Prawo Zipfa zjawiska (II)
|
|
- Oskar Olejniczak
- 8 lat temu
- Przeglądów:
Transkrypt
1 Prawo Zipfa zjawiska (II) Łukasz Dębowski i Instytut Podstaw Informatyki PAN
2 Temat dzisiejszego odcinka W jakim stopniu rzeczywista zależność ranga-częstość dla słów odbiega od wyidealizowanej przez Zipfa zależności funkcyjnej?
3 1 Prawo Zipfa (przypomnienie) 2 Odstępstwa danych od prawa Zipfa (wprowadzenie) 3 Liczba różnych słów w tekście 4 Częstości najczęstszych słów 5 Wzór Mandelbrota 6 Prawo Zipfa dla dużych korpusów 7 Podsumowanie
4 1 Prawo Zipfa (przypomnienie) 2 Odstępstwa danych od prawa Zipfa (wprowadzenie) 3 Liczba różnych słów w tekście 4 Częstości najczęstszych słów 5 Wzór Mandelbrota 6 Prawo Zipfa dla dużych korpusów 7 Podsumowanie
5 Lista rangowa Weźmy sobie pewien tekst (lub korpus tekstów). Lista rangowa słów to lista słów posortowanych malejąco względem liczby wystąpień w tekście (korpusie).
6 Przykład listy rangowej Korpus Słownika Frekwencyjnego Polszczyzny Współczesnej ranga r(w) częstość c(w) słowo w w i się Częstość słowa to liczba wystąpień słowa w tekście (korpusie). Ranga słowa to liczba porządkowa słowa na liście rangowej: najczęstsze słowo ma rangę równą 1, drugie co do częstości ma rangę równą 2, trzecie co do częstości ma rangę równą 3,... itd.
7 Ciąg dalszy listy rangowej Korpus Słownika Frekwencyjnego Polszczyzny Współczesnej ranga r(w) częstość c(w) słowo w na nie z do to że jest o jak a
8 Wykres w skali logarytmicznej Korpus Słownika Frekwencyjnego Polszczyzny Współczesnej c(w) r(w)
9 Prawo Zipfa Jeżeli słowo w 1 ma rangę 10 razy większą niż słowo w 2, to słowo w 1 ma częstość 10 razy mniejszą niż słowo w 2. Równoważnie: Częstość słowa jest odwrotnie proporcjonalna do jego rangi, A c(w), r(w) gdzie: A liczba różnych słów w tekście, x część całkowita x, tzn. x 1 x x.
10 Najsłynniejsze prawo lingwistyki kwantytatywnej Podobne wykresy dla list rangowych słów obserwuje się dla tekstów pisanych w innych językach. Nadal brak jest dopracowanego modelu matematycznego, który wyjaśniałby pojawianie się prawa Zipfa. Wykresy dla listy rangowej liter wyglądają inaczej!
11 Wykresy ranga-częstość dla różnych obiektów Korpus Słownika Frekwencyjnego Polszczyzny Współczesnej 1e formy lematy tagi IPI PAN litery c(r) e+06 r
12 Łatwo dostępna informacja o literaturze interdyscyplinarna bibliografia Wentiana Li bibliografia lingwistyki kwantytatywnej A. Pawłowskiego
13 1 Prawo Zipfa (przypomnienie) 2 Odstępstwa danych od prawa Zipfa (wprowadzenie) 3 Liczba różnych słów w tekście 4 Częstości najczęstszych słów 5 Wzór Mandelbrota 6 Prawo Zipfa dla dużych korpusów 7 Podsumowanie
14 Temat dzisiejszego odcinka W jakim stopniu rzeczywista zależność ranga-częstość dla słów odbiega od wyidealizowanej przez Zipfa zależności funkcyjnej?
15 Wykres w skali logarytmicznej Korpus Słownika Frekwencyjnego Polszczyzny Współczesnej c(w) r(w)
16 Jak dobrze ten korpus spełnia prawo Zipfa? Korpus Słownika Frekwencyjnego Polszczyzny Współczesnej ranga r(w) częstość c(w) A/r(w)c(w) słowo w ,29 w ,47 się ,81 jest ,38 tego ,04 lat ,97 mamy ,72 mogły ,55 tworzy ,55 kursy ,55 obroną ,00 aa
17 Hipoteza robocza Odstępstwa od prawa Zipfa są systematyczne.
18 1 Prawo Zipfa (przypomnienie) 2 Odstępstwa danych od prawa Zipfa (wprowadzenie) 3 Liczba różnych słów w tekście 4 Częstości najczęstszych słów 5 Wzór Mandelbrota 6 Prawo Zipfa dla dużych korpusów 7 Podsumowanie
19 Dwie liczby słów w tekście A liczba różnych słów (typów) w tekście N liczba wszystkich słów (okazów) w tekście Obie liczby można wyliczyć mając listę frekwencyjną: c(r) częstość słowa o randze r Liczba A to największa ranga słowa: Z kolei c(a) > 0, c(a + 1) = 0. N = c(1) + c(2) + c(3) c(a).
20 Oszacowanie z prawa Zipfa Prawo Zipfa głosi, że A/r 1 c(r) A/r. Liczba wszystkich słów to N = c(1) + c(2) + c(3) c(a). Skądinąd wiadomo, że A γ + ln A 0, , 30 log 10 A. Stąd mamy A(γ 1 + ln A) N A(γ + ln A).
21 Jak dobrze zgadza się to oszacowanie? A(γ 1 + ln A) N A(γ + ln A) Korpus Słownika Frekwencyjnego Polszczyzny Współczesnej: Rzeczywista liczba typów: A = Oszacowanie liczby okazów z prawa Zipfa i liczby typów: A(γ + ln A) 92963(0, , 439) A(γ 1 + ln A) Rzeczywista liczba okazów: N =
22 Liczba różnych słów w funkcji długości tekstu Jeżeli tekst spełnia prawo Zipfa, to N A(γ + ln A). Z drugiej strony, z definicji liczb A i N mamy Stąd N A(γ + ln N), czyli A A N. N γ + ln N. Jednakże liczba różnych słów w tekście rośnie znacznie wolniej.
23 Wykres w skali logarytmicznej Korpus Słownika Frekwencyjnego Polszczyzny Współczesnej 1e+07 1e+06 formy lematy tagi IPI PAN litery N ( ln N) A e+06 1e+07 N
24 Przybliżony wzór empiryczny A liczba różnych słów (typów) w tekście N liczba wszystkich słów (okazów) w tekście Gustav Herdan (1964), Quantitative Linguistics, Butterworths & Co., zaproponował przybliżony wzór (zwaną też prawem Heapsa): A an C. Dla korpusu SFPW mamy C 2/3 dla N > H. S. Heaps (1978), Information Retrieval Computational and Theoretical Aspects, Academic Press. Gejza Wimmer, Gabriel Altmann (1999), On Vocabulary Richness, Journal of Quantitative Linguistics 6:1 9.
