyrażenia na energię. masa cząsteczek jest w jądrach. Obrót względem osi, na której leży jądro nie wnosi wkładu do energii bo E = 1 2 Iω2, a I = m(r)ρ 2 dr = 0 źródło: Hyperphysics (temperatura pokojowa) odstępstwa dla NH 3 oraz CO 2 - wibracyjne stopni swobody (niskoenergetyczne poziomy związane z wygięciem cząsteczki, wibracja zmieniająca odległość międzyatomową jest kosztowna energetycznie, stąd nie widać jej dla w c v dla np. O 2 w T pokojowej).

36 przypomnienie z wykładu z fizyki statystycznej cząsteczki dwuatomowe H 2, O 2 itd: ruch postępowy + obroty (moment pędu prostopadły do wiązania) + wibracje. w temperaturze pokojowej C V = 5/2R: H R, CO 2.43 R, N itd. Gdy uruchomić drgania wzdluż linii łączącej atomy dodatkowo R/2 na energię kinetyczną oraz R/2 na potencjalną drgania. mechanika kwantowa: energie drgań i wibracji są dyskretne Do obrotow i wibracja potrzebna energia progowa której może dostarczyć zbiornik energii (wzbudzenia k B T > E) Dla niższych energii mówi się o: wymrażaniu stopni swobody (frozen degree of freedom)

37 wzbudzenia rotacyjne obroty (prostopadłe do osi wiązania) E J = 1 2 Iω2 = L2 2I = J(J+1) 2 2I obroty prostoladłe do osi wiązania - minimalne I - kilka mev potrzeba do wzbudzenia reguły wyboru dla przejść rotacyjnych J = ±1, E = E ph I (J + 1)

38 wzbudzenia wibracyjne E ν = (ν + 1) 1 2 k m oraz ν = 0, 1, 2,... typowo wzbudzenia rzędu 0.1 ev reguły wyboru ν = ±1 U = U k(r R0)2

39 wibracyjne+rotacyjne E ν,j = (ν + 1) 1 2 k m + J(J+1) 2 2I po prawej widmo absorpcji dla HCl dla 2 rożnych stanów wibracyjnych brak jednej z linii : związanej z regułą wyboru l 0 widoczne : rozdwojenie pików : efekt izotopowy 33 Cl oraz 35 Cl (35 jest 3 razy więcej) uwaga: nie tylko w fizyce jądrowej izopoty mają znaczenie

40 molekuły złożone mody normalne dla cząsteczki wody dwutlenek węgla

41 fluorescencja jedna z form luminescencji (świecenie poza promieniowaniem termicznym), światło emitowane przy niższej energii niż absorbowane, wzbudzonej układ przed emisją przechodzi deekscytację to niższego stanu wzbudzonego

42 fosforescencja fosforenscencja: dlugotrwałe świecenie, w mechanizmie następuje deekscytacja niepromienista do stanu o spinie innym niż stan podstawowy, wtedy przejście do niego jest zabronione przez reguły wyboru (niska efektywność, długi czas życia). długożyciowy stan wzbudzony - wykorzystywany również w technice laserowej

43 Einstein o promieniowaniu termicznym Einstein 1917: jeden foton o energii odpowiadającej odległości między poziomami stymuluje deekscytacje (stymulowana emisja) ponadto stymulowana emisja ma te same prawdopodobieństwo zajścia co absorpcja

44 Einstein o promieniowaniu termicznym atomy z 2-ma poziomami, gęstość energii promieniowania u(ν), N i - liczba atomów w stanie i, liczba atomów absorbujących fotony z i do j: N ij = N ib iju(ν) liczba atomów emitujących N ji = N j(a ji + B jiu(ν)), A ji - emisja spontaniczna, drugi czynnik - emisja wymuszona (pomysł Einsteina) CDC: w równowadze N ij = N ji u(ν) = N i N = exp(hν/kt) j u(ν) = A ji B ji B ij exp(hν/kt) 1 B ji A, B - współczynniki Einsteina A ji B ji N B i ij 1 N j B ji

45 Einstein o promieniowaniu termicznym Planck: u(ν)dν = 8πh c 3 v 3 exp(hν/kt) 1 dν u(ν) = A ji B ji B ij exp(hν/kt) 1 B ji zgodnie z formułą Plancka o ile B ij = B ji i A ji B = 8πhν3 ji c 3 wnioski: stymulowana emisja równie prawdopodobna jak absorpcja, stosunek tempa spontanicznej emisji do wymuszonej rośnie z ν 3

46 laser laser - źródło światła prawie monochromatyczne spójne fazowo optyka pozwala na zachowanie dużej spójności przestrzennej z bardzo dużą gęstością energii Light Amplificatiom by Stimulated Emission of Radiation

47 laser metastabilny stan wzbudzony (czas życia ms zamiast ps) stymulowana emisja ma te same prawdopodobieństwo zajścia co absorpcja do przygotowania akcji laserowej potrzebny ukłąd więcej niż 2 stanowy

48 fosforescencja fosforescencja: dlugotrwałe świecenie (emisja spontaniczna), w mechanizmie następuje deekscytacja niepromienista do stanu o spinie innym niż stan podstawowy, wtedy przejście do niego jest zabronione przez reguły wyboru (niska efektywność, długi czas życia). długożyciowy stan wzbudzony - wykorzystywany również w technice laserowej

49 laser typowo: układ 3 poziomów pompowanie lasera: aby wywołać inwersję obsadzeń dla 2 poziomów: pompowanie niemożliwe

50 laser rubinowy rubin: Al 2O 3 z Cr podstawiającym aluminium optycznie aktywne: jony Cr 3+ pompowanie lampą ksenonową impulsy czerwonego światła lasery: temat na referat

51 wiązania cd wiązania wodorowe dla ciał stałych: wiązanie metaliczne (silniejsze niż jonowe), materiały kowalne - wiązanie nie ma charakteru kierunkowego jak kowalencyjne. wiązania van der Waalsa (kryształy gazów szlachetnych w bardzo niskich temperaturach)

52 molekuły złożone : to jest miejsce aby przenieść do niego laser z poprzednich wykładów metastabilne, laser

struktura atomowa 9 grudnia 2016 struktura atomowa

struktura atomowa 9 grudnia 2016 struktura atomowa 9 grudnia 2016 układ okresowy 1869 - układ Mendelejewa (60 znanych pierwiatków), układ według mas atomowych, z periodycznie powtarzającymi się własnościami chemicznymi, przewidział istnienie: galu (odkrycie

