3. Cząsteczki i wiązania

Wielkość: px
Rozpocząć pokaz od strony:

Download "3. Cząsteczki i wiązania"

Transkrypt

1 3. Cząsteczki i wiązania Elektrony walencyjne Wiązania jonowe i kowalencyjne Wiązanie typu σ i π Hybrydyzacja Przewidywanie kształtu cząsteczek AX n Orbitale zdelokalizowane Cząsteczki związków organicznych 3. Cząsteczki i wiązania 1 Elektrony walencyjne to elektrony o najwyższej energii, należące do zewnętrznych powłok elektronowych pozostałe elektrony tworzą tzw. rdzeń (zrąb) atomowy ns (12) ns 2 np x (18) ns x (n1)d y (112) 3. Cząsteczki i wiązania 2 1

2 Wiązania jonowe Teoria Kossela: Konfiguracja elektronowa gazów szlachetnych (oktet ns 2 np 6 na powłoce walencyjnej) jest szczególnie trwała. Atomy tworzące związki jonowe oddają lub przyjmują elektrony, tworząc jony mające konfiguracje gazów szlachetnych. Jony te oddziałują ze sobą siłami elektrostatycznymi. Na + Cl = NaCl [Na + ][Cl ] [ 11 Na]: 1s 2 2s 2 2p 6 3s 1 [Na + ]: 1s 2 2s 2 2p 6 = [Ne] [ 17 Cl]: 1s 2 2s 2 2p 6 3s 2 3p 5 [Cl ]: 1s 2 2s 2 2p 6 3s 2 3p 6 = [Ar] Ca + O = CaO [Ca 2+ ][O 2 ] [ 20 Ca]: 1s 2 2s 2 2p 6 3s 2 3p 6 4s 2 [Ca 2+ ]: 1s 2 2s 2 2p 6 3s 2 3p 6 = [Ar] [ 8 O]: 1s 2 2s 2 2p 4 [O 2 ]: 1s 2 2s 2 2p 6 = [Ne] duża różnica elektroujemności (>1,7) związki jonowe nie tworzą cząsteczek, tylko kryształy 3. Cząsteczki i wiązania 3 Wiązania kowalencyjne Teoria Lewisa: Atomy, wykazujące podobną tendencję do przyjmowania i oddawania elektronów, tworzą wiązania w wyniku uwspólnienia elektronów. Wiązanie stanowi para elektronów, a uwspólnione elektrony są zaliczane do powłok walencyjnych obu połączonych atomów, które dążą do osiągnięcia oktetu s 2 p 6 (atomy H dubletu 1s 2 ) różnica elektroujemności < 0,4 wiązania kowalencyjne różnica elektroujemności > 0,4 wiązania kowalencyjne spolaryzowane 3. Cząsteczki i wiązania 4 2

3 Orbitale cząsteczkowe Elektrony tworzące wiązania kowalencyjne opisujemy za pomocą orbitali cząsteczkowych (molekularnych), które mają analogiczne właściwości jak orbitale atomowe: są określone dla współrzędnych elektronu umożliwiają obliczenie gęstości prawdopodobieństwa znalezienia elektronu umożliwiają obliczenie energii elektronu stosuje się do nich reguła Hunda i zakaz Pauliego Orbitale cząsteczkowe można przedstawić jako wynik nakładania orbitali atomowych, opisujących elektrony walencyjne, które utworzyły wiązanie. 3. Cząsteczki i wiązania 5 Wiązania σ i π opis uproszczony Cząsteczka H 2 konfiguracja atomowa [H]: 1s 1 H H pojedyncze wiązanie typu σ nakładanie orbitali 1s: orbital cząsteczkowy typu σ Cząsteczka N 2 konfiguracja atomowa [N]: 1s 2 2s 2 2p 3 :N N: nakładanie orbitali 2p: wiązanie potrójne: 1 typu σ 2 typu π 2p x orbital cząsteczkowy typu σ orbital cząsteczkowy typu π 2p x, 2p z 3. Cząsteczki i wiązania 6 3

4 energia Wiązania σ i π opis zaawansowany Cząsteczka O 2 konfiguracja atomowa [O]: 1s 2 2s 2 2p 4 O O : : : : nakładanie orbitali dodawanie lub odejmowanie atomowych funkcji falowych + + 2p x orbital wiążący σ orbital antywiążący σ* + + 2p x, 2p z orbital wiążący π orbital antywiążący π* 3. Cząsteczki i wiązania 7 Diagramy energii orbitali cząsteczkowych N 2 O 2 σ*2p x :N N: σ*2p x O O : : : :? π*2p z π*2p y π*2p z π*2p y 2p σ2p x 2p 2p π2p z π2p y 2p π2p z π2p y σ2p x 2s σ*2s 2s 2s σ*2s 2s [N]: 1s 2 2s 2 2p 3 σ2s σ2s [O]: 1s 2 2s 2 2p 4 3. Cząsteczki i wiązania 8 4

5 Cząsteczki N 2 i O 2 konfiguracja elektronowa i rząd wiązania Konfiguracja elektronowa N 2 : KK (σ2s) 2 (σ*2s) 2 (π2p y ) 2 (π2p z ) 2 (σ2p x ) 2 Konfiguracja elektronowa O 2 : KK (σ2s) 2 (σ*2s) 2 (π2py) 2 (π2pz) 2 (σ2p x ) 2 (π*2p y ) 1 (π*2p z ) 1 Rząd wiązania = ½ (liczba elektronów wiążących liczba elektronów antywiążących) RW = ½ (LEWLEA) RW (N 2 ) = ½(8 2) = 3 RW (O 2 ) = ½(8 4) = 2 3. Cząsteczki i wiązania 9 Struktura przestrzenna cząsteczki CH 4 wszystkie wiązania identyczne kształt czworościanu foremnego Symetria CH 4 nie jest zgodna z symetrią orbitali opisujących elektrony walencyjne atomu C [C]: [He]2s 2 2p 2 3. Cząsteczki i wiązania 10 5

6 Hybrydyzacja sp 3 Hybrydyzacja to utworzenie nowego zespołu orbitali atomowych poprzez wymieszanie orbitali z powłoki walencyjnej sp 3 : 1 orbital 2s + 3 orbitale 2p hybrydyzacja symetria tetraedru 3. Cząsteczki i wiązania 11 Porównanie cząsteczek CH 4, NH 3 i H 2 O hybrydyzacja sp 3 wypadkowy moment dipolowy δ δ silniejsze odpychanie wolnych par elektronowych 3. Cząsteczki i wiązania 12 6

7 Hybrydyzacja sp 2 i sp sp 2 : 1 orbital 2s + 2 orbitale 2p hybrydyzacja symetria trygonalna sp: 1 orbital 2s + 1 orbital 2p hybrydyzacja symetria liniowa 3. Cząsteczki i wiązania 13 Cząsteczka C 2 H 4 cząsteczka płaska hybrydyzacja sp 2 czołowe nakładanie orbitali sp 2 i 1s H boczne nakładanie orbitali 2p C 12 elektronów walencyjnych: 2 opisane orbitalem wiążącym σ t,t 8 opisane orbitalami wiążącymi σ t,1s 2 opisane orbitalem wiążącymi π 2p 3. Cząsteczki i wiązania 14 7

8 Cząsteczka C 2 H 2 liniowa hybrydyzacja sp czołowe nakładanie orbitali sp i 1s H boczne nakładanie orbitali 2p C 10 elektronów walencyjnych: 2 opisane orbitalem wiążącym σ t,t 4 opisane orbitalami wiążącymi σ t,1s 4 opisane orbitalami wiążącymi π 2p 3. Cząsteczki i wiązania 15 Symetria innych orbitali zhybrydyzowanych sp 2 d sp 3 d sp 3 d 2 (kontury orbitali odsunięte od początku układu) 3. Cząsteczki i wiązania 16 8