25 Polski akcent Wcześniejsi autorzy proponowali C = 1/2, czyli A a N: Władysław Kuraszkiewicz, Józef Łukaszewicz (1951), Ilość różnych wyrazów w zależności od długości tekstu, Pamiętnik Literacki 42(1): Pierre Guiraud (1954), Les caractères statistiques du vocabulaire, Presses Universitaires de France.
26 Rozkłady LNRE Prawo Zipfa i potęgowa zależność liczby różnych słów od długości tekstu zainspirowała sformułowanie pojęcia rozkładów LNRE (large number of rare events) w rachunku prawdopodobieństwa. Estate Khmaladze (1987), The statistical analysis of large number of rare events, Technical Report MS-R8804, Dept. of Mathematical Statistics, CWI. Harald Baayen (2001), Word frequency distributions, Kluwer Academic Publishers.
27 1 Prawo Zipfa (przypomnienie) 2 Odstępstwa danych od prawa Zipfa (wprowadzenie) 3 Liczba różnych słów w tekście 4 Częstości najczęstszych słów 5 Wzór Mandelbrota 6 Prawo Zipfa dla dużych korpusów 7 Podsumowanie
28 Częstości w całym tekście a częstości we fragmentach Korpus Słownika Frekwencyjnego Polszczyzny Współczesnej c i/10 (w) częstość słowa w w i-tym z 10 fragmentów. c i/10 (w) 1000 c 1/10 c 2/10 c 3/10 c 4/10 c 5/10 c 6/10 c 7/10 c 8/10 c 9/10 c 10/ c(w)
29 Twierdzenie Jeżeli 1 prawo Zipfa obowiązuje dla każdego tekstu długości N słów, 2 w każdym tekście długości N słów najczęstszym słowem jest to samo słowo, to prawo Zipfa nie obowiązuje dla tekstów długości N N.
30 Dlaczego? Niech A będzie liczbą różnych słów w dowolnym tekście długości N. Liczba A jest także częstością najczęstszego słowa w dowolnym z tych tekstów. Tekst długości N podzielmy na N/N fragmentów długości N. W każdym fragmencie najczęstszym słowem jest to samo słowo. A zatem jest ono najczęstszym słowem w całym tekście i jego częstość wynosi A N/N. Inaczej mówiąc, w dowolnym tekście długości N N wystąpienia najczęstszego słowa to A /N wszystkich okazów.
31 Sprowadzenie do niedorzeczności Jednakże, jeżeli prawo Zipfa obowiązuje dla tekstów długości N, to z nierówności A(γ 1 + ln A) N A(γ + ln N) wynika, że c(1) N A N 1 γ 1 + ln A 1 γ 1 + ln N γ+ln N N 0.
32 1 Prawo Zipfa (przypomnienie) 2 Odstępstwa danych od prawa Zipfa (wprowadzenie) 3 Liczba różnych słów w tekście 4 Częstości najczęstszych słów 5 Wzór Mandelbrota 6 Prawo Zipfa dla dużych korpusów 7 Podsumowanie
33 Wzór Mandelbrota Benoit B. Mandelbrot (1954), Structure formelle des textes et communication, Word 10:1 27, zaproponował wzór ( ) ρ + A B c(w), B > 1. ρ + r(w) W zamyśle parametry ρ i B miały nie zależeć od tekstu.
34 Motywacje wzoru Mandelbrota 1 uniknięcie przeszacowania częstości najczęstszych słów, 2 dla stałego B > 1 stosunek c(1)/n dąży do stałej, c(1) N N π(1) > 0, 3 potęgowa zależność liczby typów A od liczby okazów N, A an C ρ, C = 1/B, a = (ρ + 1)π(1) C, A. Kornai (2002), How many words are there?, Glottometrics 4: D.C. van Leijenhorst, Th.P. van der Weide (2005), A formal derivation of Heaps Law, Information Sciences 170: wzór obowiązuje dla prostego probabilistycznego modelu tekstu (tzw. modelu małpy przy klawiaturze ).
35 Benoit B. Mandelbrot (1924- )
36 A rzeczywistość skrzeczy Wzór zaproponowany przez Mandelbrota jest zbyt prosty: 1 Optymalne wartości parametrów B i ρ zależą od tekstu. 2 Dla tekstów krótkich B < 1, dla długich zaś B > 1. 3 Niesposób tak dobrać parametrów, aby uzyskać dobre dopasowanie do całego wykresu ranga-częstość oraz do wykresu liczba typów-liczba okazów.
37 Wykresy ranga-częstość dla tekstów w j. angielskim The Complete Memoirs, N = ; The Descent of Man, N = ; Erewhon, N = ; Through the Looking-Glass, N = ; Adventure of the Red Circle, N = 7407; A Modest Proposal, N = 3427; Peach Blossom Shangri-la, N = 735.
38 Literatura nt. zależności parametrów od długości tekstu Ju. K. Orlov (1982), Linguostatistik: Aufstellung von Sprachnormen oder Analyse des Redeprozesses?, [w:] Ju. K. Orlov, M. G. Boroda, I. Š. Nadarejšvili, Sprache, Text, Kunst. Quantitative Analysen, 1 55, Dr. N. Brockenmeyer. Harald Baayen (2001), Word frequency distributions, Kluwer Academic Publishers. Łukasz Dębowski (2002), Zipf s law against the text size: A half-rational model, Glottometrics, 4:49 60.
39 1 Prawo Zipfa (przypomnienie) 2 Odstępstwa danych od prawa Zipfa (wprowadzenie) 3 Liczba różnych słów w tekście 4 Częstości najczęstszych słów 5 Wzór Mandelbrota 6 Prawo Zipfa dla dużych korpusów 7 Podsumowanie
40 Problem ekstrapolacji Dotychczasowe ilustracje prawa Zipfa: Korpus Słownika Frekwencyjnego Polszczyzny Współczesnej okazów, Siedem jednolitych tekstów literackich w języku angielskim od 735 do okazów. Czy dla korpusów liczących mln okazów przybliżenie Mandelbrota jest nadal sensowne?
41 Ramon Ferrer i Cancho oraz Marcelo A. Montemurro R. Ferrer i Cancho, R. V. Solé (2001), Two regimes in the frequency of words and the origin of complex lexicons, Journal of Quantitative Linguistics 8: M. A. Montemurro, D. H. Zanette (2002), New perspectives on Zipf s law in linguistics: From single texts to large corpora, Glottometrics 4:86 98.