Bardziej szczegółowo

Atomy wieloelektronowe

Atomy wieloelektronowe Wiązania atomowe Atomy wieloelektronowe, obsadzanie stanów elektronowych, układ poziomów energii. Przykładowe konfiguracje elektronów, gazy szlachetne, litowce, chlorowce, układ okresowy pierwiastków,

Bardziej szczegółowo

Atom wodoru w mechanice kwantowej. Równanie Schrödingera

Atom wodoru w mechanice kwantowej. Równanie Schrödingera Fizyka atomowa Atom wodoru w mechanice kwantowej Moment pędu Funkcje falowe atomu wodoru Spin Liczby kwantowe Poprawki do równania Schrödingera: struktura subtelna i nadsubtelna; przesunięcie Lamba Zakaz

Bardziej szczegółowo

Model wiązania kowalencyjnego cząsteczka H 2

Model wiązania kowalencyjnego cząsteczka H 2 Model wiązania kowalencyjnego cząsteczka H 2 + Współrzędne elektronu i protonów Orbitale wiążący i antywiążący otrzymane jako kombinacje orbitali atomowych Orbital wiążący duża gęstość ładunku między jądrami

Bardziej szczegółowo

Zasady obsadzania poziomów

Zasady obsadzania poziomów Zasady obsadzania poziomów Model atomu Bohra Model kwantowy atomu Fala stojąca Liczby kwantowe -główna liczba kwantowa (n = 1,2,3...) kwantuje energię elektronu (numer orbity) -poboczna liczba kwantowa

Bardziej szczegółowo

Stany skupienia materii

Stany skupienia materii Stany skupienia materii Ciała stałe - ustalony kształt i objętość - uporządkowanie dalekiego zasięgu - oddziaływania harmoniczne Ciecze -słabo ściśliwe - uporządkowanie bliskiego zasięgu -tworzą powierzchnię

Bardziej szczegółowo

Liczby kwantowe elektronu w atomie wodoru

Liczby kwantowe elektronu w atomie wodoru Liczby kwantowe elektronu w atomie wodoru Efekt Zeemana Atom wodoru wg mechaniki kwantowej ms = magnetyczna liczba spinowa ms = -1/2, do pełnego opisu stanu elektronu potrzebna jest ta liczba własność

Bardziej szczegółowo

III.1 Atom helu i zakaz Pauliego. Atomy wieloelektronowe. Układ okresowy

III.1 Atom helu i zakaz Pauliego. Atomy wieloelektronowe. Układ okresowy III.1 Atom helu i zakaz Pauliego. Atomy wieloelektronowe. Układ okresowy r. akad. 2004/2005 1. Atom helu: struktura poziomów, reguły wyboru, 2. Zakaz Pauliego, 3. Moment pędu w atomach wieloelektronowych:

Bardziej szczegółowo

Atomy wieloelektronowe i cząsteczki

Atomy wieloelektronowe i cząsteczki Atomy wieloelektronowe i cząsteczki 1 Atomy wieloelektronowe Wodór ma liczbę atomową Z=1 i jest prostym atomem. Zawiera tylko jeden elektron i jeden proton stąd potencjał opisuje oddziaływanie kulombowskie

Bardziej szczegółowo

Różne typy wiązań mają ta sama przyczynę: energia powstającej stabilnej cząsteczki jest mniejsza niż sumaryczna energia tworzących ją, oddalonych

Różne typy wiązań mają ta sama przyczynę: energia powstającej stabilnej cząsteczki jest mniejsza niż sumaryczna energia tworzących ją, oddalonych Wiązania atomowe Atomy wieloelektronowe, obsadzanie stanów elektronowych, układ poziomów energii. Przykładowe konfiguracje elektronów, gazy szlachetne, litowce, chlorowce, układ okresowy pierwiastków,

Bardziej szczegółowo

Orbitale typu σ i typu π

Orbitale typu σ i typu π Orbitale typu σ i typu π Dwa odpowiadające sobie orbitale sąsiednich atomów tworzą kombinacje: wiążącą i antywiążącą. W rezultacie mogą powstać orbitale o rozkładzie przestrzennym dwojakiego typu: σ -

Bardziej szczegółowo

S. Baran - Podstawy fizyki materii skondensowanej Wiązania chemiczne w ciałach stałych. Wiązania chemiczne w ciałach stałych

S. Baran - Podstawy fizyki materii skondensowanej Wiązania chemiczne w ciałach stałych. Wiązania chemiczne w ciałach stałych Wiązania chemiczne w ciałach stałych Wiązania chemiczne w ciałach stałych typ kowalencyjne jonowe metaliczne Van der Waalsa wodorowe siła* silne silne silne pochodzenie uwspólnienie e- (pary e-) przez

Bardziej szczegółowo

Budowa atomów. Atomy wieloelektronowe Układ okresowy pierwiastków

Budowa atomów. Atomy wieloelektronowe Układ okresowy pierwiastków Budowa atomów Atomy wieloelektronowe Układ okresowy pierwiastków Model atomu Bohra atom zjonizowany (ciągłe wartości energii) stany wzbudzone jądro Energia (ev) elektron orbita stan podstawowy Poziomy

Bardziej szczegółowo

WIĄZANIA. Co sprawia, że ciała stałe istnieją i są stabilne? PRZYCIĄGANIE ODPYCHANIE

WIĄZANIA. Co sprawia, że ciała stałe istnieją i są stabilne? PRZYCIĄGANIE ODPYCHANIE WIĄZANIA Co sprawia, że ciała stałe istnieją i są stabilne? PRZYCIĄGANIE ODPYCHANIE Przyciąganie Wynika z elektrostatycznego oddziaływania między elektronami a dodatnimi jądrami atomowymi. Może to być

Bardziej szczegółowo

Mechanika kwantowa. Jak opisać atom wodoru? Jak opisać inne cząsteczki?

