AHP Analityczny Hierarchiczny Proces
|
|
- Karolina Jaworska
- 8 lat temu
- Przeglądów:
Transkrypt
1 1/ 38 AHP Analityczny Hierarchiczny Proces Przemysław Klęsk
2 AHP (Thomas L. Saaty, lata 70-te) 2/ 38 Literatura ogólnie o metodzie: 1 Analytical Planning/the Logic of Priorities (Analytic Hierarchy Process), T. L. Saaty, K. P. Kearns, The Hierarchon: A Dictionary of Hierarchies, T. L. Saaty, Decision Making For Leaders, T. L. Saaty, Fundamentals of Decision Making and Priority Theory With the Analytic Hierarchy Process, T. L. Saaty, Theory and Applications of the Analytic Network Process: Decision Making with Benefits, Opportunities, Costs, and Risks, T. L. Saaty, Analityczny hierarchiczny proces decyzyjny, M. Kwiesielewicz, seria: Badania Systemowe tom 29, Warszawa, Literatura zastosowania: 1 The Analytic Hierarchy Process in Natural Resource and Environmental Decision Making, L. Schmoldt i in., Analytic Hierarchy Process (AHP) in Software Development (MobiPocket), B. K. Jayaswal i in., Optimal selection of location for Taiwanese hospitals to ensure a competitive advantage by using the analytic hierarchy process and sensitivity analysis, C.-R. Wu, C.-T. Lin, H.-C. Chen,
3 AHP 3/ 38 Do czego służy? technika modelowania skomplikowanych problemów decyzyjnych i podejmowania decyzji, pozwala wybierać decyzje, które spełniają preferencje zaintersowanego, jest metodą ekspertową powstały model odzwierciedla rozumienie problemu/zjawiska przez eksperta (a niekoniecznie: prawdziwe działanie zjawiska),
4 AHP 4/ 38 Jak to działa? Proces... ekspert poprzez dekompozycję buduje model danego problemu w postaci struktury drzewa a tzw. hierarchia, ekspert podaje relacje ważności elementów hierarchii poprzez porównania parami (ang. pair-wise comparisons), co prowadzi do tzw. macierzy ocen, na podstawie macierzy ocen wylicza się tzw. priorytety reprezentujące rozkład ważności danego elementu hierarchii na elementy-dzieci, podjęcie decyzji wybór spośród kilku możliwości (liście drzewa), polega na przeprowadzeniu obliczeń w górę drzewa prosta arytmetyka wagowa, oceny możliwych decyzji pozwalają dodatkowo uszeregować je w ranking. a Lub grafu bliskiego drzewu.
5 5/ 38 Przykład problemu: wybór samochodu dla rodziny Jones ów Rysunek: Hierarchia problemu i możliwe wybory. (źródło: Wikipedia)
6 Przykład problemu: poziom wody na tamie (źródło: Wikipedia) 6/ 38
7 7/ 38 Przykład problemu: kierownik dla projektu Rysunek: Źródło: Akademia Wiedzy BCC,
8 Popularne problemy z indywidualnymi preferencjami eksperta 8/ 38 wybór uczelni gdzie na studia?, wybór oferty pracy, wybory polityczne, zakup domu, samochodu, automatyczne zakupy internetowe (Allegro, Amazon, itp.), rozdział zasobów w firmie, rozdział priorytetów w organizacji, itp. (ang. resource allocation),
9 Pojęcia, oznaczenia 9/ 38 X 1 cel kryterium główne X 2 X 3 X 4 X 5 X 6 X 7 X 8 X 9 X 10 X 11 {y 1, y 2,...,y m } zbiór wyborów/decyzji c k zbiór indeksów dzieci elementu o indeksie k (ang. comparison group). Np. c 2 = {5, 6, 7}, c 5 = = c 11 = {}. r k zbiór indeksów rodziców elementu o indeksie k (ang. covering criteria). Np. r 3 = {1}, r 9 = {3, 4}, r 1 = {}. L zbiór indeksów liści całego drzewa. Tu: L = {5, 6,...,11}.