42 Wykres ranga-częstość względna Cztery korpusy dzieł pojedynczych autorów (N 1 mln)
43 Wykres ranga-częstość względna Jeden korpus dzieł wielu autorów (N 100 mln)
44 Trzy klasy słów na wykresie ranga-częstość (I) słowa najczestsze: poczatkowe spłaszczenie wykresu (II) słowa średniej częstości: częstość odwrotnie proporcjonalna do rangi (prawo Zipfa) (IIIa) słowa rzadkie dla korpusu dzieł jednego autora: wykładniczy zanik czestości w funkcji rangi (IIIb) słowa rzadkie dla korpusu dzieł wielu autorów: częstość odwrotnie proporcjonalna do kwadratu (?) rangi
45 Interpretacja? Słownictwo aktywnie używane przez pojedynczego człowieka jest mocno ograniczone, ale silnie zindywidualizowane. Szacowanie rozmiarów aktywnego leksykonu z poprzednich wykresów jest ryzykowne. Podział słownictwa na wspomniane trzy klasy może zależeć od korpusu, w tym jego rozmiaru.
46 Prawo Zipfa dla n-tek (teksty długości N 100 mln) Sporządźmy listy frekwencyjne dla wszystkich n-tek słów (względnie liter lub sylab) pojawiających się w korpusie, gdzie n = 1, 2, 3,..., i połączmy te listy w jedną listę frekwencyjną. Dla połączonej listy frekwencyjnej spełnione jest prawo Zipfa postaci c(r) 1/r dla typów o najmniejszej częstości. Le Quan Ha, E. I. Sicilia-Garcia, Ji Ming, F. J. Smith (2003), Extension of Zipf s Law to Word and Character N-grams for English and Chinese, Computational Linguistics and Chinese Language Processing, 8(1): Czy dokładne prawo Zipfa dla n-tek liter jest lepszą charakterystyką probabilistycznych własności języka niż przybliżone prawo Zipfa dla słów?
47 1 Prawo Zipfa (przypomnienie) 2 Odstępstwa danych od prawa Zipfa (wprowadzenie) 3 Liczba różnych słów w tekście 4 Częstości najczęstszych słów 5 Wzór Mandelbrota 6 Prawo Zipfa dla dużych korpusów 7 Podsumowanie
48 Podsumowanie Odstępstwa wykresu ranga-częstość od prawa Zipfa są systematyczne. Świadczą o tym: wzrost liczby różnych słów w funkcji długości tekstu, proporcjonalność częstości najczęstszych słów do dł. tekstu. Pewną próbą opisu odstępstw jest wzór Mandelbrota, ale rzeczywistość jest znacznie bardziej skomplikowana. Wykres ranga-częstość zależy od rodzaju tekstów, dla których został sporządzony.
Prawo Zipfa zjawiska (I)
Prawo Zipfa zjawiska (I) Łukasz Dębowski ldebowsk@ipipan.waw.pl i Instytut Podstaw Informatyki PAN 1 Lista rangowa 2 Prawo Zipfa 3 Odkrywcy i badacze 4 Zależność od definicji okazu i typu 5 Prawo Lotki
Prawo Zipfa próby objaśnień
Prawo Zipfa próby objaśnień Łukasz Dębowski ldebowsk@ipipan.waw.pl i Instytut Podstaw Informatyki PAN 1 Prawo Zipfa (przypomnienie) 2 Klasyfikacja objaśnień 3 Model małpy przy klawiaturze 4 Losowanie ze
Logarytmy. Funkcje logarytmiczna i wykładnicza. Równania i nierówności wykładnicze i logarytmiczne.
Logarytmy. Funkcje logarytmiczna i wykładnicza. Równania i nierówności wykładnicze i logarytmiczne. Definicja. Niech a i b będą dodatnimi liczbami rzeczywistymi i niech a. Logarytmem liczby b przy podstawie
Prawa wielkich liczb, centralne twierdzenia graniczne
, centralne twierdzenia graniczne Katedra matematyki i ekonomii matematycznej 17 maja 2012, centralne twierdzenia graniczne Rodzaje zbieżności ciągów zmiennych losowych, centralne twierdzenia graniczne
Modelowanie wybranych pojęć matematycznych. semestr letni, 2016/2017 Wykład 10 Własności funkcji cd.
Modelowanie wybranych pojęć matematycznych semestr letni, 206/207 Wykład 0 Własności funkcji cd. Ciągłość funkcji zastosowania Przybliżone rozwiązywanie równań Znajdziemy przybliżone rozwiązanie równania
Przedmiot statystyki. Graficzne przedstawienie danych. Wykład-26.02.07. Przedmiot statystyki
Przedmiot statystyki. Graficzne przedstawienie danych. Wykład-26.02.07 Statystyka dzieli się na trzy części: Przedmiot statystyki -zbieranie danych; -opracowanie i kondensacja danych (analiza danych);
Rozdział 2. Liczby zespolone
Rozdział Liczby zespolone Zbiór C = R z działaniami + oraz określonymi poniżej: x 1, y 1 ) + x, y ) := x 1 + x, y 1 + y ), 1) x 1, y 1 ) x, y ) := x 1 x y 1 y, x 1 y + x y 1 ) ) jest ciałem zob rozdział
Przedmiot statystyki. Graficzne przedstawienie danych.
Przedmiot statystyki. Graficzne przedstawienie danych. dr Mariusz Grządziel 23 lutego 2009 Przedmiot statystyki Statystyka dzieli się na trzy części: -zbieranie danych; -opracowanie i kondensacja danych
Zasada indukcji matematycznej
Zasada indukcji matematycznej Twierdzenie 1 (Zasada indukcji matematycznej). Niech ϕ(n) będzie formą zdaniową zmiennej n N 0. Załóżmy, że istnieje n 0 N 0 takie, że 1. ϕ(n 0 ) jest zdaniem prawdziwym,.