9 Przewidywanie geometrii cząsteczek typu AX n czyli model odpychania się par elektronowych powłoki walencyjnej (VSEPR ValenceShell ElectronPair Repulsion). W cząsteczce wiążące pary elektronowe oraz wolne pary elektronowe utworzone przez elektrony walencyjne znajdują się możliwie najdalej od siebie, aby ich wzajemne odpychanie było jak najmniejsze. LH = σp + WP LH liczba orbitali zhybrydyzowanych σp liczba par wiążących typu σ WP liczba wolnych par elektronowych WP połowa różnicy liczby elektronów walencyjnych atomu centralnego (w przypadku jonów odpowiednio powiększonej lub pomniejszonej) oraz liczby potrzebnej do uzupełnienia oktetu w atomach X (lub dubletu dla H) 3. Cząsteczki i wiązania 17 Przykłady zastosowania VSEPR Liniowa AX 2 LH = 2 WP = 0 sp Płaska trójkątna AX 3 LH = 3 WP = 0 sp 2 Kątowa AX 2 wolna para LH = 3 WP = 1 sp 2 3. Cząsteczki i wiązania 18 9

10 Przykłady zastosowania VSEPR Tetraedr AX 4 LH = 4 WP = 0 sp 3 Piramida trójkątna AX 3 LH = 4 WP = 1 sp 3 Kątowa AX 2 LH = 4 WP = 2 sp 3 3. Cząsteczki i wiązania 19 Przykłady zastosowania VSEPR Zdeformowany tetraedr AX 4 wolna para LH = 5 WP = 1 sp 3 d Litera T AX 3 wolne pary LH = 5 WP = 2 sp 3 d Liniowa AX 2 wolna para wolne pary LH = 5 WP = 3 sp 3 d Oktaedr AX 6 LH = 6 WP = 0 sp 3 d 2 3. Cząsteczki i wiązania 20 10

11 Cząsteczka benzenu 120 kąty między wiązaniami równe 120 wszystkie wiązania CC mają taką samą długość hybrydyzacja sp 2 tworzenie orbitali typu σ czołowe nakładanie orbitali zhybrydyzowanych sp 2 3. Cząsteczki i wiązania 21 Cząsteczka benzenu orbitale zdelokalizowane tworzenie orbitali typu π boczne nakładanie orbitali 2p z kontur orbitalu wiążącego π del 2p Z sześciu orbitali atomowych 2p z powstaje sześć orbitali π del 2p: trzy wiążące i trzy anywiążące kontury obsadzonych orbitali wiążących π del 3. Cząsteczki i wiązania 22 11

12 Cząsteczka benzenu konfiguracja elektronowa [C 6 H 6 ]: KKKKKK (σ CH ) 12 (σ CC ) 12 (π del ) 6 Rząd wiązania CC: RW 1 LEW LEA ,5 2 LWZ Cząsteczki i wiązania 23 Cząsteczki liniowe Cząsteczki dwuatomowe homojądrowe: H 2, N 2, O 2 itd. Cząsteczki dwuatomowe heterojądrowe: HF, NO itd. Cząsteczki trójatomowe: CO 2, BeCl 2 Cząsteczki trójatomowe: HCN Inne cząsteczki: C 2 H 2 3. Cząsteczki i wiązania 24 12

13 Cząsteczki płaskie Kątowe cząsteczki trójatomowe: H 2 O, SO 2, NO 2 Trójkątne cząsteczki czteroatomowe: BF 3, SO 3, CO 3 2 Eten i jego pochodne: 3. Cząsteczki i wiązania 25 Cząsteczki przestrzenne Piramida trójkątna: NH 3, PCl 3, ClO 3 Tetraedr (czworościan foremny): CH 4, NH 4+, SO 4 2, Oktaedr (ośmiościan foremny): SF 6, Fe(CN) 6 4, Co(NH 3 ) Cząsteczki i wiązania 26 13

14 Cząsteczki związków organicznych ich kształt i symetria zależy od hybrydyzacji atomów C sp 3 przy wiązaniach pojedynczych (CH 3, CH 2 ), kąty między wiązaniami ok. 109º sp 2 przy wiązaniach podwójnych C=C, C=O) i w pierścieniach aromatycznych, kąty między wiązaniami ok. 120º sp przy wiązaniach potrójnych (C C, C N), kąty między wiązaniami ok. 180º rotacji fragmentów cząsteczki wokół wiązań pojedynczych (możliwość tworzenia różnych konformacji) 3. Cząsteczki i wiązania 27 Przykładowe konformacje Etan C 2 H 6 naprzemianległa naprzeciwległa Cykloheksan C 6 H 12 krzesło łódka 3. Cząsteczki i wiązania 28 14

3. Cząsteczki i wiązania

3. Cząsteczki i wiązania 20161020 3. Cząsteczki i wiązania Elektrony walencyjne Wiązania jonowe i kowalencyjne Wiązanie typu σ i π Hybrydyzacja Przewidywanie kształtu cząsteczek AX n Orbitale zdelokalizowane Cząsteczki związków

Bardziej szczegółowo

Wykład 5: Cząsteczki dwuatomowe

Wykład 5: Cząsteczki dwuatomowe Wykład 5: Cząsteczki dwuatomowe Wiązania jonowe i kowalencyjne Ograniczenia teorii Lewisa Orbitale cząsteczkowe Kombinacja liniowa orbitali atomowych Orbitale dwucentrowe Schematy nakładania orbitali Diagramy

Bardziej szczegółowo

zaprezentowana w 1940 roku (Sidgwick i Powell). O budowie przestrzennej cząsteczki decyduje łączna liczba elektronów walencyjnych wokół atomu

zaprezentowana w 1940 roku (Sidgwick i Powell). O budowie przestrzennej cząsteczki decyduje łączna liczba elektronów walencyjnych wokół atomu Teoria VSEPR (Valence Shell Electron Pair Repulsion) zaprezentowana w 1940 roku (Sidgwick i Powell). budowie przestrzennej cząsteczki decyduje łączna liczba elektronów walencyjnych wokół atomu centralnego

Bardziej szczegółowo

Inżynieria Biomedyczna. Wykład XII

Inżynieria Biomedyczna. Wykład XII Inżynieria Biomedyczna Wykład XII Plan Wiązania chemiczne Teoria Lewisa Teoria orbitali molekularnych Homojądrowe cząsteczki dwuatomowe Heterojądrowe cząsteczki dwuatomowe Elektroujemność Hybrydyzacja

Bardziej szczegółowo

Geometria cząsteczek wieloatomowych. Hybrydyzacja orbitali atomowych.

Geometria cząsteczek wieloatomowych. Hybrydyzacja orbitali atomowych. Geometria cząsteczek wieloatomowych. Hybrydyzacja orbitali atomowych. Geometria cząsteczek Geometria cząsteczek decyduje zarówno o ich właściwościach fizycznych jak i chemicznych, np. temperaturze wrzenia,

Bardziej szczegółowo

Spis treści. Metoda VSEPR. Reguły określania struktury cząsteczek. Ustalanie struktury przestrzennej

Spis treści. Metoda VSEPR. Reguły określania struktury cząsteczek. Ustalanie struktury przestrzennej Spis treści 1 Metoda VSEPR 2 Reguły określania struktury cząsteczek 3 Ustalanie struktury przestrzennej 4 Typy geometrii cząsteczek przykłady 41 Przykład 1 określanie struktury BCl 3 42 Przykład 2 określanie

Bardziej szczegółowo

Ligand to cząsteczka albo jon, który związany jest z jonem albo atomem centralnym.