10 Porównania parami macierze ocen 10/ 38 W ramach każdej grupy porównywalnej (comparison group), tj. dla każdego elementu X k posiadającego elementy-dzieci, ekspert musi określić macierz ocen: A k = { a k (i, j) }, (1) gdzie a k (i, j) mówi, na ile ważny (preferowany, dominujący) jest element X i w stosunku do elementu X j ze względu na ich wpływ na element X k. Dla wygody przyjmijmy, że k wskazuje globalny indeks w całej hierarchii, natomiast i, j są lokalnymi indeksami dzieci elementu X k : i odpowiednio mapują się na globalne indeksy. 1 i, j #c k, (2)
11 Porównania parami macierze ocen 11/ 38 Skala rang proponowana przez Saaty ego 1 równa ważność, 3 umiarkowana dominacja i nad j, 5 silna dominacja i nad j, 7 bardzo silna dominacja i nad j, 9 ekstremalna dominacja i nad j, później. Oceny (odczucia, sądy) pośrednie można przedstawiać liczbami {2, 4, 6, 8}. Przewagę j nad i wyrażamy odwrotnościami. Ostatecznie wg Saaty ego, w trakcie procesu oceniania parami do dyspozycji jest zbiór a : { 1 9, 1 8,..., 1 2, 1, 2, 3,...,9}. (3) a Ten zbiór nie zawsze pozwala na tzw. spójność ocen (przechodniość). O tym
12 Przykład 12/ 38 Przykładowa macierz ocen dla elementu X 1 : A 1 = X 2 X 3 X 4 X 2 X 3 X Uwaga: 7, 7 3 / {1 9, 1 8,...,9}. Czytanie w wierszach: X 2 = 3 X 3 X 2 = 3X 3, X 2 = 7 X 4 X 2 = 7X 4, X 3 = 1 X 2 3 X 3 = 1 3 X 2,. 3X 3 = 7X 4 X 3 = 7 3 X 4.
13 Macierz ocen 13/ 38 Spójność (ang. consistency) Mówimy, że macierz ocen A jest spójna wtedy i tylko wtedy, gdy: a(i, i) =1, (4) i, j, l a(i, j) a(j, l) =a(i, l). (5) W konsekwencji spójności: macierz jest odwrotnościowo-symetryczna względem głównej przekątnej: a(i, j) = 1 a(j, i), dla dowolnie długich ciągów mnożeń zachodzi: a(i, j)a(j, l)a(l, m) a(x, y)a(y, z) =a(i, z).
14 Niespójne macierze ocen 14/ 38 Źródło: R. Haas, O. Mexiner, An illustrated Guide to the AHP, Metody doprowadzania do spójności metoda największej wartości własnej, metoda najmniejszych kwadratów, metoda najmniejszych logarytmicznych kwadratów, inne...
15 Porównania parami 15/ 38 Rysunek: Źródło: Wikipedia. Dla macierzy o rozmiarze n potrzeba n(n 1) ocen. Dla całej hierarchii potrzeba: k #c k(#c k 1).
16 Priorytety 16/ 38 Jeżeli macierz A k jest spójna, to wektor rozkładu priorytetów p k wyznaczamy sumując wiersze A k i normalizując do jedności: #c k p k (i) := A k (i, j), 1 i #c k, p k (i) := j=1 p k (i) #ck j=1 p k(j), 1 i #c k.