Lista zagadnień omawianych na wykładzie w dn r. :
Lista zagadnień omawianych na wykładzie w dn. 29.0.208r. : Granica funkcji Definicja sąsiedztwa punktu. Sąsiedztwo 0 R o promieniu r > 0: S 0, r = 0 r, 0 + r\{ 0 } 2. Sąsiedztwo lewostronne 0 R o promieniu
Pojęcie szeregu nieskończonego:zastosowania do rachunku prawdopodobieństwa wykład 1
Pojęcie szeregu nieskończonego:zastosowania do rachunku prawdopodobieństwa wykład dr Mariusz Grządziel 5 lutego 04 Paradoks Zenona z Elei wersja uwspółcześniona Zenek goni Andrzeja; prędkość Andrzeja:
FUNKCJA POTĘGOWA, WYKŁADNICZA I LOGARYTMICZNA
FUNKCJA POTĘGOWA, WYKŁADNICZA I LOGARYTMICZNA POTĘGA, DZIAŁANIA NA POTĘGACH Potęga o wykładniku naturalnym. Jest to po prostu pomnożenie przez siebie danej liczby tyle razy ile wynosi wykładnik. Zapisujemy
PROCEDURA WERYFIKACJI PRAWA KRYŁOWA
LingVaria Rok IV (2009) nr 2 (8) Agnieszka Kułacka King s College University of London London PROCEDURA WERYFIKACJI PRAWA KRYŁOWA Wstęp Prawo Kryłowa dotyczy polisemii i opisuje zależność między liczbą
Praktyczne i teoretyczne problemy statystycznego modelowania języka naturalnego
Praktyczne i teoretyczne problemy statystycznego modelowania języka naturalnego Część I: Historia i inżynieria Łukasz Dębowski ldebowsk@ipipan.waw.pl i Instytut Podstaw Informatyki Polskiej Akademii Nauk
Ciągi liczbowe. Zbigniew Koza. Wydział Fizyki i Astronomii
Ciągi liczbowe Zbigniew Koza Wydział Fizyki i Astronomii Wrocław, 2015 Co to są ciągi? Ciąg skończony o wartościach w zbiorze A to dowolna funkcja f: 1,2,, n A Ciąg nieskończony o wartościach w zbiorze
Optymalizacja ciągła
Optymalizacja ciągła 5. Metoda stochastycznego spadku wzdłuż gradientu Wojciech Kotłowski Instytut Informatyki PP http://www.cs.put.poznan.pl/wkotlowski/ 04.04.2019 1 / 20 Wprowadzenie Minimalizacja różniczkowalnej
Następnie przypominamy (dla części studentów wprowadzamy) podstawowe pojęcia opisujące funkcje na poziomie rysunków i objaśnień.
Zadanie Należy zacząć od sprawdzenia, co studenci pamiętają ze szkoły średniej na temat funkcji jednej zmiennej. Na początek można narysować kilka krzywych na tle układu współrzędnych (funkcja gładka,
Ciągi liczbowe wykład 3
Ciągi liczbowe wykład 3 dr Mariusz Grządziel 3 kwietnia 203 Definicja (ciągu liczbowego). Ciagiem liczbowym nazywamy funkcję odwzorowuja- ca zbiór liczb naturalnych w zbiór liczb rzeczywistych. Wartość
Dyskretne procesy stacjonarne o nieskończonej entropii nadwyżkowej
Dyskretne procesy stacjonarne o nieskończonej entropii nadwyżkowej Łukasz Dębowski ldebowsk@ipipan.waw.pl i Instytut Podstaw Informatyki PAN Co to jest entropia nadwyżkowa? Niech (X i ) i Z będzie procesem
Rachunek Różniczkowy
Rachunek Różniczkowy Sąsiedztwo punktu Liczby rzeczywiste będziemy teraz nazywać również punktami. Dla ustalonego punktu x 0 i promienia r > 0 zbiór S(x 0, r) = (x 0 r, x 0 ) (x 0, x 0 + r) nazywamy sąsiedztwem
Funkcje: wielomianowa, wykładnicza, logarytmiczna wykład 2
Funkcje: wielomianowa, wykładnicza, logarytmiczna wykład 2 dr Mariusz Grządziel semestr zimowy 2013 Potęgowanie Dla dowolnej liczby dodatniej a oraz liczy wymiernej w = p/q definiujemy: a w (a 1/q ) p.
Twierdzenie o liczbach pierwszych i hipoteza Riemanna
o liczbach pierwszych i hipoteza Riemanna Artur Ulikowski Politechnika Gdańska 10 marca 2009 o liczbach pierwszych Legendre, badając rozkład liczb pierwszych, postawił następującą hipotezę: Niech π(x)
Lista zadania nr 7 Metody probabilistyczne i statystyka studia I stopnia informatyka (rok 2) Wydziału Ekonomiczno-Informatycznego Filia UwB w Wilnie
Lista zadania nr 7 Metody probabilistyczne i statystyka studia I stopnia informatyka (rok 2) Wydziału Ekonomiczno-Informatycznego Filia UwB w Wilnie Jarosław Kotowicz Instytut Matematyki Uniwersytet w
7. CIĄGI. WYKŁAD 5. Przykłady :
WYKŁAD 5 1 7. CIĄGI. CIĄGIEM NIESKOŃCZONYM nazywamy funkcję określoną na zbiorze liczb naturalnych, dodatnich, a wyrazami ciągu są wartości tej funkcji. CIĄGIEM SKOŃCZONYM nazywamy funkcję określoną na
x a 1, podając założenia, przy jakich jest ono wykonywalne. x a 1 = x a 2 ( a 1) = x 1 = 1 x.
Zestaw. Funkcja potęgowa, wykładnicza i logarytmiczna. Elementarne równania i nierówności. Przykład 1. Wykonać działanie x a x a 1, podając założenia, przy jakich jest ono wykonywalne. Rozwiązanie. Niech
Zadanie 3 Oblicz jeżeli wiadomo, że liczby 8 2,, 1, , tworzą ciąg arytmetyczny. Wyznacz różnicę ciągu. Rozwiązanie:
Zadanie 3 Oblicz jeżeli wiadomo, że liczby 8 2,, 1, 6 11 6 11, tworzą ciąg arytmetyczny. Wyznacz różnicę ciągu. Uprośćmy najpierw liczby dane w treści zadania: 8 2, 2 2 2 2 2 2 6 11 6 11 6 11 26 11 6 11
Korpusomat narzędzie do tworzenia przeszukiwalnych korpusów języka polskiego
Korpusomat narzędzie do tworzenia przeszukiwalnych korpusów języka polskiego Witold Kieraś Łukasz Kobyliński Maciej Ogrodniczuk Instytut Podstaw Informatyki PAN III Konferencja DARIAH-PL Poznań 9.11.2016
Dlaczego nie wystarczają liczby wymierne
Dlaczego nie wystarczają liczby wymierne Analiza zajmuje się problemami, w których pojawia się przejście graniczne. Przykładami takich problemów w matematyce bądź fizyce mogą być: 1. Pojęcie prędkości
Rozwiązania zadań z kolokwium w dniu r. Zarządzanie Licencjackie Zaoczne, Sieradz WDAM
Rozwiązania zadań z kolokwium w dniu 1.1.010r. Zarządzanie Licencjackie Zaoczne, Sieradz WDAM Zadanie 1. Wyznacz dziedzinę naturalną funkcji f (x) = arc cos ( x + 1 x ) + Rozwiązanie. Wymagane są następujące
Wykład 5. Informatyka Stosowana. 7 listopada Informatyka Stosowana Wykład 5 7 listopada / 28
Wykład 5 Informatyka Stosowana 7 listopada 2016 Informatyka Stosowana Wykład 5 7 listopada 2016 1 / 28 Definicja (Złożenie funkcji) Niech X, Y, Z, W - podzbiory R. Niech f : X Y, g : Z W, Y Z. Złożeniem
Zmienne losowe i ich rozkłady. Momenty zmiennych losowych. Wrocław, 10 października 2014
Zmienne losowe i ich rozkłady. Momenty zmiennych losowych. Wrocław, 10 października 2014 Zmienne losowe i ich rozkłady Doświadczenie losowe: Rzut monetą Rzut kostką Wybór losowy n kart z talii 52 Gry losowe