Mechanika kwantowa. Jak opisać atom wodoru? Jak opisać inne cząsteczki? Mechanika kwantowa Jak opisać atom wodoru? Jak opisać inne cząsteczki? Mechanika kwantowa Elektron fala stojąca wokół jądra Mechanika kwantowa Równanie Schrödingera Ĥ E ψ H ˆψ = Eψ operator różniczkowy

Bardziej szczegółowo

Elektronowa struktura atomu

Elektronowa struktura atomu Elektronowa struktura atomu Model atomu Bohra oparty na teorii klasycznych oddziaływań elektrostatycznych Elektrony mogą przebywać tylko w określonych stanach, zwanych stacjonarnymi, o określonej energii

Bardziej szczegółowo

Fizyka Ciała Stałego. Struktura krystaliczna. Struktura amorficzna

Fizyka Ciała Stałego. Struktura krystaliczna. Struktura amorficzna Wykład II Struktura krystaliczna Fizyka Ciała Stałego Ciała stałe można podzielić na: Amorficzne, brak uporządkowania, np. szkła; Krystaliczne, o uporządkowanym ułożeniu atomów lub molekuł tworzącym sieć

Bardziej szczegółowo

Wiązania chemiczne. Związek klasyfikacji ciał krystalicznych z charakterem wiązań atomowych. 5 typów wiązań

Wiązania chemiczne. Związek klasyfikacji ciał krystalicznych z charakterem wiązań atomowych. 5 typów wiązań Wiązania chemiczne Związek klasyfikacji ciał krystalicznych z charakterem wiązań atomowych 5 typów wiązań wodorowe A - H - A, jonowe ( np. KCl ) molekularne (pomiędzy atomami gazów szlachetnych i małymi

Bardziej szczegółowo

Wykład V Wiązanie kowalencyjne. Półprzewodniki

Wykład V Wiązanie kowalencyjne. Półprzewodniki Wykład V Wiązanie kowalencyjne. Półprzewodniki Wiązanie kowalencyjne molekuła H 2 Tworzenie wiązania kowalencyjnego w molekule H 2 : elektron w jednym atomie przyciągany jest przez jądro drugiego. Wiązanie

Bardziej szczegółowo

Atom wodoru i jony wodoropodobne

Atom wodoru i jony wodoropodobne Atom wodoru i jony wodoropodobne dr inż. Ireneusz Owczarek CMF PŁ ireneusz.owczarek@p.lodz.pl http://cmf.p.lodz.pl/iowczarek 2012/13 Spis treści Spis treści 1. Model Bohra atomu wodoru 2 1.1. Porządek

Bardziej szczegółowo

Elementy teorii powierzchni metali

Elementy teorii powierzchni metali prof. dr hab. Adam Kiejna Elementy teorii powierzchni metali Wykład 4 v.16 Wiązanie metaliczne Wiązanie metaliczne Zajmujemy się tylko metalami dlatego w zasadzie interesuje nas tylko wiązanie metaliczne.

Bardziej szczegółowo

Fizyka Ciała Stałego. Struktura krystaliczna. Struktura amorficzna

Fizyka Ciała Stałego. Struktura krystaliczna. Struktura amorficzna Wykład II Struktura krystaliczna Fizyka Ciała Stałego Ciała stałe można podzielić na: Amorficzne, brak uporządkowania, np. szkła; Krystaliczne, o uporządkowanym ułożeniu atomów lub molekuł tworzącym sieć

Bardziej szczegółowo

Wykład 5: Cząsteczki dwuatomowe

Wykład 5: Cząsteczki dwuatomowe Wykład 5: Cząsteczki dwuatomowe Wiązania jonowe i kowalencyjne Ograniczenia teorii Lewisa Orbitale cząsteczkowe Kombinacja liniowa orbitali atomowych Orbitale dwucentrowe Schematy nakładania orbitali Diagramy

Bardziej szczegółowo

Wykład Atom o wielu elektronach Laser Rezonans magnetyczny

Wykład Atom o wielu elektronach Laser Rezonans magnetyczny Wykład 21. 12.2016 Atom o wielu elektronach Laser Rezonans magnetyczny Jeszcze o atomach Przypomnienie: liczby kwantowe elektronu w atomie wodoru, zakaz Pauliego, powłoki, podpowłoki, orbitale, Atomy wieloelektronowe

Bardziej szczegółowo

Właściwości chemiczne i fizyczne pierwiastków powtarzają się w pewnym cyklu (zebrane w grupy 2, 8, 8, 18, 18, 32 pierwiastków).

Właściwości chemiczne i fizyczne pierwiastków powtarzają się w pewnym cyklu (zebrane w grupy 2, 8, 8, 18, 18, 32 pierwiastków). Właściwości chemiczne i fizyczne pierwiastków powtarzają się w pewnym cyklu (zebrane w grupy 2, 8, 8, 18, 18, 32 pierwiastków). 1925r. postulat Pauliego: Na jednej orbicie może znajdować się nie więcej

Bardziej szczegółowo

Podstawy chemii obliczeniowej

Podstawy chemii obliczeniowej Podstawy chemii obliczeniowej Anna Kaczmarek Kędziera Katedra Chemii Materiałów, Adsorpcji i Katalizy Wydział Chemii UMK, Toruń Elementy chemii obliczeniowej i bioinformatyki 2015 Plan wykładu 15 godzin

Bardziej szczegółowo

Fizyka atomowa r. akad. 2012/2013

Fizyka atomowa r. akad. 2012/2013 r. akad. 2012/2013 wykład VII - VIII Podstawy Procesów i Konstrukcji Inżynierskich Fizyka atomowa Zakład Biofizyki 1 Spin elektronu Elektrony posiadają własny moment pędu L s. nazwany spinem. Wartość spinu

Bardziej szczegółowo

WIĄZANIA. Co sprawia, że ciała stałe istnieją i są stabilne? PRZYCIĄGANIE ODPYCHANIE

WIĄZANIA. Co sprawia, że ciała stałe istnieją i są stabilne? PRZYCIĄGANIE ODPYCHANIE WIĄZANIA Co sprawia, że ciała stałe istnieją i są stabilne? PRZYCIĄGANIE ODPYCHANIE 1 Przyciąganie Wynika z elektrostatycznego oddziaływania między elektronami a dodatnimi jądrami atomowymi. Może to być

Bardziej szczegółowo

Wykład Budowa atomu 3

Wykład Budowa atomu 3 Wykład 14. 12.2016 Budowa atomu 3 Model atomu według mechaniki kwantowej Równanie Schrödingera dla atomu wodoru i jego rozwiązania Liczby kwantowe n, l, m l : - Kwantowanie energii i liczba kwantowa n

Bardziej szczegółowo

3. Cząsteczki i wiązania

3. Cząsteczki i wiązania 20161020 3. Cząsteczki i wiązania Elektrony walencyjne Wiązania jonowe i kowalencyjne Wiązanie typu σ i π Hybrydyzacja Przewidywanie kształtu cząsteczek AX n Orbitale zdelokalizowane Cząsteczki związków

Bardziej szczegółowo

Mechanika kwantowa. Jak opisać atom wodoru? Jak opisać inne cząsteczki?