17 Priorytety 17/ 38 A 1 = X 2 X 3 X 4 X 2 X 3 X p 1 =
18 Priorytety 18/ 38 Macierz ocen daje się przedstawić za pomocą priorytetów: gdzie n =#c k. A k = p k (1) p k (1) p k (2) p k (1). p k (n) p k (1) p k (1) p k (2) p k (2) p k (2).... p k (n) p k (2) p k (1) p k (n) p k (2) p k (n). p k (n) p k (n), (6)
19 Hierarchia z priorytetami 19/ 38 X 1 cel kryterium główne X 2 X 3 X X 5 X 6 X 7 X 8 X 9 X 10 X 11 {y 1, y 2,...,y m } zbiór wyborów/decyzji
20 Oceny i hierarchia Jonesów 20/ 38 Rysunek: Źródło: Wikipedia.
21 Priorytety lokalne i globalne 21/ 38 X 1 cel kryterium główne X 2 X 3 X X 5 X 6 X 7 X 8 X 9 X 10 X 11 {y 1, y 2,...,y m } zbiór wyborów/decyzji
22 Priorytety globalne wagi 22/ 38 Rekurencja Niech w k (i) oznacza wagę dla elementu i liczoną względem elementu k traktowanego jako korzeń (indeksy globalne). 1, i = k; 0, i k i c w k (i) = k = {}; (7) p k (j)w j (i), w przeciwnym razie. j c k Wagę globalną dowolnego i-tego elementu znajdujemy wywołując: w 1 (i).
23 Obliczanie decyzji 23/ 38 1 Należy zasilić liście drzewa poprzez macierze ocen wartościujące poszczególne decyzje {y 1, y 2,...,y m} w ramach każdego liścia l L: A l = y 1 y 2.. y m y 1 y 2 y m a (1, 1) l a (1, 2) l a l (1, m) a l (2, 1) a l (2, 2) a l (2, m) a l (m, 1) a l (m, 2) a l (m, m) 2 Jeżeli macierze A l są niespójne, należy doprowadzić je do spójności. 3 Dla każdego liścia obliczyć rozkład priorytetów na poszczególne decyzje: p l =(p l (y 1 ) p l (y 2 ) p l (y m)). 4 Dla każdej decyzji y {y 1, y 2,...,y m} przeprowadzić arytmetykę wag w górę drzewa, co odpowiada obliczeniu rekurencji w 1 (y), jeżeli potraktować decyzje jako nowe liście dostajemy w ten sposób ranking wartościujący decyzje. 5 Jako najlepszą decyzję wybieramy y = arg max w 1 (y). y
24 Obliczanie decyzji 24/ 38 X 1 cel kryterium główne X 2 X 3 X X 5 X 6 X 7 X 8 X 9 X 10 X y 1 y 2 y1 y 2 y1 y y 1 y 2 y1 y y 1 y 2 y1 y 2 w 1 (y 1 )=0.6359, w 1 (y 2 )=0.3191, y = 1.
25 Drugi sposób przedstawienia obliczeń decyzji 25/ 38 1 Obliczyć jednokrotnie i zapamiętać wagi liści hierarchii: w(l) :=w 1 (l), l L. 2 Wynikowy ranking decyzji otrzymujemy mnożąc: ( w(l1 ) w(l 2 ) w(l #L ) ) X l1 X l2.. X l#l y 1 y 2 y m p l1 (y 1 ) p l1 (y 2 ) p l1 (y m) p l2 (y 1 ) p l2 (y 2 ) p l2 (y m) p l#l (y 1 ) p l#l (y 2 ) p l#l (y m), gdzie w macierzy wierszami pisane są rozkłady priorytetów dla liści.
26 Drugi sposób przedstawienia obliczeń decyzji 26/ 38 Wartość kryterium głównego X 1 dla pewnej decyzji y jest kombinacją liniową (sumą ważoną) priorytetów liści dla tego y: w 1 (y) = l L w(l)p l (y). (8) Na priorytety p l (y) w liściach, można patrzeć jak na atrybuty decyzji/obiektu y (zmienne wejściowe). Przy czym są one brane względem pozostałych decyzji nie są stałe dla danej decyzji/obiektu, tj. zmieniają się, gdy zestawić dane y z innymi decyzjami/obiektami. Cała hierarchia nie jest już potrzebna, liście czynniki najbardziej podstawowe definiują problem. Często jest tak, że rozkład priorytetów w liściach (na decyzje) daje się precyzyjnie określać liczbowo bez udziału eksperta.