II. Funkcje. Pojęcia podstawowe. 1. Podstawowe definicje i fakty.
II. Funkcje. Pojęcia podstawowe. 1. Podstawowe definicje i fakty. Definicja 1.1. Funkcją określoną na zbiorze X R o wartościach w zbiorze Y R nazywamy przyporządkowanie każdemu elementowi x X dokładnie
Projekt Era inżyniera pewna lokata na przyszłość jest współfinansowany przez Unię Europejską w ramach Europejskiego Funduszu Społecznego
Materiały dydaktyczne na zajęcia wyrównawcze z matematyki dla studentów pierwszego roku kierunku zamawianego Inżynieria Środowiska w ramach projektu Era inżyniera pewna lokata na przyszłość Projekt Era
Otrzymaliśmy w ten sposób ograniczenie na wartości parametru m.
Dla jakich wartości parametru m dziedziną funkcji f ( x) = x + mx + m 1 jest zbiór liczb rzeczywistych? We wzorze funkcji f(x) pojawia się funkcja kwadratowa, jednak znajduje się ona pod pierwiastkiem.
Matematyka i Statystyka w Finansach. Rachunek Różniczkowy
Rachunek Różniczkowy Ciąg liczbowy Link Ciągiem liczbowym nieskończonym nazywamy każdą funkcję a która odwzorowuje zbiór liczb naturalnych N w zbiór liczb rzeczywistych R a : N R. Tradycyjnie wartość a(n)
7. Estymacja parametrów w modelu normalnym(14.04.2008) Pojęcie losowej próby prostej
7. Estymacja parametrów w modelu normalnym(14.04.2008) Pojęcie losowej próby prostej Definicja 1 n-elementowa losowa próba prosta nazywamy ciag n niezależnych zmiennych losowych o jednakowych rozkładach
Rozwiązania zadań z kolokwium w dniu r. Zarządzanie Inżynierskie, WDAM, grupy I i II
Rozwiązania zadań z kolokwium w dniu 10.1.010r. Zarządzanie Inżynierskie, WDAM, grupy I i II Zadanie 1. Wyznacz dziedzinę naturalną funkcji f (x) = x 4x + 3 x + x + log arc sin 1 x. Rozwiązanie. Wymagane
Zbiory liczbowe i funkcje wykład 1
Zbiory liczbowe i funkcje wykład 1 dr Mariusz Grządziel 6 października 2008 1 Matematyka w naukach przyrodniczych Zależności funkcyjne w naukach przyrodniczych Rozwój algebry i analiza matematycznej w
Projekt Era inżyniera pewna lokata na przyszłość jest współfinansowany przez Unię Europejską w ramach Europejskiego Funduszu Społecznego
Materiały dydaktyczne na zajęcia wyrównawcze z matematyki dla studentów pierwszego roku kierunku zamawianego Inżynieria i Gospodarka Wodna w ramach projektu Era inżyniera pewna lokata na przyszłość Projekt
Wykład 8. Informatyka Stosowana. 26 listopada 2018 Magdalena Alama-Bućko. Informatyka Stosowana Wykład , M.A-B 1 / 31
Wykład 8 Informatyka Stosowana 26 listopada 208 Magdalena Alama-Bućko Informatyka Stosowana Wykład 8 26..208, M.A-B / 3 Definicja Ciagiem liczbowym {a n }, n N nazywamy funkcję odwzorowujac a zbiór liczb
Analiza korespondencji
Analiza korespondencji Kiedy stosujemy? 2 W wielu badaniach mamy do czynienia ze zmiennymi jakościowymi (nominalne i porządkowe) typu np.: płeć, wykształcenie, status palenia. Punktem wyjścia do analizy
Jeśli czas działania algorytmu zależy nie tylko od rozmiaru danych wejściowych i przyjmuje różne wartości dla różnych danych o tym samym rozmiarze,
Oznaczenia: Jeśli czas działania algorytmu zależy nie tylko od rozmiaru danych wejściowych i przyjmuje różne wartości dla różnych danych o tym samym rozmiarze, to interesuje nas złożoność obliczeniowa
2) R stosuje w obliczeniach wzór na logarytm potęgi oraz wzór na zamianę podstawy logarytmu.
ZAKRES ROZSZERZONY 1. Liczby rzeczywiste. Uczeń: 1) przedstawia liczby rzeczywiste w różnych postaciach (np. ułamka zwykłego, ułamka dziesiętnego okresowego, z użyciem symboli pierwiastków, potęg); 2)
Techniki Optymalizacji: Stochastyczny spadek wzdłuż gradientu I
Techniki Optymalizacji: Stochastyczny spadek wzdłuż gradientu I Wojciech Kotłowski Instytut Informatyki Politechniki Poznańskiej email: imię.nazwisko@cs.put.poznan.pl pok. 2 (CW) tel. (61)665-2936 konsultacje:
Pojęcie funkcji i jej podstawowe własności.
Konspekt lekcji matematyki w klasie II gimnazjum Pojęcie funkcji i jej podstawowe własności. Opracowała mgr Iwona Żuk Gimnazjum nr 2 w Świętoniowej I. Umiejscowienie lekcji w jednostce metodycznej: Pojęcie
Wykład 2 Zmienne losowe i ich rozkłady
Wykład 2 Zmienne losowe i ich rozkłady Magdalena Frąszczak Wrocław, 11.10.2017r Zmienne losowe i ich rozkłady Doświadczenie losowe: Rzut monetą Rzut kostką Wybór losowy n kart z talii 52 Gry losowe Doświadczenie
Maksymalne powtórzenia w tekstach i zerowa intensywność entropii
Maksymalne powtórzenia w tekstach i zerowa intensywność entropii Łukasz Dębowski ldebowsk@ipipan.waw.pl i Instytut Podstaw Informatyki PAN Warszawa 1 Wprowadzenie 2 Ograniczenia górne i dolne 3 Przykłady
Definicja i własności wartości bezwzględnej.