Ligand to cząsteczka albo jon, który związany jest z jonem albo atomem centralnym. 138 Poznanie struktury cząsteczek jest niezwykle ważnym przedsięwzięciem w chemii, ponieważ pozwala nam zrozumieć zachowanie się materii, ale także daje podstawy do praktycznego wykorzystania zdobytej

Bardziej szczegółowo

1 i 2. Struktura elektronowa atomów, tworzenie wiązań chemicznych

1 i 2. Struktura elektronowa atomów, tworzenie wiązań chemicznych 1 i 2. Struktura elektronowa atomów, tworzenie wiązań chemicznych 1 1.1. Struktura elektronowa atomów Rozkład elektronów na pierwszych czterech powłokach elektronowych 1. powłoka 2. powłoka 3. powłoka

Bardziej szczegółowo

Cz. I Materiał powtórzeniowy do sprawdzianu dla klas I LO - Wiązania chemiczne + przykładowe zadania i proponowane rozwiązania

Cz. I Materiał powtórzeniowy do sprawdzianu dla klas I LO - Wiązania chemiczne + przykładowe zadania i proponowane rozwiązania Cz. I Materiał powtórzeniowy do sprawdzianu dla klas I LO - Wiązania chemiczne + przykładowe zadania i proponowane rozwiązania I. Elektroujemność pierwiastków i elektronowa teoria wiązań Lewisa-Kossela

Bardziej szczegółowo

Cz. I Materiał powtórzeniowy do sprawdzianu dla klas II LO - Wiązania chemiczne + przykładowe zadania i proponowane rozwiązania

Cz. I Materiał powtórzeniowy do sprawdzianu dla klas II LO - Wiązania chemiczne + przykładowe zadania i proponowane rozwiązania Cz. I Materiał powtórzeniowy do sprawdzianu dla klas II LO - Wiązania chemiczne + przykładowe zadania i proponowane rozwiązania I. Elektroujemność pierwiastków i elektronowa teoria wiązań Lewisa-Kossela

Bardziej szczegółowo

Wykład z Chemii Ogólnej

Wykład z Chemii Ogólnej Wykład z Chemii Ogólnej Część 2 Budowa materii: od atomów do układów molekularnych 2.2. BUDOWA CZĄSTECZEK Katedra i Zakład Chemii Fizycznej Collegium Medicum w Bydgoszczy Uniwersytet Mikołaja Kopernika

Bardziej szczegółowo

Różne typy wiązań mają ta sama przyczynę: energia powstającej stabilnej cząsteczki jest mniejsza niż sumaryczna energia tworzących ją, oddalonych

Różne typy wiązań mają ta sama przyczynę: energia powstającej stabilnej cząsteczki jest mniejsza niż sumaryczna energia tworzących ją, oddalonych Wiązania atomowe Atomy wieloelektronowe, obsadzanie stanów elektronowych, układ poziomów energii. Przykładowe konfiguracje elektronów, gazy szlachetne, litowce, chlorowce, układ okresowy pierwiastków,

Bardziej szczegółowo

Atomy wieloelektronowe

Atomy wieloelektronowe Wiązania atomowe Atomy wieloelektronowe, obsadzanie stanów elektronowych, układ poziomów energii. Przykładowe konfiguracje elektronów, gazy szlachetne, litowce, chlorowce, układ okresowy pierwiastków,

Bardziej szczegółowo

Elektronowa struktura atomu

Elektronowa struktura atomu Elektronowa struktura atomu Model atomu Bohra oparty na teorii klasycznych oddziaływań elektrostatycznych Elektrony mogą przebywać tylko w określonych stanach, zwanych stacjonarnymi, o określonej energii

Bardziej szczegółowo

Wiązania kowalencyjne

Wiązania kowalencyjne Wiązania kowalencyjne (pierw. o dużej E + pierw. o dużej E), E < 1,8 TERIE WIĄZANIA KWALENCYJNEG Teoria hybrydyzacji orbitali atomowych Teoria orbitali molekularnych Teoria pola ligandów YBRYDYZACJA RBITALI

Bardziej szczegółowo

Fizyka atomowa r. akad. 2012/2013

Fizyka atomowa r. akad. 2012/2013 r. akad. 2012/2013 wykład VII - VIII Podstawy Procesów i Konstrukcji Inżynierskich Fizyka atomowa Zakład Biofizyki 1 Spin elektronu Elektrony posiadają własny moment pędu L s. nazwany spinem. Wartość spinu

Bardziej szczegółowo

Model wiązania kowalencyjnego cząsteczka H 2

Model wiązania kowalencyjnego cząsteczka H 2 Model wiązania kowalencyjnego cząsteczka H 2 + Współrzędne elektronu i protonów Orbitale wiążący i antywiążący otrzymane jako kombinacje orbitali atomowych Orbital wiążący duża gęstość ładunku między jądrami

Bardziej szczegółowo

Zadania powtórkowe do egzaminu maturalnego z chemii Wiązania chemiczne, budowa cząsteczek

Zadania powtórkowe do egzaminu maturalnego z chemii Wiązania chemiczne, budowa cząsteczek strona 1/11 Zadania powtórkowe do egzaminu maturalnego z chemii Wiązania chemiczne, budowa cząsteczek Monika Gałkiewicz Zad. 1 () Podaj wzory dwóch dowolnych kationów i dwóch dowolnych anionów posiadających

Bardziej szczegółowo

RJC. Wiązania Chemiczne & Slides 1 to 39

RJC. Wiązania Chemiczne & Slides 1 to 39 Wiązania Chemiczne & Struktura Cząsteczki Teoria Orbitali & ybrydyzacja Slides 1 to 39 Układ okresowy pierwiastków Siły występujące w cząsteczce związku organicznego Atomy w cząsteczce związku organicznego

Bardziej szczegółowo

Podstawy chemii obliczeniowej

Podstawy chemii obliczeniowej Podstawy chemii obliczeniowej Anna Kaczmarek Kędziera Katedra Chemii Materiałów, Adsorpcji i Katalizy Wydział Chemii UMK, Toruń Elementy chemii obliczeniowej i bioinformatyki 2015 Plan wykładu 15 godzin

Bardziej szczegółowo

Orbitale typu σ i typu π

Orbitale typu σ i typu π Orbitale typu σ i typu π Dwa odpowiadające sobie orbitale sąsiednich atomów tworzą kombinacje: wiążącą i antywiążącą. W rezultacie mogą powstać orbitale o rozkładzie przestrzennym dwojakiego typu: σ -

Bardziej szczegółowo

Zadanie 2. (2 pkt) Określ, na podstawie różnicy elektroujemności pierwiastków, typ wiązania w związkach

Zadanie 2. (2 pkt) Określ, na podstawie różnicy elektroujemności pierwiastków, typ wiązania w związkach Zadanie 1. (2 pkt) Na podstawie budowy powłok elektronowych chloru, azotu i fosforu oraz położenia pierwiastka w układzie okresowym wyjaśnij, dlaczego istnieje PCl 5 a występowanie NCl 5 jest teoretycznie

Bardziej szczegółowo

Wykład przygotowany w oparciu o podręczniki:

Wykład przygotowany w oparciu o podręczniki: Slajd 1 Wykład przygotowany w oparciu o podręczniki: Organic Chemistry 4 th Edition Paula Yurkanis Bruice Slajd 2 Struktura elektronowa wiązanie chemiczne Kwasy i zasady Slajd 3 Chemia organiczna Związki

Bardziej szczegółowo

Temat Ocena dopuszczająca Ocena dostateczna Ocena dobra Ocena bardzo dobra Ocena celująca. Uczeń:

Temat Ocena dopuszczająca Ocena dostateczna Ocena dobra Ocena bardzo dobra Ocena celująca. Uczeń: Chemia - klasa I (część 2) Wymagania edukacyjne Temat Ocena dopuszczająca Ocena dostateczna Ocena dobra Ocena bardzo dobra Ocena celująca Dział 1. Chemia nieorganiczna Lekcja organizacyjna. Zapoznanie