27 Naprawianie spójności macierzy ocen 27/ 38 1 metoda maksymalnej wartości własnej, 2 metoda najmniejszych logarytmicznych kwadratów.
28 Metoda maksymalnej wartości własnej dla spójnych macierzy A zachodzi własność: (gdzie n jest równe rozmiarowi A), jako że Ap = np, (9) A = p(1) p(1) p(2) p(1). p(n) p(1) p(1) p(1) p(2) p(n) p(2) p(2) p(2) p(n) p(n) p(n) p(2) p(n). (10) 28/ 38 w powyższym przypadku dla równania charakterystycznego det(a n1) =0, wszystkie wartości własne z wyjątkiem jednej są zerami. dla niespójnych macierzy A, Saaty proponuje naprawić spójność w oparciu o równanie: Ap = λ maxp, (11) znajdując wektor p odpowiadający λ max tj. maksymalnej wartości własnej, a następnie normalizując go arytmetycznie (do sumy równej jedności). Znając p, wyznaczamy nową macierz ocen A korzystając z reprezentacji (10).
29 Metoda maksymalnej wartości własnej przykład 29/ 38 Niespójna macierzy ocen: Równanie charakterystyczne: ( 1 λ 3 det 1 1 λ 2 ( 1 3 A = ) = 0, λ 1,2 = 1 ± Wektor własny odpowiadający λ max: ) 3 3 2, λmax = ( 3 2 p(1) 1 3 p(2) 2 2 ( p(1) p(2) ) ) ( 0 = 0 ( := ) ) ( p(1) p(2) (po normalizacji). ) ( 1 6 := 6 ),
30 Metoda maksymalnej wartości własnej 30/ 38 Ogólnie dla macierzy 2 2 Niespójna macierzy ocen: Rozwiązanie: ( 1 β A = γ 1 ) λ max = βγ, (12) ( ) ( β βγ ) p(1) β γ = p(2) βγ γ β γ (po normalizacji). (13) Poprawiona, spójna macierz ocen: ( p(1) p(1) A = p(2) p(1) p(1) p(2) p(2) p(2) ) = 1 β γ γ 1 β. (14) Uwaga: ocena a(1, 2) powstała jako średnia geometryczna ocen: β i 1 γ.
31 Metoda maksymalnej wartości własnej 31/ 38 Drugi sposób obliczania 1 Wykonać A := A 2. Np. dla n = 3: A 2 = ( a(1, 1) 2 + a(1, 2)a(2, 1) +a(1, 3)a(3, 1) a(2, 1)a(1, 1) +a(2, 2)a(2, 1) +a(2, 3)a(3, 1) a(3, 1)a(1, 1) +a(3, 2)a(2, 1) +a(3, 3)a(3, 1) a(1, 1)a(1, 2) +a(1, 2)a(2, 2) +a(1, 3)a(3, 2) a(2, 1)a(1, 1) +a(2, 2)a(2, 1) +a(2, 3)a(3, 1) a(3, 1)a(1, 2) +a(3, 2)a(2, 2) +a(3, 3)a(3, 2) a(1, 1)a(1, 3) +a(1, 2)a(2, 3) +a(1, 3)a(3, 3) a(2, 1)a(1, 3) +a(2, 2)a(2, 3) +a(2, 3)a(3, 3) a(3, 1)a(1, 3) +a(3, 2)a(2, 3) +a(3, 3) 2 ). 2 Wyznaczyć wektor priorytetów poprzez zsumowanie otrzymanej macierzy wierszami i normalizację. 3 Jeżeli nowy wektor priorytetów różni się od poprzedniego (co do wszystkich wartości) o nie więcej niż ɛ, to przerwać procedurę. W przeciwnym razie kontynuować od kroku 1.