Równania i nierówności z wartością bezwzględną. Rozwiązywanie układów dwóch (trzech) równań z dwiema (trzema) niewiadomymi. Układy równań liniowych z parametrem, analiza rozwiązań. Definicja i własności
Matematyka I. Bezpieczeństwo jądrowe i ochrona radiologiczna Semestr zimowy 2018/2019 Wykład 3
Matematyka I Bezpieczeństwo jądrowe i ochrona radiologiczna Semestr zimowy 2018/2019 Wykład 3 Ciągi liczbowe Definicja Dowolną funkcję a: N R nazywamy ciągiem liczbowym. Uwaga Ze względu na tradycję tym
Wykład 5. Informatyka Stosowana. 6 listopada Informatyka Stosowana Wykład 5 6 listopada / 28
Wykład 5 Informatyka Stosowana 6 listopada 2017 Informatyka Stosowana Wykład 5 6 listopada 2017 1 / 28 Definicja (Funkcja odwrotna) Niech f : X Y będzie różnowartościowa na swojej dziedzinie. Funkcja odwrotna
Funkcje: wielomianowa, wykładnicza, logarytmiczna wykład 3
Funkcje: wielomianowa, wykładnicza, logarytmiczna wykład 3 dr Mariusz Grzadziel Katedra Matematyki, Uniwersytet Przyrodniczy we Wrocławiu semestr zimowy 2016/2017 Potęgowanie Dla dowolnej liczby dodatniej
W. Guzicki Próbna matura, grudzień 2014 r. poziom rozszerzony 1
W. Guzicki Próbna matura, grudzień 01 r. poziom rozszerzony 1 Próbna matura rozszerzona (jesień 01 r.) Zadanie 18 kilka innych rozwiązań Wojciech Guzicki Zadanie 18. Okno na poddaszu ma mieć kształt trapezu
Rozkłady statystyk z próby
Rozkłady statystyk z próby Rozkłady statystyk z próby Przypuśćmy, że wykonujemy serię doświadczeń polegających na 4 krotnym rzucie symetryczną kostką do gry, obserwując liczbę wyrzuconych oczek Nr kolejny
Dwa równania kwadratowe z częścią całkowitą
Dwa równania kwadratowe z częścią całkowitą Andrzej Nowicki Wydział Matematyki i Informatyki Uniwersytet M. Kopernika w Toruniu anow @ mat.uni.torun.pl 4 sierpnia 00 Jeśli r jest liczbą rzeczywistą, to
Metody probabilistyczne
Metody probabilistyczne. Twierdzenia graniczne Wojciech Kotłowski Instytut Informatyki PP http://www.cs.put.poznan.pl/wkotlowski/ 20.2.208 / 26 Motywacja Rzucamy wielokrotnie uczciwą monetą i zliczamy
Rozdział 2. Liczby zespolone
Rozdział Liczby zespolone Zbiór C = R z działaniami + oraz określonymi poniżej: x 1,y 1 +x,y := x 1 +x,y 1 +y, 1 x 1,y 1 x,y := x 1 x y 1 y,x 1 y +x y 1 jest ciałem zob przykład 16, str 7; jest to tzw
Statystyka matematyczna. Wykład III. Estymacja przedziałowa
Statystyka matematyczna. Wykład III. e-mail:e.kozlovski@pollub.pl Spis treści Rozkłady zmiennych losowych 1 Rozkłady zmiennych losowych Rozkład χ 2 Rozkład t-studenta Rozkład Fischera 2 Przedziały ufności
Zadania do wykonania. Rozwiązując poniższe zadania użyj pętlę for.
Zadania do wykonania Rozwiązując poniższe zadania użyj pętlę for. 1. apisz program, który przesuwa w prawo o dwie pozycje zawartość tablicy 10-cio elementowej liczb całkowitych tzn. element t[i] dla i=2,..,9
Rozkład materiału KLASA I
I. Liczby (20 godz.) Rozkład materiału Wg podręczników serii Prosto do matury. Zakres podstawowy KLASA I 1. Zapis dziesiętny liczby rzeczywistej 1 1.1 2. Wzory skróconego mnoŝenia 3 2.1 3. Nierówności
Przypomnienie wiadomości dla trzecioklasisty C z y p a m i ę t a s z?
Przypomnienie wiadomości dla trzecioklasisty C z y p a m i ę t a s z? Liczby naturalne porządkowe, (0 nie jest sztywno związane z N). Przykłady: 1, 2, 6, 148, Liczby całkowite to liczby naturalne, przeciwne
Funkcje IV. Wymagania egzaminacyjne:
Wymagania egzaminacyjne: a) określa funkcję za pomocą wzoru, tabeli, wykresu, opisu słownego, b) odczytuje z wykresu funkcji: dziedzinę i zbiór wartości, miejsca zerowe, maksymalne przedziały, w których
Wykład 4. Plan: 1. Aproksymacja rozkładu dwumianowego rozkładem normalnym. 2. Rozkłady próbkowe. 3. Centralne twierdzenie graniczne
Wykład 4 Plan: 1. Aproksymacja rozkładu dwumianowego rozkładem normalnym 2. Rozkłady próbkowe 3. Centralne twierdzenie graniczne Przybliżenie rozkładu dwumianowego rozkładem normalnym Niech Y ma rozkład
Indukcja. Materiały pomocnicze do wykładu. wykładowca: dr Magdalena Kacprzak
Indukcja Materiały pomocnicze do wykładu wykładowca: dr Magdalena Kacprzak Charakteryzacja zbioru liczb naturalnych Arytmetyka liczb naturalnych Jedną z najważniejszych teorii matematycznych jest arytmetyka
Generowanie liczb o zadanym rozkładzie. ln(1 F (y) λ
Wprowadzenie Generowanie liczb o zadanym rozkładzie Generowanie liczb o zadanym rozkładzie wejście X U(0, 1) wyjście Y z zadanego rozkładu F (y) = 1 e λy y = ln(1 F (y) λ = ln(1 0,1563 0, 5 0,34 Wprowadzenie
HISTOGRAM. Dr Adam Michczyński - METODY ANALIZY DANYCH POMIAROWYCH Liczba pomiarów - n. Liczba pomiarów - n k 0.5 N = N =
HISTOGRAM W pewnych przypadkach interesuje nas nie tylko określenie prawdziwej wartości mierzonej wielkości, ale także zbadanie całego rozkład prawdopodobieństwa wyników pomiarów. W takim przypadku wyniki
R-PEARSONA Zależność liniowa
R-PEARSONA Zależność liniowa Interpretacja wyników: wraz ze wzrostem wartości jednej zmiennej (np. zarobków) liniowo rosną wartości drugiej zmiennej (np. kwoty przeznaczanej na wakacje) czyli np. im wyższe
W tym rozdziale książka opisuje kilka podejść do poszukiwania kolokacji.