Mechanika kwantowa. Jak opisać atom wodoru? Jak opisać inne cząsteczki? Mechanika kwantowa Jak opisać atom wodoru? Jak opisać inne cząsteczki? Mechanika kwantowa Równanie Schrödingera Ĥ E ψ H ˆψ = Eψ operator różniczkow Hamiltona energia funkcja falowa h d d d + + m d d dz

Bardziej szczegółowo

Wykład 16: Atomy wieloelektronowe

Wykład 16: Atomy wieloelektronowe Wykład 16: Atomy wieloelektronowe Funkcje falowe Kolejność zapełniania orbitali Energia elektronów Konfiguracja elektronowa Reguła Hunda i zakaz Pauliego Efektywna liczba atomowa Reguły Slatera Wydział

Bardziej szczegółowo

Wstęp do Optyki i Fizyki Materii Skondensowanej

Wstęp do Optyki i Fizyki Materii Skondensowanej Wstęp do Optyki i Fizyki Materii Skondensowanej Część I: Optyka, wykład 9 wykład: Piotr Fita pokazy: Andrzej Wysmołek ćwiczenia: Anna Grochola, Barbara Piętka Wydział Fizyki Uniwersytet Warszawski 2014/15

Bardziej szczegółowo

Podstawy fizyki kwantowej i budowy materii

Podstawy fizyki kwantowej i budowy materii Podstawy fizyki kwantowej i budowy materii prof. dr hab. Aleksander Filip Żarnecki Zakład Cząstek i Oddziaływań Fundamentalnych Instytut Fizyki Doświadczalnej Wykład 12 9 stycznia 2017 A.F.Żarnecki Podstawy

Bardziej szczegółowo

Podstawy fizyki kwantowej i budowy materii

Podstawy fizyki kwantowej i budowy materii Podstawy fizyki kwantowej i budowy materii prof. dr hab. Aleksander Filip Żarnecki Zakład Cząstek i Oddziaływań Fundamentalnych Instytut Fizyki Doświadczalnej Wykład 13 8 stycznia 2018 A.F.Żarnecki Podstawy

Bardziej szczegółowo

Temat Ocena dopuszczająca Ocena dostateczna Ocena dobra Ocena bardzo dobra Ocena celująca. Uczeń:

Temat Ocena dopuszczająca Ocena dostateczna Ocena dobra Ocena bardzo dobra Ocena celująca. Uczeń: Chemia - klasa I (część 2) Wymagania edukacyjne Temat Ocena dopuszczająca Ocena dostateczna Ocena dobra Ocena bardzo dobra Ocena celująca Dział 1. Chemia nieorganiczna Lekcja organizacyjna. Zapoznanie

Bardziej szczegółowo

Mechanika kwantowa. Erwin Schrödinger ( ) Werner Heisenberg

Mechanika kwantowa. Erwin Schrödinger ( ) Werner Heisenberg Mechanika kwantowa Erwin Schrödinger (1887-1961) Werner Heisenberg 1901-1976 Falowe równanie ruchu (uproszczenie: przypadek jednowymiarowy) Dla fotonów Dla cząstek Równanie Schrödingera y x = 1 c y t y(

Bardziej szczegółowo

Elektryczne własności ciał stałych

Elektryczne własności ciał stałych Elektryczne własności ciał stałych Do sklasyfikowania różnych materiałów ze względu na ich własności elektryczne trzeba zdefiniować kilka wielkości Oporność właściwa (albo przewodność) ładunek [C] = 1/

Bardziej szczegółowo

n n 1 2 = exp( ε ε ) 1 / kt = exp( hν / kt) (23) 2 to wzór (22) przejdzie w następującą równość: ρ (ν) = B B A / B 2 1 hν exp( ) 1 kt (24)

n n 1 2 = exp( ε ε ) 1 / kt = exp( hν / kt) (23) 2 to wzór (22) przejdzie w następującą równość: ρ (ν) = B B A / B 2 1 hν exp( ) 1 kt (24) n n 1 2 = exp( ε ε ) 1 / kt = exp( hν / kt) (23) 2 to wzór (22) przejdzie w następującą równość: ρ (ν) = B B A 1 2 / B hν exp( ) 1 kt (24) Powyższe równanie określające gęstość widmową energii promieniowania

Bardziej szczegółowo

Przewodność elektryczna ciał stałych. Elektryczne własności ciał stałych Izolatory, metale i półprzewodniki

Przewodność elektryczna ciał stałych. Elektryczne własności ciał stałych Izolatory, metale i półprzewodniki Przewodność elektryczna ciał stałych Elektryczne własności ciał stałych Izolatory, metale i półprzewodniki Elektryczne własności ciał stałych Do sklasyfikowania różnych materiałów ze względu na ich własności

Bardziej szczegółowo

Fizyka 2. Janusz Andrzejewski

Fizyka 2. Janusz Andrzejewski Fizyka 2 wykład 14 Janusz Andrzejewski Atom wodoru Wczesne modele atomu -W czasach Newtona atom uważany była za małą twardą kulkę co dość dobrze sprawdzało się w rozważaniach dotyczących kinetycznej teorii

Bardziej szczegółowo

Wstęp do Optyki i Fizyki Materii Skondensowanej

Wstęp do Optyki i Fizyki Materii Skondensowanej Wstęp do Optyki i Fizyki Materii Skondensowanej Część I: Optyka, wykład 10 wykład: Piotr Fita pokazy: Andrzej Wysmołek ćwiczenia: Paweł Kowalczyk, Barbara Piętka Wydział Fizyki Uniwersytet Warszawski 2015/16

Bardziej szczegółowo

CHEMIA 1. INSTYTUT MEDICUS Kurs przygotowawczy na studia medyczne kierunek lekarski, stomatologia, farmacja, analityka medyczna ATOM.

CHEMIA 1. INSTYTUT MEDICUS Kurs przygotowawczy na studia medyczne kierunek lekarski, stomatologia, farmacja, analityka medyczna ATOM. INSTYTUT MEDICUS Kurs przygotowawczy na studia medyczne kierunek lekarski, stomatologia, farmacja, analityka medyczna tel. 0501 38 39 55 www.medicus.edu.pl CHEMIA 1 ATOM Budowa atomu - jądro, zawierające

Bardziej szczegółowo

Cząstki elementarne. Składnikami materii są leptony, mezony i bariony. Leptony są niepodzielne. Mezony i bariony składają się z kwarków.