Bardziej szczegółowo

Cząsteczki. 1.Dlaczego atomy łącz. 2.Jak atomy łącz. 3.Co to jest wiązanie chemiczne? Jakie sąs. typy wiąza

Cząsteczki. 1.Dlaczego atomy łącz. 2.Jak atomy łącz. 3.Co to jest wiązanie chemiczne? Jakie sąs. typy wiąza Cząsteczki 1.Dlaczego atomy łącz czą się w cząsteczki?.jak atomy łącz czą się w cząsteczki? 3.Co to jest wiązanie chemiczne? Co to jest rząd d wiązania? Jakie sąs typy wiąza zań? Dlaczego atomy łącz czą

Bardziej szczegółowo

TEORIA ORBITALI MOLEKULARNYCH (MO) dr Henryk Myszka - Uniwersytet Gdański - Wydział Chemii

TEORIA ORBITALI MOLEKULARNYCH (MO) dr Henryk Myszka - Uniwersytet Gdański - Wydział Chemii TERIA RBITALI MLEKULARNYCH (M) Metoda (teoria) orbitali molekularnych (M) podstawy metody M - F. Hund, R.S. Mulliken Teoria M zakłada, że zachowanie się elektronu w cząsteczce opisuje orbital molekularny

Bardziej szczegółowo

CZĄSTECZKI BUDOWA I ODDZIAŁYWANIA

CZĄSTECZKI BUDOWA I ODDZIAŁYWANIA CZĄSTECZKI BUDOWA I ODDZIAŁYWANIA 2.1. Długość cząsteczki wody jest w przybliżeniu równa 3 10 10 m. Łańcuch utworzony z cząsteczek wody zawartych w jednej szklance (ok. 180 g) miałby orientacyjnie długość

Bardziej szczegółowo

1. Określ liczbę wiązań σ i π w cząsteczkach: wody, amoniaku i chloru

1. Określ liczbę wiązań σ i π w cząsteczkach: wody, amoniaku i chloru 1. Określ liczbę wiązań σ i π w cząsteczkach: wody, amoniaku i chloru 2. Na podstawie struktury cząsteczek wyjaśnij dlaczego N 2 jest bierny a Cl 2 aktywny chemicznie? 3. Które substancje posiadają budowę

Bardziej szczegółowo

2

2 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 ZADANIA I PROBLEMY 1). Chlor naturalny jest mieszaniną dwóch izotopów o liczbach masowych 35 i 37, a eksperymentalnie wyznaczona masa atomowa chloru wynosi

Bardziej szczegółowo

KSZTAŁTY CZĄSTECZEK I JONÓW. METODA VSEPR

KSZTAŁTY CZĄSTECZEK I JONÓW. METODA VSEPR KSZTAŁTY CZĄSTECZEK I JNÓW METDA VSEPR Teoria VSEPR (ang Valence Shell Electron Pair Repulsion odpychanie się elektronów powłoki walencyjnej) jest uproszczonym sposobem przewidywania kształtu kowalencyjnych

Bardziej szczegółowo

CHEMIA WARTA POZNANIA

CHEMIA WARTA POZNANIA Materiały do zajęć dokształcających z chemii nieorganicznej i fizycznej Wydział Chemii UAM Poznań 2011 Część I Atom jest najmniejszą częścią pierwiastka chemicznego, która zachowuje jego właściwości chemiczne

Bardziej szczegółowo

WIĄZANIA. Co sprawia, że ciała stałe istnieją i są stabilne? PRZYCIĄGANIE ODPYCHANIE

WIĄZANIA. Co sprawia, że ciała stałe istnieją i są stabilne? PRZYCIĄGANIE ODPYCHANIE WIĄZANIA Co sprawia, że ciała stałe istnieją i są stabilne? PRZYCIĄGANIE ODPYCHANIE Przyciąganie Wynika z elektrostatycznego oddziaływania między elektronami a dodatnimi jądrami atomowymi. Może to być

Bardziej szczegółowo

CZĄSTECZKA. Do opisu wiązań chemicznych stosuje się najczęściej metodę (teorię): metoda wiązań walencyjnych (VB)

CZĄSTECZKA. Do opisu wiązań chemicznych stosuje się najczęściej metodę (teorię): metoda wiązań walencyjnych (VB) CZĄSTECZKA Stanislao Cannizzaro (1826-1910) cząstki - elementy mikroświata, termin obejmujący zarówno cząstki elementarne, jak i atomy, jony proste i złożone, cząsteczki, rodniki, cząstki koloidowe; cząsteczka

Bardziej szczegółowo

Budowa atomu Poziom: rozszerzony Zadanie 1. (2 pkt.)

Budowa atomu Poziom: rozszerzony Zadanie 1. (2 pkt.) Budowa atomu Poziom: rozszerzony Zadanie 1. (2 pkt.) Zadanie 1 2 3 4 5 6 7 8 9 10 Punkty Okres połowiczego rozpadu pewnego radionuklidu wynosi 16 godzin. a) Określ, ile procent atomów tego izotopu rozpadnie

Bardziej szczegółowo

Wykład V Wiązanie kowalencyjne. Półprzewodniki

Wykład V Wiązanie kowalencyjne. Półprzewodniki Wykład V Wiązanie kowalencyjne. Półprzewodniki Wiązanie kowalencyjne molekuła H 2 Tworzenie wiązania kowalencyjnego w molekule H 2 : elektron w jednym atomie przyciągany jest przez jądro drugiego. Wiązanie

Bardziej szczegółowo

Cząsteczki wieloatomowe - hybrydyzacja. Czy w oparciu o koncepcję orbitali molekularnych można wytłumaczyć budowę cząsteczek?

Cząsteczki wieloatomowe - hybrydyzacja. Czy w oparciu o koncepcję orbitali molekularnych można wytłumaczyć budowę cząsteczek? ząsteczki wieloatomowe - hybrydyzacja zy w oarciu o koncecję orbitali molekularnych można wytłumaczyć budowę cząsteczek? Koncecja OA OA O zdelokalizowane OA hyb OA O zlokalizowane OA hyb OA hyb OA orbitale

Bardziej szczegółowo

Wykład z Chemii Ogólnej

Wykład z Chemii Ogólnej Wykład z Chemii Ogólnej Część 2 Budowa materii: od atomów do układów molekularnych 2.3. WIĄZANIA CHEMICZNE i ODDZIAŁYWANIA Katedra i Zakład Chemii Fizycznej Collegium Medicum w Bydgoszczy Uniwersytet Mikołaja

Bardziej szczegółowo

Wstęp do Optyki i Fizyki Materii Skondensowanej

Wstęp do Optyki i Fizyki Materii Skondensowanej Wstęp do Optyki i Fizyki Materii Skondensowanej Część I: Optyka, wykład 9 wykład: Piotr Fita pokazy: Andrzej Wysmołek ćwiczenia: Anna Grochola, Barbara Piętka Wydział Fizyki Uniwersytet Warszawski 2014/15

Bardziej szczegółowo

Zasady obsadzania poziomów

Zasady obsadzania poziomów Zasady obsadzania poziomów Model atomu Bohra Model kwantowy atomu Fala stojąca Liczby kwantowe -główna liczba kwantowa (n = 1,2,3...) kwantuje energię elektronu (numer orbity) -poboczna liczba kwantowa

Bardziej szczegółowo

Wiązania jonowe występują w układach złożonych z atomów skrajnie różniących się elektroujemnością.