5 Collocations Związek frazeologiczny (kolokacja), to często używane zestawienie słów. Przykłady: strong tea, weapons of mass destruction, make up. Znaczenie całości wyrażenia, nie zawsze wynika ze znaczeń
WSTĘP DO ANALIZY I ALGEBRY, MAT1460
WSTĘP DO ANALIZY I ALGEBRY, MAT460 Listy zadań Literatura polecana. M.Gewert, Z.Skoczylas Wstęp do analizy i algebry. Teoria,przykłady,zadania.,Oficyna Wydawnicza GiS, Wrocław 04.. D.Zakrzewska, M.Zakrzewski,
Próbny egzamin z matematyki dla uczniów klas II LO i III Technikum. w roku szkolnym 2012/2013
Próbny egzamin z matematyki dla uczniów klas II LO i III Technikum w roku szkolnym 2012/2013 I. Zakres materiału do próbnego egzaminu maturalnego z matematyki: 1) liczby rzeczywiste 2) wyrażenia algebraiczne
Logarytmy. Historia. Definicja
Logarytmy Historia Logarytmy po raz pierwszy pojawiły się w książce szkockiego matematyka - Johna Nepera "Opis zadziwiających tablic logarytmów" z 1614 roku. Szwajcarski astronom i matematyk Jost Burgi
SPIS TREŚCI WSTĘP... 8 1. LICZBY RZECZYWISTE 2. WYRAŻENIA ALGEBRAICZNE 3. RÓWNANIA I NIERÓWNOŚCI
SPIS TREŚCI WSTĘP.................................................................. 8 1. LICZBY RZECZYWISTE Teoria............................................................ 11 Rozgrzewka 1.....................................................
O funkcjach : mówimy również, że są określone na zbiorze o wartościach w zbiorze.
1. Definicja funkcji f:x->y. Definicja dziedziny, przeciwdziedziny, zbioru wartości. Przykłady. I definicja: Funkcją nazywamy relację, jeśli spełnia następujące warunki: 1) 2) 1,2 [(1 2)=> 1=2] Inaczej
Liczby pierwsze rozmieszczenie. Liczby pierwsze rozmieszczenie
Rozmieszczenie liczb pierwszych Wprowadzamy funkcję π(x) def = p x 1, liczbę liczb pierwszych nie przekraczających x. Łatwo sprawdzić: π(12) = 5 (2, 3, 5, 7, 11); π(17) = 7 (2, 3, 5, 7, 11, 13, 17). Jeszcze
2. FUNKCJE. jeden i tylko jeden element y ze zbioru, to takie przyporządkowanie nazwiemy FUNKCJĄ, lub
WYKŁAD 2 1 2. FUNKCJE. 2.1.PODSTAWOWE DEFINICJE. Niech będą dane zbiory i. Jeżeli każdemu elementowi x ze zbioru,, przyporządkujemy jeden i tylko jeden element y ze zbioru, to takie przyporządkowanie nazwiemy
Przykładowe zadania z teorii liczb
Przykładowe zadania z teorii liczb I. Podzielność liczb całkowitych. Liczba a = 346 przy dzieleniu przez pewną liczbę dodatnią całkowitą b daje iloraz k = 85 i resztę r. Znaleźć dzielnik b oraz resztę
III. Funkcje rzeczywiste
. Pojęcia podstawowe Załóżmy, że dane są dwa niepuste zbiory X i Y. Definicja. Jeżeli każdemu elementowi x X przyporządkujemy dokładnie jeden element y Y, to mówimy, że na zbiorze X została określona funkcja
OCENIANIE ARKUSZA POZIOM ROZSZERZONY
Numer zadania... Etapy rozwiązania zadania Przekształcenie wzoru funkcji do żądanej postaci f( x) = + lub f( x) x = x. I sposób rozwiązania podpunktu b). Zapisanie wzoru funkcji w postaci sumy OCENIANIE
STATYSTYKA MATEMATYCZNA WYKŁAD 4. WERYFIKACJA HIPOTEZ PARAMETRYCZNYCH X - cecha populacji, θ parametr rozkładu cechy X.
STATYSTYKA MATEMATYCZNA WYKŁAD 4 WERYFIKACJA HIPOTEZ PARAMETRYCZNYCH X - cecha populacji, θ parametr rozkładu cechy X. Wysuwamy hipotezy: zerową (podstawową H ( θ = θ i alternatywną H, która ma jedną z
Matematyczny model dla prawa Kryłowa
Kwartalnik Językoznawczy 2011/1 (5) Agnieszka Kułacka Matematyczny model dla prawa Kryłowa 1. Wstęp Prawo Kryłowa zostało odkryte przez George a K. Zipfa w 1949 roku podczas jego badań nad słownikiem języka
WYMAGANIA WSTĘPNE Z MATEMATYKI
WYMAGANIA WSTĘPNE Z MATEMATYKI Wydział Informatyki, Elektroniki i Telekomunikacji Akademia Górniczo-Hutnicza im. Stanisława Staszica w Krakowie I. ZBIORY I.1. Działania na zbiorach I.2. Relacje między
Statystyka i opracowanie danych Podstawy wnioskowania statystycznego. Prawo wielkich liczb. Centralne twierdzenie graniczne. Estymacja i estymatory
Statystyka i opracowanie danych Podstawy wnioskowania statystycznego. Prawo wielkich liczb. Centralne twierdzenie graniczne. Estymacja i estymatory Dr Anna ADRIAN Paw B5, pok 407 adrian@tempus.metal.agh.edu.pl
Równania i nierówności wykładnicze i logarytmiczne
Równania i nierówności wykładnicze i logarytmiczne Paweł Foralewski Teoria Ponieważ funkcje wykładnicza i logarytmiczna zostały wprowadzone wcześniej, tutaj przypomnimy tylko definicję logarytmu i jego
1. Granice funkcji - wstępne definicje i obliczanie prostych granic
1. Granice funkcji - wstępne definicje i obliczanie prostych granic Grzegorz Kosiorowski Uniwersytet Ekonomiczny w Krakowie rzegorz Kosiorowski (Uniwersytet Ekonomiczny 1. Granice w Krakowie) funkcji -
Jarosław Wróblewski Analiza Matematyczna 1A, zima 2012/13
35. O zdaniu 1 T (n) udowodniono, że prawdziwe jest T (1), oraz że dla dowolnego n 6 zachodzi implikacja T (n) T (n+2). Czy można stąd wnioskować, że a) prawdziwe jest T (10), b) prawdziwe jest T (11),
W. Krysicki, L.Włodarski, Analiza matematyczna w zadaniach cz. 1 i cz. 2. Pomocnicze symbole. Spójniki logiczne: Symbole kwantyfikatorów:
dr Urszula Konieczna-Spychała Instytut Matematyki i Fizyki UTP imif.utp.edu.pl Literatura: M. Lassak, Matematyka dla studiów technicznych. M. Gewert, Z. Skoczylas, Analiza matematyczna 1. M. Gewert, Z.