Cząstki elementarne. Składnikami materii są leptony, mezony i bariony. Leptony są niepodzielne. Mezony i bariony składają się z kwarków. Cząstki elementarne Składnikami materii są leptony, mezony i bariony. Leptony są niepodzielne. Mezony i bariony składają się z kwarków. Cząstki elementarne Leptony i kwarki są fermionami mają spin połówkowy

Bardziej szczegółowo

Fizyka 3.3 WYKŁAD II

Fizyka 3.3 WYKŁAD II Fizyka 3.3 WYKŁAD II Promieniowanie elektromagnetyczne Dualizm korpuskularno-falowy światła Fala elektromagnetyczna Strumień fotonów o energii E F : E F = hc λ c = 3 10 8 m/s h = 6. 63 10 34 J s Światło

Bardziej szczegółowo

Konwersatorium 1. Zagadnienia na konwersatorium

Konwersatorium 1. Zagadnienia na konwersatorium Konwersatorium 1 Zagadnienia na konwersatorium 1. Omów reguły zapełniania powłok elektronowych. 2. Podaj konfiguracje elektronowe dla atomów Cu, Ag, Au, Pd, Pt, Cr, Mo, W. 3. Wyjaśnij dlaczego występują

Bardziej szczegółowo

Stara i nowa teoria kwantowa

Stara i nowa teoria kwantowa Stara i nowa teoria kwantowa Braki teorii Bohra: - podane jedynie położenia linii, brak natężeń -nie tłumaczy ilości elektronów na poszczególnych orbitach - model działa gorzej dla atomów z więcej niż

Bardziej szczegółowo

Pasmowa teoria przewodnictwa. Anna Pietnoczka

Pasmowa teoria przewodnictwa. Anna Pietnoczka Pasmowa teoria przewodnictwa elektrycznego Anna Pietnoczka Wpływ rodzaju wiązań na przewodność próbki: Wiązanie jonowe - izolatory Wiązanie metaliczne - przewodniki Wiązanie kowalencyjne - półprzewodniki

Bardziej szczegółowo

ANALITYKA W KONTROLI JAKOŚCI

ANALITYKA W KONTROLI JAKOŚCI ANALITYKA W KONTROLI JAKOŚCI ANALIZA ŚLADÓW METODA ICP-OES Optyczna spektroskopia emisyjna ze wzbudzeniem w indukcyjnie sprzężonej plazmie WYKŁAD 4 Rodzaje widm i mechanizm ich powstania PODSTAWY SPEKTROSKOPII

Bardziej szczegółowo

Widmo sodu, serie. p główna s- ostra d rozmyta f -podstawowa

Widmo sodu, serie. p główna s- ostra d rozmyta f -podstawowa Widmo sodu, serie p główna s- ostra d rozmyta f -podstawowa Przejścia dozwolone w Na Reguły wyboru: l =± 1 Diagram Grotriana dla sodu, z lewej strony poziomy energetyczne wodoru; należy zwrócić uwagę,

Bardziej szczegółowo

Wstęp do Optyki i Fizyki Materii Skondensowanej

Wstęp do Optyki i Fizyki Materii Skondensowanej Wstęp do Optyki i Fizyki Materii Skondensowanej Część I: Optyka, wykład 3 wykład: Piotr Fita pokazy: Jacek Szczytko ćwiczenia: Aneta Drabińska, Paweł Kowalczyk, Barbara Piętka Wydział Fizyki Uniwersytet

Bardziej szczegółowo

Wykład FIZYKA II. 13. Fizyka atomowa. Dr hab. inż. Władysław Artur Woźniak

Wykład FIZYKA II. 13. Fizyka atomowa.  Dr hab. inż. Władysław Artur Woźniak Wykład FIZYKA II 13. Fizyka atomowa Dr hab. inż. Władysław Artur Woźniak Instytut Fizyki Politechniki Wrocławskiej http://www.if.pwr.wroc.pl/~wozniak/ ZASADA PAULIEGO Układ okresowy pierwiastków lub jakiekolwiek

Bardziej szczegółowo

26 Okresowy układ pierwiastków

26 Okresowy układ pierwiastków 26 Okresowy układ pierwiastków Przyjmując procedurę Hartree ego otrzymujemy poziomy numerowane, jak w atomie wodoru, liczbami kwantowymi (n, l, m) z tym, że degeneracja ze względu na l na ogół już nie

Bardziej szczegółowo

Wykład 5 Widmo rotacyjne dwuatomowego rotatora sztywnego

Wykład 5 Widmo rotacyjne dwuatomowego rotatora sztywnego Wykład 5 Widmo rotacyjne dwuatomowego rotatora sztywnego W5. Energia molekuł Przemieszczanie się całych molekuł w przestrzeni - Ruch translacyjny - Odbywa się w fazie gazowej i ciekłej, w fazie stałej

Bardziej szczegółowo

Elektronowa struktura atomu

Elektronowa struktura atomu Elektronowa struktura atomu Model atomu Bohra oparty na teorii klasycznych oddziaływań elektrostatycznych Elektrony mogą przebywać tylko w określonych stanach, zwanych stacjonarnymi, o określonej energii

Bardziej szczegółowo

Układy wieloelektronowe

Układy wieloelektronowe Układy wieloelektronowe spin cząstki nierozróżnialność cząstek a symetria funkcji falowej fermiony i bozony przybliżenie jednoelektonowe wyznacznik Slatera konfiguracje elektronowe atomów ciało posiadające

Bardziej szczegółowo

Podział ciał stałych ze względu na strukturę atomowo-cząsteczkową

Podział ciał stałych ze względu na strukturę atomowo-cząsteczkową Podział ciał stałych ze względu na strukturę atomowo-cząsteczkową Kryształy Atomy w krysztale ułożone są w pewien powtarzający się regularny wzór zwany siecią krystaliczną. Struktura kryształu NaCl Polikryształy

Bardziej szczegółowo

E e l kt k r t o r n o ow o a w a s t s r t u r kt k u t ra r a at a o t m o u

E e l kt k r t o r n o ow o a w a s t s r t u r kt k u t ra r a at a o t m o u Elektronowa struktura atomu Anna Pietnoczka BUDOWA ATOMU CZĄSTKA SYMBOL WYSTĘPOWANIE MASA ŁADUNEK ELEKTRYCZNY PROTON p + jądroatomowe około 1 u + 1 NEUTRON n 0 jądroatomowe około 1u Brak ELEKTRON e - powłoki

Bardziej szczegółowo

Inżynieria Biomedyczna. Wykład XII

Inżynieria Biomedyczna. Wykład XII Inżynieria Biomedyczna Wykład XII Plan Wiązania chemiczne Teoria Lewisa Teoria orbitali molekularnych Homojądrowe cząsteczki dwuatomowe Heterojądrowe cząsteczki dwuatomowe Elektroujemność Hybrydyzacja

Bardziej szczegółowo

Informacje ogólne. 45 min. test na podstawie wykładu Zaliczenie ćwiczeń na podstawie prezentacji Punkty: test: 60 %, prezentacja: 40 %.