Wiązania jonowe występują w układach złożonych z atomów skrajnie różniących się elektroujemnością. 105 Elektronowa teoria wiązania chemicznego Cząsteczki powstają w wyniku połączenia się dwóch lub więcej atomów. Już w początkowym okresie rozwoju chemii podejmowano wysiłki zmierzające do wyjaśnienia

Bardziej szczegółowo

Teoria Orbitali Molekularnych. tworzenie wiązań chemicznych

Teoria Orbitali Molekularnych. tworzenie wiązań chemicznych Teoria Orbitali Molekularnych tworzenie wiązań chemicznych Zbliżanie się atomów aż do momentu nałożenia się ich orbitali H a +H b H a H b Wykres obrazujący zależność energii od odległości atomów długość

Bardziej szczegółowo

WYKŁAD 3 CZĄSTECZKI WIELOATOMOWE ZWIĄZKI WĘGLA

WYKŁAD 3 CZĄSTECZKI WIELOATOMOWE ZWIĄZKI WĘGLA WYKŁAD 3 ZĄSTEZKI WIELOATOMOWE ZWIĄZKI WĘGLA O : (s) O: (s) (s) (p z ) (p x ) (p y ) px py s 90 o? s 4 : (s) (s) (p x ) (p y ) (s) (s) (p x ) (p y ) (p z ) s pz px py s so : (s) s s.orbital MOLEKULARNY

Bardziej szczegółowo

że w wyniku pomiaru zmiennej dynamicznej A, której odpowiada operator αˆ otrzymana zostanie wartość 2.41?

że w wyniku pomiaru zmiennej dynamicznej A, której odpowiada operator αˆ otrzymana zostanie wartość 2.41? TEST. Ortogonalne i znormalizowane funkcje f i f są funkcjami własnymi operatora αˆ, przy czym: α ˆ f =. 05 f i α ˆ f =. 4f. Stan pewnej cząstki opisuje 3 znormalizowana funkcja falowa Ψ = f + f. Jakie

Bardziej szczegółowo

2. WIĄZANIA CHEMICZNE, BUDOWA CZĄSTECZEK. Irena Zubel Wydział Elektroniki Mikrosystemów i Fotoniki Politechnika Wrocławska (na prawach rękopisu)

2. WIĄZANIA CHEMICZNE, BUDOWA CZĄSTECZEK. Irena Zubel Wydział Elektroniki Mikrosystemów i Fotoniki Politechnika Wrocławska (na prawach rękopisu) 2. WIĄZANIA CHEMICZNE, BUDOWA CZĄSTECZEK Irena Zubel Wydział Elektroniki Mikrosystemów i Fotoniki Politechnika Wrocławska (na prawach rękopisu) Wiązania chemiczne Podstawowe stany skupienia materii (w

Bardziej szczegółowo

WIĄZANIA. Co sprawia, że ciała stałe istnieją i są stabilne? PRZYCIĄGANIE ODPYCHANIE

WIĄZANIA. Co sprawia, że ciała stałe istnieją i są stabilne? PRZYCIĄGANIE ODPYCHANIE WIĄZANIA Co sprawia, że ciała stałe istnieją i są stabilne? PRZYCIĄGANIE ODPYCHANIE 1 Przyciąganie Wynika z elektrostatycznego oddziaływania między elektronami a dodatnimi jądrami atomowymi. Może to być

Bardziej szczegółowo

Teoria VSEPR. Jak przewidywac strukturę cząsteczki?

Teoria VSEPR. Jak przewidywac strukturę cząsteczki? Teoria VSEPR Jak przewidywac strukturę cząsteczki? Model VSEPR wiązanie pary elektronowe dzielone między atomy tworzące wiązanie. Rozkład elektronów walencyjnych w cząsteczce (struktura Lewisa) stuktura

Bardziej szczegółowo

Elementy teorii powierzchni metali

Elementy teorii powierzchni metali prof. dr hab. Adam Kiejna Elementy teorii powierzchni metali Wykład 4 v.16 Wiązanie metaliczne Wiązanie metaliczne Zajmujemy się tylko metalami dlatego w zasadzie interesuje nas tylko wiązanie metaliczne.

Bardziej szczegółowo

CZĄSTECZKA. Do opisu wiązań chemicznych stosuje się najczęściej jedną z dwóch metod (teorii): metoda wiązań walencyjnych (VB)

CZĄSTECZKA. Do opisu wiązań chemicznych stosuje się najczęściej jedną z dwóch metod (teorii): metoda wiązań walencyjnych (VB) CZĄSTECZKA Stanislao Cannizzaro (1826-1910) cząstki - elementy mikroświata, termin obejmujący zarówno cząstki elementarne, jak i atomy, jony proste i złożone, cząsteczki, rodniki, cząstki koloidowe; cząsteczka

Bardziej szczegółowo

Stany skupienia materii

Stany skupienia materii Stany skupienia materii Ciała stałe - ustalony kształt i objętość - uporządkowanie dalekiego zasięgu - oddziaływania harmoniczne Ciecze -słabo ściśliwe - uporządkowanie bliskiego zasięgu -tworzą powierzchnię

Bardziej szczegółowo

Elementy chemii obliczeniowej i bioinformatyki Zagadnienia na egzamin

Elementy chemii obliczeniowej i bioinformatyki Zagadnienia na egzamin Elementy chemii obliczeniowej i bioinformatyki Zagadnienia na egzamin 1. Zapisz konfigurację elektronową dla atomu helu (dwa elektrony) i wyjaśnij, dlaczego cząsteczka wodoru jest stabilna, a cząsteczka

Bardziej szczegółowo

Elektronowa struktura atomu

Elektronowa struktura atomu Elektronowa struktura atomu Model atomu Bohra oparty na teorii klasycznych oddziaływań elektrostatycznych Elektrony mogą przebywać tylko w określonych stanach, zwanych stacjonarnymi, o określonej energii

Bardziej szczegółowo

c) prawdopodobieństwo znalezienia cząstki między x=1.0 a x=1.5 jest równe

c) prawdopodobieństwo znalezienia cząstki między x=1.0 a x=1.5 jest równe TEST 1. Ortogonalne i znormalizowane funkcje f 1 i f są funkcjami własnymi operatora, przy czym: f 1 =1.05 f 1 i f =.41 f. Stan pewnej cząstki opisuje znormalizowana funkcja 1 3 falowa = f1 f. Jakie jest

Bardziej szczegółowo

S. Baran - Podstawy fizyki materii skondensowanej Wiązania chemiczne w ciałach stałych. Wiązania chemiczne w ciałach stałych

S. Baran - Podstawy fizyki materii skondensowanej Wiązania chemiczne w ciałach stałych. Wiązania chemiczne w ciałach stałych Wiązania chemiczne w ciałach stałych Wiązania chemiczne w ciałach stałych typ kowalencyjne jonowe metaliczne Van der Waalsa wodorowe siła* silne silne silne pochodzenie uwspólnienie e- (pary e-) przez

Bardziej szczegółowo

Fizyka Ciała Stałego. Struktura krystaliczna. Struktura amorficzna

Fizyka Ciała Stałego. Struktura krystaliczna. Struktura amorficzna Wykład II Struktura krystaliczna Fizyka Ciała Stałego Ciała stałe można podzielić na: Amorficzne, brak uporządkowania, np. szkła; Krystaliczne, o uporządkowanym ułożeniu atomów lub molekuł tworzącym sieć

Bardziej szczegółowo

b) Pierwiastek E tworzy tlenek o wzorze EO 2 i wodorek typu EH 4, a elektrony w jego atomie rozmieszczone są na dwóch powłokach elektronowych

b) Pierwiastek E tworzy tlenek o wzorze EO 2 i wodorek typu EH 4, a elektrony w jego atomie rozmieszczone są na dwóch powłokach elektronowych 1. Ustal jakich trzech różnych pierwiastków dotyczą podane informacje. Zapisz ich symbole a) W przestrzeni wokółjądrowej dwuujemnego jonu tego pierwiastka znajduje się 18 e. b) Pierwiastek E tworzy tlenek

Bardziej szczegółowo

Zadanie 1. (2 pkt) Określ, na podstawie różnicy elektroujemności pierwiastków, typ wiązania w związkach: KBr i HBr.