32 Krytyka metody maks. wartości własnej 32/ 38 Indeks zgodności (ang. consistency index): λ max n n 1. (15) Saaty stwierdza, że jeżeli jest to liczba mniejsza niż 10%, tomożna być zadowolonym z ocen ekspertów. Murphy (1993) podaje przykłady macierzy, które nigdy nie osiągną zadowalającego indeksu spójności, przy skali ocen Saaty ego: { 1 9,, 9}. Transponowanie macierzy ocen (i zastosowanie metody) może prowadzić do innego porządku priorytetów (Barzilai i in., 1987). Dodanie nowego czynnika (elementu hierarchii) może prowadzić do utraty poprzedniego porządku priorytetów (ang. rank reversal).
33 Metoda logarytmicznych najmniejszych kwadratów 33/ 38 Polega na znalezieniu takiej macierzy ilorazowej { p(i)/p(j) }, która będzie najbliższa do niespójnej macierzy A w sensie minimalizacji wyrażenia: 1 i,j n ( ln a(i, j) ln p(i) ) 2. (16) p(j)
34 Metoda logarytmicznych najmniejszych kwadratów ( ln a(i, j) ln p(i) ) 2. p(j) 1 i,j n Podstawienia: ln a(i, j) =b ij,lnp(i) =c i. Minimalizujemy ze względu na c i sumę: ( ) 2. bij c i + c j 1 i,j n k = 1,...,n ( ) c k = 0 ( ) = 2 ( )( ) bij c i + c j [k = i] ( 1)+[k = j] 1 c k 1 i,j n = 2 ( b kj + c k c j )+2 (b ik c i + c k ) 1 j n 1 i n = 2 (b ik b ki )+4nc k 4 1 i n 1 i n c i. [ ] jest f. wskaźnikową Wygodne jest teraz przyjęcie i c i = 0, co odpowiada ln i p(i) =0, czyli i p(i) =1. 34/ 38
35 Metoda logarytmicznych najmniejszych kwadratów 35/ i n (b ik b ki )+4nc k = 0, c k = 1 2n ln p(k) = 1 2n (b ik b ki ), 1 i n ( ) ln a(i, k) ln a(k, i), 1 i n p(k) = 1 i n a(k, i) a(i, k) 1 2n. (17) ( ) 1 W literaturze można spotkać (błędne wg mnie) rozwiązanie: p(k) = 1 i n a(k, i) n dajegorsze wyniki optymalizowanego kryterium.
36 Rank reversal problem zmiany rankingu decyzji 36/ 38 Problem Czy dodanie do zbioru decyzji dodatkowej decyzji y m+1 powinno stwarzać możliwość zmiany pierwotnego rankingu policzonego dla {y 1,...,y m } wg głównego kryterium? Przykład: wybory 2000 r. w USA: (Gore, Bush), (Bush, Gore, Nadar).
37 Rank reversal problem zmiany rankingu decyzji 37/ 38 Belton i Gear (1983) pokazali, że w oryginalnym AHP ranking decyzji może być niestabilny. Dodanie nowej decyzji identycznej lub podobnej do jednej z poprzednich może zmienić pierwotny porządek. Rozwiązanie multiplikatywne AHP (Barzilay, Golany): 1 żadna normalizacja nie jest odporna na problem rank reversal, 2 agregacja poprzez średnie geometryczne bezpośrednio na macierzach ocen (bez wektorów priorytetów), 3 zło w oryginalnym AHP macierz ocen w formie multiplikatywnej a do tego rachunki addytywne. W oprogramowaniu do AHP mówi się o dwóch trybach: IDEAL (nie dopuszcza zmiany rankingu), DISTRIBUTIVE (dopuszcza).