Informacje ogólne. 45 min. test na podstawie wykładu Zaliczenie ćwiczeń na podstawie prezentacji Punkty: test: 60 %, prezentacja: 40 %. Informacje ogólne Wykład 28 h Ćwiczenia 14 Charakter seminaryjny zespołu dwuosobowe ~20 min. prezentacje Lista tematów na stronie Materiały do wykładu na stronie: http://urbaniak.fizyka.pw.edu.pl Zaliczenie:

Bardziej szczegółowo

Podstawy fizyki wykład 3

Podstawy fizyki wykład 3 D. Halliday, R. Resnick, J.Walker: Podstawy Fizyki, tom 5, PWN, Warszawa 2003. H. D. Young, R. A. Freedman, Sear s & Zemansky s University Physics with Modern Physics, Addison-Wesley Publishing Company,

Bardziej szczegółowo

Chemia Ogólna wykład 1

Chemia Ogólna wykład 1 Chemia Ogólna wykład 1 Materia związki chemiczne cząsteczka http://scholaris.pl/ obojętne elektrycznie indywiduum chemiczne, złożone z więcej niż jednego atomu, które są ze sobą trwale połączone wiązaniami

Bardziej szczegółowo

TEORIA PASMOWA CIAŁ STAŁYCH

TEORIA PASMOWA CIAŁ STAŁYCH TEORIA PASMOWA CIAŁ STAŁYCH Skolektywizowane elektrony w metalu Weźmy pod uwagę pewną ilość atomów jakiegoś metalu, np. sodu. Pojedynczy atom sodu zawiera 11 elektronów o konfiguracji 1s 2 2s 2 2p 6 3s

Bardziej szczegółowo

Cz. I Materiał powtórzeniowy do sprawdzianu dla klas II LO - Wiązania chemiczne + przykładowe zadania i proponowane rozwiązania

Cz. I Materiał powtórzeniowy do sprawdzianu dla klas II LO - Wiązania chemiczne + przykładowe zadania i proponowane rozwiązania Cz. I Materiał powtórzeniowy do sprawdzianu dla klas II LO - Wiązania chemiczne + przykładowe zadania i proponowane rozwiązania I. Elektroujemność pierwiastków i elektronowa teoria wiązań Lewisa-Kossela

Bardziej szczegółowo

Oddziaływania w magnetykach

Oddziaływania w magnetykach 9 Oddziaływania w magnetykach Zjawiska dia- i paramagnetyzmu są odpowiedzią indywidualnych (nieskorelowanych) jonów dia- i paramagnetycznych na działanie pola magnetycznego. Z drugiej strony spontaniczne

Bardziej szczegółowo

0900 FS2 2 FAC. Fizyka atomu i cząsteczki FT 8. WYDZIAŁ FIZYKI UwB KOD USOS: Karta przedmiotu. Przedmiot moduł ECTS. kierunek studiów: FIZYKA 2 st.

0900 FS2 2 FAC. Fizyka atomu i cząsteczki FT 8. WYDZIAŁ FIZYKI UwB KOD USOS: Karta przedmiotu. Przedmiot moduł ECTS. kierunek studiów: FIZYKA 2 st. WYDZIAŁ FIZYKI UwB KOD USOS: 0900 FS2 2 FAC Karta przedmiotu Przedmiot moduł ECTS Fizyka atomu i cząsteczki FT 8 kierunek studiów: FIZYKA 2 st. specjalność: FIZYKA TEORETYCZNA Formy zajęć wykład konwersatorium

Bardziej szczegółowo

1. Przesłanki doświadczalne mechaniki kwantowej.

1. Przesłanki doświadczalne mechaniki kwantowej. 1 Pytania egzaminacyjne: 1. Przesłanki doświadczalne mechaniki kwantowej. 2. Efekt fotoelektryczny- interpretacja Einsteina. 3. Efekt fotoelektryczny: jak skorelowana jest liczba wybijanych elektronów

Bardziej szczegółowo

INŻYNIERIA BIOMEDYCZNA. Wykład X

INŻYNIERIA BIOMEDYCZNA. Wykład X INŻYNIERIA BIOMEDYCZNA Wykład X 2015-12-25 1 Mechanika kwantowa opiera się na dwóch prawach Dualizm korpuskularno-falowy (de Broglie a) λ h p Zasada nieoznaczoności Heisenberga p x h/(4 ) Gęstość prawdopodobieństwa

Bardziej szczegółowo

że w wyniku pomiaru zmiennej dynamicznej A, której odpowiada operator αˆ otrzymana zostanie wartość 2.41?

że w wyniku pomiaru zmiennej dynamicznej A, której odpowiada operator αˆ otrzymana zostanie wartość 2.41? TEST. Ortogonalne i znormalizowane funkcje f i f są funkcjami własnymi operatora αˆ, przy czym: α ˆ f =. 05 f i α ˆ f =. 4f. Stan pewnej cząstki opisuje 3 znormalizowana funkcja falowa Ψ = f + f. Jakie

Bardziej szczegółowo

13.1 Układy helopodobne (trójcząstkowe układy dwuelektronowe)

13.1 Układy helopodobne (trójcząstkowe układy dwuelektronowe) Janusz Adamowski METODY OBLICZENIOWE FIZYKI 1 Rozdział 13 UKŁADY KILKU CZĄSTEK W MECHANICE KWANTOWEJ 13.1 Układy helopodobne (trójcząstkowe układy dwuelektronowe) Zajmiemy się kwantowym opisem atomu He

Bardziej szczegółowo

Wstęp do Optyki i Fizyki Materii Skondensowanej

Wstęp do Optyki i Fizyki Materii Skondensowanej Wstęp do Optyki i Fizyki Materii Skondensowanej Część I: Optyka, wykład 4 wykład: Piotr Fita pokazy: Andrzej Wysmołek ćwiczenia: Anna Grochola, Barbara Piętka Wydział Fizyki Uniwersytet Warszawski 2013/14

Bardziej szczegółowo

Atomowa budowa materii

Atomowa budowa materii Atomowa budowa materii Wszystkie obiekty materialne zbudowane są z tych samych elementów cząstek elementarnych Cząstki elementarne oddziałują tylko kilkoma sposobami oddziaływania wymieniając kwanty pól