Zadanie 1. (2 pkt) Określ, na podstawie różnicy elektroujemności pierwiastków, typ wiązania w związkach: KBr i HBr. Zadanie 1. (2 pkt) Określ, na podstawie różnicy elektroujemności pierwiastków, typ wiązania w związkach: KBr i HBr. Typ wiązania w KBr... Typ wiązania w HBr... Zadanie 2. (2 pkt) Oceń poprawność poniższych

Bardziej szczegółowo

Wstęp do Optyki i Fizyki Materii Skondensowanej

Wstęp do Optyki i Fizyki Materii Skondensowanej Wstęp do Optyki i Fizyki Materii Skondensowanej Część I: Optyka, wykład 10 wykład: Piotr Fita pokazy: Andrzej Wysmołek ćwiczenia: Paweł Kowalczyk, Barbara Piętka Wydział Fizyki Uniwersytet Warszawski 2015/16

Bardziej szczegółowo

Inne koncepcje wiązań chemicznych. 1. Jak przewidywac strukturę cząsteczki? 2. Co to jest wiązanie? 3. Jakie są rodzaje wiązań?

Inne koncepcje wiązań chemicznych. 1. Jak przewidywac strukturę cząsteczki? 2. Co to jest wiązanie? 3. Jakie są rodzaje wiązań? Inne koncepcje wiązań chemicznych 1. Jak przewidywac strukturę cząsteczki? 2. Co to jest wiązanie? 3. Jakie są rodzaje wiązań? Model VSEPR wiązanie pary elektronowe dzielone między atomy tworzące wiązanie.

Bardziej szczegółowo

III Podkarpacki Konkurs Chemiczny 2010/2011. ETAP I r. Godz Zadanie 1

III Podkarpacki Konkurs Chemiczny 2010/2011. ETAP I r. Godz Zadanie 1 III Podkarpacki Konkurs Chemiczny 2010/2011 KOPKCh ETAP I 22.10.2010 r. Godz. 10.00-12.00 Zadanie 1 1. Jon Al 3+ zbudowany jest z 14 neutronów oraz z: a) 16 protonów i 13 elektronów b) 10 protonów i 13

Bardziej szczegółowo

Cząsteczki wieloatomowe - hybrydyzacja. Czy w oparciu o koncepcję orbitali molekularnych można wytłumaczyć budowę cząsteczek?

Cząsteczki wieloatomowe - hybrydyzacja. Czy w oparciu o koncepcję orbitali molekularnych można wytłumaczyć budowę cząsteczek? ząsteczki wieloatomowe - hybrydyzacja zy w oparciu o koncepcję orbitali molekularnych można wytłumaczyć budowę cząsteczek? Koncepcja OA OA O zdelokalizowane OA hyb OA O zlokalizowane OA hyb OA hyb OA orbitale

Bardziej szczegółowo

Wykład 5 XII 2018 Żywienie

Wykład 5 XII 2018 Żywienie Wykład 5 XII 2018 Żywienie Witold Bekas SGGW Chemia organiczna 1828 Wöhler - przypadkowa synteza mocznika izocyjanian amonu NH4NCO związek nieorganiczny mocznik H2NCONH2 związek organiczny obalenie teorii

Bardziej szczegółowo

Fizyka Ciała Stałego. Struktura krystaliczna. Struktura amorficzna

Fizyka Ciała Stałego. Struktura krystaliczna. Struktura amorficzna Wykład II Struktura krystaliczna Fizyka Ciała Stałego Ciała stałe można podzielić na: Amorficzne, brak uporządkowania, np. szkła; Krystaliczne, o uporządkowanym ułożeniu atomów lub molekuł tworzącym sieć

Bardziej szczegółowo

CZ STECZKA. Do opisu wi za chemicznych stosuje si najcz ciej jedn z dwóch metod (teorii): metoda wi za walencyjnych (VB)

CZ STECZKA. Do opisu wi za chemicznych stosuje si najcz ciej jedn z dwóch metod (teorii): metoda wi za walencyjnych (VB) CZ STECZKA Stanislao Cannizzaro (1826-1910) cz stki - elementy mikro wiata, termin obejmuj cy zarówno cz stki elementarne, jak i atomy, jony proste i zło one, cz steczki, rodniki, cz stki koloidowe; cz

Bardziej szczegółowo

Podstawy chemii. dr hab. Wacław Makowski. Wykład 1: Wprowadzenie

Podstawy chemii. dr hab. Wacław Makowski. Wykład 1: Wprowadzenie Podstawy chemii dr hab. Wacław Makowski Wykład 1: Wprowadzenie Wspomnienia ze szkoły Elementarz (powtórka z gimnazjum) Układ okresowy Dalsze wtajemniczenia (liceum) Program zajęć Podręczniki Wydział Chemii

Bardziej szczegółowo

Zaliczenie przedmiotu: 17.12.2010 21.01.2011. - ocena pozytywna z ćwiczeń jest warunkiem koniecznym przystąpienia do egzaminu

Zaliczenie przedmiotu: 17.12.2010 21.01.2011. - ocena pozytywna z ćwiczeń jest warunkiem koniecznym przystąpienia do egzaminu 1. J. D. aserio, M.. Roberts EMIA RGANIZNA, PWN Warszawa, 1969 2. R. T.Morrison, R. N. Boyd EMIA RGANIZNA, PWN Warszawa, 1997 3. J. McMurry EMIA RGANIZNA, PWN Warszawa, 2002 4. R. M.Silverstein,. X. Webster,

Bardziej szczegółowo

Wykład 16: Atomy wieloelektronowe

Wykład 16: Atomy wieloelektronowe Wykład 16: Atomy wieloelektronowe Funkcje falowe Kolejność zapełniania orbitali Energia elektronów Konfiguracja elektronowa Reguła Hunda i zakaz Pauliego Efektywna liczba atomowa Reguły Slatera Wydział

Bardziej szczegółowo

CHEMIA OGÓLNA (wykład)

CHEMIA OGÓLNA (wykład) AKADEMIA GÓRNICZO HUTNICZA WYDZIAŁ ENERGETYKI I PALIW I r. EiP (Technologia Chemiczna) CHEMIA OGÓLNA (wykład) Prof. dr hab. Leszek CZEPIRSKI Kontakt: A4 IV p., p. 424 Tel. 12 617 46 36 email: czepir@agh.edu.pl

Bardziej szczegółowo

CHEMIA 1. INSTYTUT MEDICUS Kurs przygotowawczy na studia medyczne kierunek lekarski, stomatologia, farmacja, analityka medyczna ATOM.