Deska Galtona. Adam Osękowski. Instytut Matematyki, Wydział Matematyki, Informatyki i Mechaniki Uniwersytet Warszawski
a schemat Bernoulliego Instytut Matematyki, Wydział Matematyki, Informatyki i Mechaniki Uniwersytet Warszawski XV Festiwal Nauki, 21 września 2011r. a schemat Bernoulliego Schemat Bernoulliego B(n, p)
10. Elementy kombinatoryki geometrycznej: suma kątów wielokąta,
10. Elementy kombinatoryki geometrycznej: suma kątów wielokąta, liczba przekątnych wielokąta, porównywanie pól wielokątów w oparciu o proste zależności geometryczne jak np. przystawanie i zawieranie, rozpoznawanie
OCENIANIE ARKUSZA POZIOM ROZSZERZONY
OCENIANIE ARKUSZA POZIOM ROZSZERZONY Numer zadania... Etapy rozwiązania zadania Przekształcenie wzoru funkcji do żądanej postaci f( x) = + lub f( x) =. x x I sposób rozwiązania podpunktu b). Zapisanie
Matematyka. rok akademicki 2008/2009, semestr zimowy. Konwersatorium 1. Własności funkcji
. Własności funkcji () Wyznaczyć dziedzinę funkcji danej wzorem: y = 2 2 + 5 y = +4 y = 2 + (2) Podać zbiór wartości funkcji: y = 2 3, [2, 5) y = 2 +, [, 4] y =, [3, 6] (3) Stwierdzić, czy dana funkcja
UKŁADY RÓWNAŃ LINIOWYCH -Metody dokładne
UKŁADY RÓWNAŃ LINIOWYCH -Metody dokładne Układy równań liniowych Rozpatruje się układ n równań liniowych zawierających n niewiadomych: a + a +... + ann b a + a +... + ann b... an + an+... + annn bn który
WYDZIAŁ INFORMATYKI I ZARZĄDZANIA, studia niestacjonarne ANALIZA MATEMATYCZNA1, lista zadań 1
WYDZIAŁ INFORMATYKI I ZARZĄDZANIA, studia niestacjonarne ANALIZA MATEMATYCZNA, lista zadań. Dla podanych ciągów napisać wzory określające wskazane wyrazy tych ciągów: a) a n = n 3n +, a n+, b) b n = 3
Prawdopodobieństwo i statystyka
Wykład XIV: Metody Monte Carlo 19 stycznia 2016 Przybliżone obliczanie całki oznaczonej Rozważmy całkowalną funkcję f : [0, 1] R. Chcemy znaleźć przybliżoną wartość liczbową całki 1 f (x) dx. 0 Jeden ze
A. fałszywa dla każdej liczby x.b. prawdziwa dla C. prawdziwa dla D. prawdziwa dla
Zadanie 1 Liczba jest równa A. B. C. 10 D. Odpowiedź B. Zadanie 2 Liczba jest równa A. 3 B. 2 C. D. Odpowiedź D. Zadanie 3. Liczba jest równa Odpowiedź D. Zadanie 4. Liczba osobników pewnego zagrożonego
Elementy Modelowania Matematycznego Wykład 4 Regresja i dyskryminacja liniowa
Spis treści Elementy Modelowania Matematycznego Wykład 4 Regresja i dyskryminacja liniowa Romuald Kotowski Katedra Informatyki Stosowanej PJWSTK 2009 Spis treści Spis treści 1 Wstęp Bardzo często interesujący
PRÓBNY EGZAMIN MATURALNY
PRÓBNY EGZAMIN MATURALNY Z MATEMATYKI ZESTAW PRZYGOTOWANY PRZEZ SERWIS WWW.ZADANIA.INFO POZIOM PODSTAWOWY 6 MARCA 2010 CZAS PRACY: 170 MINUT 1 Zadania zamknięte ZADANIE 1 (1 PKT.) ( 5 Liczba 3 4 2 1 2
MODELE MATEMATYCZNE W UBEZPIECZENIACH
MODELE MATEMATYCZNE W UBEZPIECZENIACH WYKŁAD 3: WYZNACZANIE ROZKŁADU CZASU PRZYSZŁEGO ŻYCIA 1 Hipoteza jednorodnej populacji Rozważmy pewną populację osób w różnym wieku i załóżmy, że każda z tych osób
Elementy modelowania matematycznego
Elementy modelowania matematycznego Modelowanie algorytmów klasyfikujących. Podejście probabilistyczne. Naiwny klasyfikator bayesowski. Modelowanie danych metodą najbliższych sąsiadów. Jakub Wróblewski
FUNKCJE ELEMENTARNE I ICH WŁASNOŚCI
FUNKCJE ELEMENTARNE I ICH WŁASNOŚCI DEFINICJA (funkcji elementarnych) Podstawowymi funkcjami elementarnymi nazywamy funkcje: stałe potęgowe wykładnicze logarytmiczne trygonometryczne Funkcje, które można
Zajęcia nr 1 (1h) Dwumian Newtona. Indukcja. Zajęcia nr 2 i 3 (4h) Trygonometria
Technologia Chemiczna 008/09 Zajęcia wyrównawcze. Pokazać, że: ( )( ) n k k l = ( n l )( n l k l Zajęcia nr (h) Dwumian Newtona. Indukcja. ). Rozwiązać ( ) ( równanie: ) n n a) = 0 b) 3 ( ) n 3. Znaleźć
Stacjonarne procesy gaussowskie, czyli o zwiazkach pomiędzy zwykła
Stacjonarne procesy gaussowskie, czyli o zwiazkach pomiędzy zwykła autokorelacji Łukasz Dębowski ldebowsk@ipipan.waw.pl Instytut Podstaw Informatyki PAN autokorelacji p. 1/25 Zarys referatu Co to sa procesy