Bardziej szczegółowo

3. Cząsteczki i wiązania

3. Cząsteczki i wiązania 3. Cząsteczki i wiązania Elektrony walencyjne Wiązania jonowe i kowalencyjne Wiązanie typu σ i π Hybrydyzacja Przewidywanie kształtu cząsteczek AX n Orbitale zdelokalizowane Cząsteczki związków organicznych

Bardziej szczegółowo

Uniwersytet Śląski w Katowicach str. 1 Wydział Matematyki, Fizyki i Chemii

Uniwersytet Śląski w Katowicach str. 1 Wydział Matematyki, Fizyki i Chemii Uniwersytet Śląski w Katowicach str. 1 Kierunek i poziom studiów: Chemia, pierwszy poziom Sylabus modułu: Chemia kwantowa 021 Nazwa wariantu modułu (opcjonalnie): 1. Informacje ogólne koordynator modułu

Bardziej szczegółowo

STRUKTURA PASM ENERGETYCZNYCH

STRUKTURA PASM ENERGETYCZNYCH PODSTAWY TEORII PASMOWEJ Struktura pasm energetycznych Teoria wa Struktura wa stałych Półprzewodniki i ich rodzaje Półprzewodniki domieszkowane Rozkład Fermiego - Diraca Złącze p-n (dioda) Politechnika

Bardziej szczegółowo

Geometria cząsteczek wieloatomowych. Hybrydyzacja orbitali atomowych.

Geometria cząsteczek wieloatomowych. Hybrydyzacja orbitali atomowych. Geometria cząsteczek wieloatomowych. Hybrydyzacja orbitali atomowych. Geometria cząsteczek Geometria cząsteczek decyduje zarówno o ich właściwościach fizycznych jak i chemicznych, np. temperaturze wrzenia,

Bardziej szczegółowo

III.4 Gaz Fermiego. Struktura pasmowa ciał stałych

III.4 Gaz Fermiego. Struktura pasmowa ciał stałych III.4 Gaz Fermiego. Struktura pasmowa ciał stałych Jan Królikowski Fizyka IVBC 1 Gaz Fermiego Gaz Fermiego to gaz swobodnych, nie oddziałujących, identycznych fermionów w objętości V=a 3. Poszukujemy N(E)dE

Bardziej szczegółowo

Konfiguracja elektronowa atomu

Konfiguracja elektronowa atomu Konfiguracja elektronowa atomu ANALIZA CHEMICZNA BADANIE WŁAŚCIWOŚCI SUBSTANCJI KONTROLA I STEROWANIE PROCESAMI TECHNOLOGICZNYMI Właściwości pierwiastków - Układ okresowy Prawo okresowości Mendelejewa

Bardziej szczegółowo

Podstawy chemii. dr hab. Wacław Makowski. Wykład 1: Wprowadzenie

Podstawy chemii. dr hab. Wacław Makowski. Wykład 1: Wprowadzenie Podstawy chemii dr hab. Wacław Makowski Wykład 1: Wprowadzenie Wspomnienia ze szkoły Elementarz (powtórka z gimnazjum) Układ okresowy Dalsze wtajemniczenia (liceum) Program zajęć Podręczniki Wydział Chemii

Bardziej szczegółowo

Ciała stałe. Ciała krystaliczne. Ciała amorficzne. Bardzo często mamy do czynienia z ciałami polikrystalicznymi, rzadko monokryształami.

Ciała stałe. Ciała krystaliczne. Ciała amorficzne. Bardzo często mamy do czynienia z ciałami polikrystalicznymi, rzadko monokryształami. Ciała stałe Ciała krystaliczne Ciała amorficzne Bardzo często mamy do czynienia z ciałami polikrystalicznymi, rzadko monokryształami. r T = Kryształy rosną przez regularne powtarzanie się identycznych

Bardziej szczegółowo

Opracowała: mgr inż. Ewelina Nowak

Opracowała: mgr inż. Ewelina Nowak Materiały dydaktyczne na zajęcia wyrównawcze z chemii dla studentów pierwszego roku kierunku zamawianego Inżynieria Środowiska w ramach projektu Era inżyniera pewna lokata na przyszłość Opracowała: mgr

Bardziej szczegółowo

Podstawy chemii obliczeniowej

Podstawy chemii obliczeniowej Podstawy chemii obliczeniowej Anna Kaczmarek Kędziera Katedra Chemii Materiałów, Adsorpcji i Katalizy Wydział Chemii UMK, Toruń Elementy chemii obliczeniowej i bioinformatyki 2015 Plan wykładu 15 godzin

Bardziej szczegółowo

Chemia kwantowa. Pytania egzaminacyjne. 2010/2011: 1. Przesłanki doświadczalne mechaniki kwantowej.

Chemia kwantowa. Pytania egzaminacyjne. 2010/2011: 1. Przesłanki doświadczalne mechaniki kwantowej. 1 Chemia kwantowa. Pytania egzaminacyjne. 21/211: 1. Przesłanki doświadczalne mechaniki kwantowej. 2. Efekt fotoelektryczny - interpretacja Einsteina. 3. Efekt fotoelektryczny: jak skorelowana jest licza

Bardziej szczegółowo

Teorie wiązania chemicznego i podstawowe zasady mechaniki kwantowej Zjawiska, które zapowiadały nadejście nowej ery w fizyce i przybliżały

Teorie wiązania chemicznego i podstawowe zasady mechaniki kwantowej Zjawiska, które zapowiadały nadejście nowej ery w fizyce i przybliżały WYKŁAD 1 Teorie wiązania chemicznego i podstawowe zasady mechaniki kwantowej Zjawiska, które zapowiadały nadejście nowej ery w fizyce i przybliżały sformułowanie praw fizyki kwantowej: promieniowanie katodowe

Bardziej szczegółowo

I. Budowa atomu i model atomu wg. Bohra. 1. Atom - najmniejsza część pierwiastka zachowująca jego właściwości. Jądro atomowe - protony i neutrony

I. Budowa atomu i model atomu wg. Bohra. 1. Atom - najmniejsza część pierwiastka zachowująca jego właściwości. Jądro atomowe - protony i neutrony Materiał powtórzeniowy do sprawdzianów - konfiguracja elektronowa, elektrony walencyjne, współczesny układ pierwiastków chemicznych, przykładowe zadania z rozwiązaniami. I. Budowa atomu i model atomu wg.