CHEMIA 1. INSTYTUT MEDICUS Kurs przygotowawczy na studia medyczne kierunek lekarski, stomatologia, farmacja, analityka medyczna ATOM. INSTYTUT MEDICUS Kurs przygotowawczy na studia medyczne kierunek lekarski, stomatologia, farmacja, analityka medyczna tel. 0501 38 39 55 www.medicus.edu.pl CHEMIA 1 ATOM Budowa atomu - jądro, zawierające

Bardziej szczegółowo

1. Budowa atomu. Układ okresowy pierwiastków chemicznych

1. Budowa atomu. Układ okresowy pierwiastków chemicznych Wymagania programowe na poszczególne oceny przygotowane na podstawie treści zawartych w podstawie programowej (załącznik nr 1 do rozporządzenia, Dz.U. z 2018 r., poz. 467), programie nauczania oraz w części

Bardziej szczegółowo

Atomy wieloelektronowe i cząsteczki

Atomy wieloelektronowe i cząsteczki Atomy wieloelektronowe i cząsteczki 1 Atomy wieloelektronowe Wodór ma liczbę atomową Z=1 i jest prostym atomem. Zawiera tylko jeden elektron i jeden proton stąd potencjał opisuje oddziaływanie kulombowskie

Bardziej szczegółowo

Struktura elektronowa czasteczek. przybliżenie Borna-Oppenheimera. równania Schrödingera dla elektronów przy ustalonym po lożeniu jader

Struktura elektronowa czasteczek. przybliżenie Borna-Oppenheimera. równania Schrödingera dla elektronów przy ustalonym po lożeniu jader Notatki do wyk ladu VII Struktura elektronowa czasteczek przybliżenie Borna-Oppenheimera rozwiazanie równania Schrödingera dla elektronów przy ustalonym po lożeniu jader przybliżenie jednoelektronowe metoda

Bardziej szczegółowo

RJC # Defin i i n c i ja

RJC # Defin i i n c i ja Alkany - Izomery Strukturalne & Konformacyjne - Nomenklatura - Projekcje Newmana Slides 1 to 41 Definicja Wzór ogólny dla alkanów C n 2n+2 Przykładowo... metan C 4 etan C 2 6 propan C 3 8 butan C 4 10

Bardziej szczegółowo

Wymagania edukacyjne z chemii Zakres rozszerzony

Wymagania edukacyjne z chemii Zakres rozszerzony Wymagania edukacyjne z chemii Zakres rozszerzony Klasy: 1c, 1d Rok szkolny 2019/2020 Nauczyciel: Aneta Patrzałek Szczegółowe wymagania edukacyjne z chemii na poszczególne stopnie: Wymagania na każdy stopień

Bardziej szczegółowo

Wiązania chemiczne. Związek klasyfikacji ciał krystalicznych z charakterem wiązań atomowych. 5 typów wiązań

Wiązania chemiczne. Związek klasyfikacji ciał krystalicznych z charakterem wiązań atomowych. 5 typów wiązań Wiązania chemiczne Związek klasyfikacji ciał krystalicznych z charakterem wiązań atomowych 5 typów wiązań wodorowe A - H - A, jonowe ( np. KCl ) molekularne (pomiędzy atomami gazów szlachetnych i małymi

Bardziej szczegółowo

Zadanie do rozwiązania 1. Dla podanych nuklidów o ogólnym symbolu: E;

Zadanie do rozwiązania 1. Dla podanych nuklidów o ogólnym symbolu: E; Cz. IV Budowa atomu - konfiguracja elektronowa, przemiany jądrowe, promień jonowy, promień atomowy, jonizacja, hybrydyzacja, moment dipolowy A. Budowa atomu Nuklidy atomy o identycznej budowie jadra atomowego

Bardziej szczegółowo

Związki chemiczne, wiązania chemiczne, reakcje

Związki chemiczne, wiązania chemiczne, reakcje Związki chemiczne, wiązania chemiczne, reakcje Literatura: L. Jones, P. Atkins Chemia ogólna. Cząsteczki, materia, reakcje. Lesław Huppenthal, Alicja Kościelecka, Zbigniew Wojtczak Chemia ogólna i analityczna

Bardziej szczegółowo

Rok akademicki: 2013/2014 Kod: STC s Punkty ECTS: 7. Poziom studiów: Studia I stopnia Forma i tryb studiów: Stacjonarne

Rok akademicki: 2013/2014 Kod: STC s Punkty ECTS: 7. Poziom studiów: Studia I stopnia Forma i tryb studiów: Stacjonarne Nazwa modułu: Chemia ogólna Rok akademicki: 2013/2014 Kod: STC-1-102-s Punkty ECTS: 7 Wydział: Energetyki i Paliw Kierunek: Technologia Chemiczna Specjalność: Poziom studiów: Studia I stopnia Forma i tryb

Bardziej szczegółowo

Test sprawdzający z chemii do klasy I LO i technikum z działu Budowa atomu i wiązania chemiczne

Test sprawdzający z chemii do klasy I LO i technikum z działu Budowa atomu i wiązania chemiczne Anna Grych Test sprawdzający z chemii do klasy I LO i technikum z działu Budowa atomu i wiązania chemiczne Informacja do zadań -7 75 Dany jest pierwiastek 33 As. Zadanie. ( pkt) Uzupełnij poniższą tabelkę.

Bardziej szczegółowo

1. Przesłanki doświadczalne mechaniki kwantowej.

1. Przesłanki doświadczalne mechaniki kwantowej. 1 Pytania egzaminacyjne: 1. Przesłanki doświadczalne mechaniki kwantowej. 2. Efekt fotoelektryczny- interpretacja Einsteina. 3. Efekt fotoelektryczny: jak skorelowana jest liczba wybijanych elektronów

Bardziej szczegółowo

Anna Grych Test z budowy atomu i wiązań chemicznych

Anna Grych Test z budowy atomu i wiązań chemicznych Anna Grych Test z budowy atomu i wiązań chemicznych 1. Uzupełnij tabelkę wpisując odpowiednie dane: Nazwa atomu Liczba nukleonów protonów neutronów elektronów X -... 4 2 Y -... 88 138 Z -... 238 92 W -...

Bardziej szczegółowo

1. Budowa atomu. Układ okresowy pierwiastków chemicznych

1. Budowa atomu. Układ okresowy pierwiastków chemicznych Wymagania programowe z chemii na poszczególne oceny IV etap edukacyjny przygotowane na podstawie treści zawartych w podstawie programowej, programie nauczania oraz w części 1. podręcznika dla liceum ogólnokształcącego

Bardziej szczegółowo

Modelowanie zjawisk fizycznych (struktury molekularnej, procesów chemicznych i układów biologicznych)

Modelowanie zjawisk fizycznych (struktury molekularnej, procesów chemicznych i układów biologicznych) Modelowanie zjawisk fizycznych (struktury molekularnej, procesów chemicznych i układów biologicznych) Dr inż. Marta Łabuda Politechnika Gdańska Katedra Fizyki Teoretycznej i Informatyki Kwantowej p. 409

Bardziej szczegółowo

KARTA PRZEDMIOTU. Informacje ogólne WYDZIAŁ MATEMATYCZNO-PRZYRODNICZY. SZKOŁA NAUK ŚCISŁYCH UNIWERSYTET KARDYNAŁA STEFANA WYSZYŃSKIEGO W WARSZAWIE

KARTA PRZEDMIOTU. Informacje ogólne WYDZIAŁ MATEMATYCZNO-PRZYRODNICZY. SZKOŁA NAUK ŚCISŁYCH UNIWERSYTET KARDYNAŁA STEFANA WYSZYŃSKIEGO W WARSZAWIE 1 2 4 5 6 7 8 8.0 Kod przedmiotu Nazwa przedmiotu Jednostka Punkty ECTS Język wykładowy polski Poziom przedmiotu podstawowy K_W01 2 wiedza Symbole efektów kształcenia K_U01 2 umiejętności K_K01 11 kompetencje

Bardziej szczegółowo

CHEMIA ORGANICZNA. Umysł nie jest naczyniem, które należy napełniać, lecz ogniem, który należy rozniecać. Plutarch. by Aleksandra Kołodziejczyk

CHEMIA ORGANICZNA. Umysł nie jest naczyniem, które należy napełniać, lecz ogniem, który należy rozniecać. Plutarch. by Aleksandra Kołodziejczyk Umysł nie jest naczyniem, które należy napełniać, lecz ogniem, który należy rozniecać. Plutarch CHEMIA ORGANICZNA by Aleksandra Kołodziejczyk Większość zamieszczonych rysunków została zapożyczona z książki

Bardziej szczegółowo

Ocena dobra. Uczeń: wymienia wszystkie postulaty teorii Daltona opisuje modele Thomsona, Rutherforda oraz Bohra

Ocena dobra. Uczeń: wymienia wszystkie postulaty teorii Daltona opisuje modele Thomsona, Rutherforda oraz Bohra Chemia 1 ZP PLAN WYNIKOWY dla szkół ponadgimnazjalnych (fragmenty zapisane kursywą dotyczą celów i treści spoza podstawy programowej) Temat Ocena dopuszczająca. Uczeń: Ocena dostateczna. Uczeń: Dział 1.