38 Multiplikatywne AHP 38/ 38 X 1 cel kryterium główne λ 1 (2) λ 1 (3) X 2 λ 2 (4) λ 2 (5) λ 2 (6) λ 3 (6) X 3 λ 3 (7) X 4 X 5 X 6 X 7 A = ( ) λ1(2) A λ2(4) 4 A λ2(5) 5 A λ2(6) 6 ( ) λ1(3) A λ3(6) 6 A λ3(7) 7 = A λ2(4)λ1(2) 4 A λ2(5)λ1(2) 5 A λ2(6)λ1(2)+λ3(6)λ1(3) 6 A λ3(7)λ1(3) 7.
LOGISTYKA DYSTRYBUCJI II ćwiczenia 3 WYBÓR DOSTAWCY USŁUG WIELOKRYTERIALNE MODELE DECYZYJNE. AUTOR: dr inż. ROMAN DOMAŃSKI WYBÓR DOSTAWCY USŁUG
1 LOGISTYKA DYSTRYBUCJI II ćwiczenia 3 WIELOKRYTERIALNE MODELE DECYZYJNE AUTOR: dr inż. ROMAN DOMAŃSKI METODY OCENY I WYBORU DOSTAWCÓW 2 Wybór odpowiedniego dostawcy jest gwarantem niezawodności realizowanych
WIELOATRYBUTOWE PODEJMOWANIE DECYZJI: ANALYTIC HIERARCHY PROCESS
WIELOATRYBUTOWE PODEJMOWANIE DECYZJI: ANALYTIC HIERARCHY PROCESS 1.1. ISTOTA METODY AHP... 1 Rysunek 1. Etapy rozwiązywania problemów z pomocą AHP... 3 Rysunek 2. Hierarchia decyzyjna AHP... 4 Tabela 1.
ANALIZA HIERARCHICZNA PROBLEMU W SZACOWANIU RYZYKA PROJEKTU INFORMATYCZNEGO METODĄ PUNKTOWĄ. Joanna Bryndza
ANALIZA HIERARCHICZNA PROBLEMU W SZACOWANIU RYZYKA PROJEKTU INFORMATYCZNEGO METODĄ PUNKTOWĄ Joanna Bryndza Wprowadzenie Jednym z kluczowych problemów w szacowaniu poziomu ryzyka przedsięwzięcia informatycznego
Metoda analizy hierarchii Saaty ego Ważnym problemem podejmowania decyzji optymalizowanej jest często występująca hierarchiczność zagadnień.
Metoda analizy hierarchii Saaty ego Ważnym problemem podejmowania decyzji optymalizowanej jest często występująca hierarchiczność zagadnień. Istnieje wiele heurystycznych podejść do rozwiązania tego problemu,
WIELOKRYTERIALNE PORZĄDKOWANIE METODĄ PROMETHEE ODPORNE NA ZMIANY WAG KRYTERIÓW
Uniwersytet Ekonomiczny we Wrocławiu WIELOKRYTERIALNE PORZĄDKOWANIE METODĄ PROMETHEE ODPORNE NA ZMIANY WAG KRYTERIÓW Wprowadzenie Wrażliwość wyników analizy wielokryterialnej na zmiany wag kryteriów, przy
Zastosowanie hierarchicznej analizy problemowej w badaniach efektywności inwestowania w elektroenergetyce
Zastosowanie hierarchicznej analizy problemowej w badaniach efektywności inwestowania w elektroenergetyce Autor: prof. dr hab. inż. Waldemar Kamrat Politechnika Gdańska, Katedra Elektroenergetyki ( Energetyka
Analiza numeryczna Kurs INP002009W. Wykłady 6 i 7 Rozwiązywanie układów równań liniowych. Karol Tarnowski A-1 p.
Analiza numeryczna Kurs INP002009W Wykłady 6 i 7 Rozwiązywanie układów równań liniowych Karol Tarnowski karol.tarnowski@pwr.wroc.pl A-1 p.223 Plan wykładu Podstawowe pojęcia Własności macierzy Działania
Rozwiązywanie układów równań liniowych metody dokładne Materiały pomocnicze do ćwiczeń z metod numerycznych
Rozwiązywanie układów równań liniowych metody dokładne Materiały pomocnicze do ćwiczeń z metod numerycznych Piotr Modliński Wydział Geodezji i Kartografii PW 13 stycznia 2012 P. Modliński, GiK PW Rozw.