Bardziej szczegółowo

OPTYKA KWANTOWA Wykład dla 5. roku Fizyki

OPTYKA KWANTOWA Wykład dla 5. roku Fizyki OPTYKA KWANTOWA Wykład dla 5. roku Fizyki c Adam Bechler 2006 Instytut Fizyki Uniwersytetu Szczecińskiego Rezonansowe oddziaływanie układu atomowego z promieniowaniem "! "!! # $%&'()*+,-./-(01+'2'34'*5%.25%&+)*-(6

Bardziej szczegółowo

Spektroskopia magnetyczna

Spektroskopia magnetyczna Spektroskopia magnetyczna Literatura Zbigniew Kęcki, Podstawy spektroskopii molekularnej, PWN W- wa 1992 lub nowsze wydanie Przypomnienie 1) Mechanika ruchu obrotowego - moment bezwładności, moment pędu,

Bardziej szczegółowo

1 i 2. Struktura elektronowa atomów, tworzenie wiązań chemicznych

1 i 2. Struktura elektronowa atomów, tworzenie wiązań chemicznych 1 i 2. Struktura elektronowa atomów, tworzenie wiązań chemicznych 1 1.1. Struktura elektronowa atomów Rozkład elektronów na pierwszych czterech powłokach elektronowych 1. powłoka 2. powłoka 3. powłoka

Bardziej szczegółowo

Lasery. Własności światła laserowego Zasada działania Rodzaje laserów

Lasery. Własności światła laserowego Zasada działania Rodzaje laserów Lasery Własności światła laserowego Zasada działania Rodzaje laserów Lasery Laser - nazwa utworzona jako akronim od Light Amplification by Stimulated Emission of Radiation - wzmocnienie światła poprzez

Bardziej szczegółowo

II.6 Atomy w zewnętrznym polu magnetycznym

II.6 Atomy w zewnętrznym polu magnetycznym II.6 Atomy w zewnętrznym polu magnetycznym 1. Kwantowanie przestrzenne w zewnętrznym polu magnetycznym. Model wektorowy raz jeszcze 2. Zjawisko Zeemana Normalne zjawisko Zeemana i jego wyjaśnienie w modelu

Bardziej szczegółowo

Cz. I Materiał powtórzeniowy do sprawdzianu dla klas I LO - Wiązania chemiczne + przykładowe zadania i proponowane rozwiązania

Cz. I Materiał powtórzeniowy do sprawdzianu dla klas I LO - Wiązania chemiczne + przykładowe zadania i proponowane rozwiązania Cz. I Materiał powtórzeniowy do sprawdzianu dla klas I LO - Wiązania chemiczne + przykładowe zadania i proponowane rozwiązania I. Elektroujemność pierwiastków i elektronowa teoria wiązań Lewisa-Kossela

Bardziej szczegółowo

Własności jąder w stanie podstawowym

Własności jąder w stanie podstawowym Własności jąder w stanie podstawowym Najważniejsze liczby kwantowe charakteryzujące jądro: A liczba masowa = liczbie nukleonów (l. barionów) Z liczba atomowa = liczbie protonów (ładunek) N liczba neutronów

Bardziej szczegółowo

INŻYNIERIA BIOMEDYCZNA. Wykład X

INŻYNIERIA BIOMEDYCZNA. Wykład X INŻYNIERIA BIOMEDYCZNA Wykład X 16.12.2017 1 Mechanika kwantowa opiera się na dwóch prawach Dualizm korpuskularno-falowy (de Broglie a) λ h p Zasada nieoznaczoności Heisenberga p x h/(4 ) Gęstość prawdopodobieństwa

Bardziej szczegółowo

Fizyka Ciała Stałego

Fizyka Ciała Stałego Wykład III Struktura krystaliczna Fizyka Ciała Stałego Ciała stałe można podzielić na: Krystaliczne, o uporządkowanym ułożeniu atomów lub molekuł tworzącym sieć krystaliczną. Amorficzne, brak uporządkowania,

Bardziej szczegółowo

Spis treści. Przedmowa redaktora do wydania czwartego 11

Spis treści. Przedmowa redaktora do wydania czwartego 11 Mechanika kwantowa : teoria nierelatywistyczna / Lew D. Landau, Jewgienij M. Lifszyc ; z jęz. ros. tł. Ludwik Dobrzyński, Andrzej Pindor. - Wyd. 3. Warszawa, 2012 Spis treści Przedmowa redaktora do wydania

Bardziej szczegółowo

Atom wodoru. Model klasyczny: nieruchome jądro +p i poruszający się wokół niego elektron e w odległości r; energia potencjalna elektronu:

Atom wodoru. Model klasyczny: nieruchome jądro +p i poruszający się wokół niego elektron e w odległości r; energia potencjalna elektronu: ATOM WODORU Atom wodoru Model klasyczny: nieruchome jądro +p i poruszający się wokół niego elektron e w odległości r; energia potencjalna elektronu: U = 4πε Opis kwantowy: wykorzystując zasadę odpowiedniości

Bardziej szczegółowo

S. Baran - Podstawy fizyki materii skondensowanej Gaz Fermiego elektronów swobodnych. Gaz Fermiego elektronów swobodnych

S. Baran - Podstawy fizyki materii skondensowanej Gaz Fermiego elektronów swobodnych. Gaz Fermiego elektronów swobodnych Gaz Fermiego elektronów swobodnych charakter idea Teoria metali Paula Drudego Teoria metali Arnolda (1900 r.) Sommerfelda (1927 r.) klasyczna kwantowa elektrony przewodnictwa elektrony przewodnictwa w

Bardziej szczegółowo

Atom wodoropodobny. Biegunowy układ współrzędnych. współrzędne w układzie. kartezjańskim. współrzędne w układzie. (x,y,z) biegunowym.

Atom wodoropodobny. Biegunowy układ współrzędnych. współrzędne w układzie. kartezjańskim. współrzędne w układzie. (x,y,z) biegunowym. Atom wodoropodobny z współrzędne w układzie kartezjańskim r sinθ cosφ x r cosθ φ θ r r sinθ (x,y,z) r sinθ sinφ Biegunowy układ współrzędnych y funkcja faowa współrzędne w układzie biegunowym ( ) r,θ,φ

Bardziej szczegółowo

Wykład z Chemii Ogólnej

Wykład z Chemii Ogólnej Wykład z Chemii Ogólnej Część 2 Budowa materii: od atomów do układów molekularnych 2.3. WIĄZANIA CHEMICZNE i ODDZIAŁYWANIA Katedra i Zakład Chemii Fizycznej Collegium Medicum w Bydgoszczy Uniwersytet Mikołaja

Bardziej szczegółowo