Bardziej szczegółowo

Cząsteczki wieloatomowe - hybrydyzacja. Czy w oparciu o koncepcję orbitali molekularnych można wytłumaczyć budowę cząsteczek?

Cząsteczki wieloatomowe - hybrydyzacja. Czy w oparciu o koncepcję orbitali molekularnych można wytłumaczyć budowę cząsteczek? ząsteczki wieloatomowe - hybrydyzacja zy w oparciu o koncepcję orbitali molekularnych można wytłumaczyć budowę cząsteczek? Fakty doświadczalne Wiązanie ząsteczka Długość wiązania [pm] - - 97-2 96-2 2 97-3

Bardziej szczegółowo

Uniwersytet Śląski w Katowicach str. 1 Wydział Matematyki, Fizyki i Chemii

Uniwersytet Śląski w Katowicach str. 1 Wydział Matematyki, Fizyki i Chemii Uniwersytet Śląski w Katowicach str. 1 Kierunek i poziom studiów: Chemia, pierwszy poziom Sylabus modułu: Chemia kwantowa 021 Nazwa wariantu modułu (opcjonalnie): 1. Informacje ogólne koordynator modułu

Bardziej szczegółowo

Krystalografia. Typowe struktury pierwiastków i związków chemicznych

Krystalografia. Typowe struktury pierwiastków i związków chemicznych Krystalografia Typowe struktury pierwiastków i związków chemicznych Wiązania w kryształach jonowe silne, bezkierunkowe kowalencyjne silne, kierunkowe metaliczne słabe lub silne, bezkierunkowe van der Waalsa

Bardziej szczegółowo

INŻYNIERIA BIOMEDYCZNA. Wykład X

INŻYNIERIA BIOMEDYCZNA. Wykład X INŻYNIERIA BIOMEDYCZNA Wykład X 2015-12-25 1 Mechanika kwantowa opiera się na dwóch prawach Dualizm korpuskularno-falowy (de Broglie a) λ h p Zasada nieoznaczoności Heisenberga p x h/(4 ) Gęstość prawdopodobieństwa

Bardziej szczegółowo

Konfiguracja elektronowa atomu

Konfiguracja elektronowa atomu Konfiguracja elektronowa atomu ANALIZA CHEMICZNA BADANIE WŁAŚCIWOŚCI SUBSTANCJI KONTROLA I STEROWANIE PROCESAMI TECHNOLOGICZNYMI Właściwości pierwiastków - Układ okresowy Prawo okresowości Mendelejewa

Bardziej szczegółowo

Chemia I Semestr I (1 )

Chemia I Semestr I (1 ) 1/ 6 Inżyniera Materiałowa Chemia I Semestr I (1 ) Osoba odpowiedzialna za przedmiot: dr inż. Maciej Walewski. 2/ 6 Wykład Program 1. Atomy i cząsteczki: Materia, masa, energia. Cząstki elementarne. Atom,

Bardziej szczegółowo

- Przykłady określania właściwości pierwiastków z jego położenia w układzie okresowym

- Przykłady określania właściwości pierwiastków z jego położenia w układzie okresowym SPIS TREŚCI - MODELE BUDOWY ATOMU - SKŁADNIKI ATOMU - Oznaczanie atomu pierwiastka - PROMIENIOTWÓRCZOŚĆ I REAKCJE JĄDROWE - Emisja cząstek α - Przemiana β - - Przemiana β + - Wychwyt elektronu - Promieniowanie

Bardziej szczegółowo

Temat 1: Budowa atomu zadania

Temat 1: Budowa atomu zadania Budowa atomu Zadanie 1. (0-1) Dany jest atom sodu Temat 1: Budowa atomu zadania 23 11 Na. Uzupełnij poniższą tabelkę. Liczba masowa Liczba powłok elektronowych Ładunek jądra Liczba nukleonów Zadanie 2.

Bardziej szczegółowo

Zaliczenie przedmiotu: ocena pozytywna z ćwiczeń jest warunkiem koniecznym przystąpienia do egzaminu

Zaliczenie przedmiotu: ocena pozytywna z ćwiczeń jest warunkiem koniecznym przystąpienia do egzaminu Zaliczenie przedmiotu: 1. J. D. aserio, M.. Roberts EMIA RGANIZNA, PWN Warszawa, 1969 2. R. T.Morrison, R. N. Boyd EMIA RGANIZNA, PWN Warszawa, 1997 3. J. McMurry EMIA RGANIZNA, PWN Warszawa, 2002 KLKWIUM

Bardziej szczegółowo

Struktura elektronowa

Struktura elektronowa Struktura elektronowa Struktura elektronowa atomów układ okresowy pierwiastków: 1) elektrony w atomie zajmują poziomy energetyczne od dołu, inaczej niż te gołębie (w Australii, ale tam i tak chodzi się

Bardziej szczegółowo

wykłady G. Patrick Przekład Warszawa 2002 Wydawnictwo Naukowe PWN

wykłady G. Patrick Przekład Warszawa 2002 Wydawnictwo Naukowe PWN wykłady G. Patrick Zbigniew Przekład Zawadzki Warszawa 2002 Wydawnictwo Naukowe PWN SPIS TREŚCI Przedmowa Sekcja A - Struktura i wiązania 1 Al Struktura atomu węgla 1 A2 Wiązania kowalencyjne i hybrydyzacja

Bardziej szczegółowo

Liczby kwantowe n, l, m l = 0 l =1 l = 2 l = 3

Liczby kwantowe n, l, m l = 0 l =1 l = 2 l = 3 Liczby kwantowe Rozwiązaniem równania Schrödingera są pewne funkcje własne, które można scharakteryzować przy pomocy zestawu trzech liczb kwantowych n, l, m. Liczby kwantowe nie mogą być dowolne, muszą

Bardziej szczegółowo

Jeśli teraz nasz związek, chlorek glinu, ulegnie dysocjacji elektrolitycznej, rozpadnie się na jony według równania:

Jeśli teraz nasz związek, chlorek glinu, ulegnie dysocjacji elektrolitycznej, rozpadnie się na jony według równania: Wiązania chemiczne powstają między atomami wówczas, gdy dwa atomy zbliżą się do siebie na tak bliska odległość, że orbital jednego z nich znajdzie się w obrębie orbitala drugiego atomu. Jeśli na każdym

Bardziej szczegółowo

KARTA PRZEDMIOTU. Informacje ogólne WYDZIAŁ MATEMATYCZNO-PRZYRODNICZY. SZKOŁA NAUK ŚCISŁYCH UNIWERSYTET KARDYNAŁA STEFANA WYSZYŃSKIEGO W WARSZAWIE

KARTA PRZEDMIOTU. Informacje ogólne WYDZIAŁ MATEMATYCZNO-PRZYRODNICZY. SZKOŁA NAUK ŚCISŁYCH UNIWERSYTET KARDYNAŁA STEFANA WYSZYŃSKIEGO W WARSZAWIE 1 3 4 5 6 7 8 8.0 Kod przedmiotu Nazwa przedmiotu Jednostka Punkty ECTS Język wykładowy Poziom przedmiotu Symbole efektów kształcenia Symbole efektów dla obszaru kształcenia Symbole efektów kierunkowych

Bardziej szczegółowo