Obliczenia naukowe Wykład nr 8
Obliczenia naukowe Wykład nr 8 Paweł Zieliński Katedra Informatyki, Wydział Podstawowych Problemów Techniki, Politechnika Wrocławska Literatura Literatura podstawowa [] D. Kincaid, W. Cheney, Analiza numeryczna,
PROCES ANALITYCZNEJ HIERARCHIZACJI W OCENIE WARIANTÓW ROZWIĄZAŃ PROJEKTOWYCH
PROCES ANALITYCZNEJ HIERARCHIZACJI W OCENIE WARIANTÓW ROZWIĄZAŃ PROJEKTOWYCH Paweł Cabała 1 Streszczenie Celem artykułu jest przedstawienie możliwości wykorzystania metody AHP w procesie projektowania
Rozwiązywanie układów równań liniowych
Rozwiązywanie układów równań liniowych Marcin Orchel 1 Wstęp Jeśli znamy macierz odwrotną A 1, to możęmy znaleźć rozwiązanie układu Ax = b w wyniku mnożenia x = A 1 b (1) 1.1 Metoda eliminacji Gaussa Pierwszy
Zastosowanie hierarchicznej analizy problemowej w badaniach efektywności inwestowania w elektroenergetyce 2)
Waldemar Kamrat 1) Zastosowanie hierarchicznej analizy problemowej w badaniach efektywności inwestowania w elektroenergetyce 2) Analytic hierarchy process application for investment effectiveness studies
ALGEBRA LINIOWA. Wykład 2. Analityka gospodarcza, sem. 1. Wydział Zarządzania i Ekonomii Politechnika Gdańska
ALGEBRA LINIOWA Wykład 2 Analityka gospodarcza, sem 1 Wydział Zarządzania i Ekonomii Politechnika Gdańska dr inż Natalia Jarzębkowska, CNMiKnO semzimowy 2018/2019 2/17 Macierze Niech M = {1, 2,, m} i N
Wykład 6. Metoda eliminacji Gaussa: Eliminacja z wyborem częściowym Eliminacja z wyborem pełnym
1 Wykład 6 Metoda eliminacji Gaussa: Eliminacja z wyborem częściowym Eliminacja z wyborem pełnym ELIMINACJA GAUSSA Z WYBOREM CZĘŚCIOWYM ELEMENTÓW PODSTAWOWYCH 2 Przy pomocy klasycznego algorytmu eliminacji
Algorytmy Równoległe i Rozproszone Część V - Model PRAM II
Algorytmy Równoległe i Rozproszone Część V - Model PRAM II Łukasz Kuszner pokój 209, WETI http://www.sphere.pl/ kuszner/ kuszner@sphere.pl Oficjalna strona wykładu http://www.sphere.pl/ kuszner/arir/ 2005/06
1 Zbiory i działania na zbiorach.
Matematyka notatki do wykładu 1 Zbiory i działania na zbiorach Pojęcie zbioru jest to pojęcie pierwotne (nie definiuje się tego pojęcia) Pojęciami pierwotnymi są: element zbioru i przynależność elementu
Algebra liniowa II. Lista 1. 1 u w 0 1 v 0 0 1
Algebra liniowa II Lista Zadanie Udowodnić, że jeśli B b ij jest macierzą górnotrójkątną o rozmiarze m m, to jej wyznacznik jest równy iloczynowi elementów leżących na głównej przekątnej: det B b b b mm
E: Rekonstrukcja ewolucji. Algorytmy filogenetyczne
E: Rekonstrukcja ewolucji. Algorytmy filogenetyczne Przypominajka: 152 drzewo filogenetyczne to drzewo, którego liśćmi są istniejące gatunki, a węzły wewnętrzne mają stopień większy niż jeden i reprezentują
Macierze. Rozdział Działania na macierzach
Rozdział 5 Macierze Funkcję, która każdej parze liczb naturalnych (i, j) (i 1,..., n; j 1,..., m) przyporządkowuje dokładnie jedną liczbę a ij F, gdzie F R lub F C, nazywamy macierzą (rzeczywistą, gdy
15. Macierze. Definicja Macierzy. Definicja Delty Kroneckera. Definicja Macierzy Kwadratowej. Definicja Macierzy Jednostkowej
15. Macierze Definicja Macierzy. Dla danego ciała F i dla danych m, n IN funkcję A : {1,...,m} {1,...,n} F nazywamy macierzą m n ( macierzą o m wierszach i n kolumnach) o wyrazach z F. Wartość A(i, j)
3. Macierze i Układy Równań Liniowych
3. Macierze i Układy Równań Liniowych Rozważamy równanie macierzowe z końcówki ostatniego wykładu ( ) 3 1 X = 4 1 ( ) 2 5 Podstawiając X = ( ) x y i wymnażając, otrzymujemy układ 2 równań liniowych 3x
Metody wielokryterialne. Tadeusz Trzaskalik
Metody wielokryterialne Tadeusz Trzaskalik 4.1. Wprowadzenie Słowa kluczowe Zadanie wielokryterialne Zadanie wielokryterialne programowania liniowego Przestrzeń decyzyjna Zbiór rozwiązań za dopuszczalnych
Wykład 5. Metoda eliminacji Gaussa
1 Wykład 5 Metoda eliminacji Gaussa Rozwiązywanie układów równań liniowych Układ równań liniowych może mieć dokładnie jedno rozwiązanie, nieskończenie wiele rozwiązań lub nie mieć rozwiązania. Metody dokładne
Zaawansowane metody numeryczne
Wykład 11 Ogólna postać metody iteracyjnej Definicja 11.1. (metoda iteracyjna rozwiązywania układów równań) Metodą iteracyjną rozwiązywania { układów równań liniowych nazywamy ciąg wektorów zdefiniowany
Zadania egzaminacyjne
Rozdział 13 Zadania egzaminacyjne Egzamin z algebry liniowej AiR termin I 03022011 Zadanie 1 Wyznacz sumę rozwiązań równania: (8z + 1 i 2 2 7 iz 4 = 0 Zadanie 2 Niech u 0 = (1, 2, 1 Rozważmy odwzorowanie
Stosowana Analiza Regresji
Stosowana Analiza Regresji Wykład VIII 30 Listopada 2011 1 / 18 gdzie: X : n p Q : n n R : n p Zał.: n p. X = QR, - macierz eksperymentu, - ortogonalna, - ma zera poniżej głównej diagonali. [ R1 X = Q
UKŁADY ALGEBRAICZNYCH RÓWNAŃ LINIOWYCH
Transport, studia niestacjonarne I stopnia, semestr I Instytut L-5, Wydział Inżynierii Lądowej, Politechnika Krakowska Ewa Pabisek Adam Wosatko Postać układu równań liniowych Układ liniowych równań algebraicznych
KADD Minimalizacja funkcji
Minimalizacja funkcji Poszukiwanie minimum funkcji Foma kwadratowa Metody przybliżania minimum minimalizacja Minimalizacja w n wymiarach Metody poszukiwania minimum Otaczanie minimum Podział obszaru zawierającego
Układy równań liniowych. Krzysztof Patan
Układy równań liniowych Krzysztof Patan Motywacje Zagadnienie kluczowe dla przetwarzania numerycznego Wiele innych zadań redukuje się do problemu rozwiązania układu równań liniowych, często o bardzo dużych
; B = Wykonaj poniższe obliczenia: Mnożenia, transpozycje etc wykonuję programem i przepisuję wyniki. Mam nadzieję, że umiesz mnożyć macierze...
Tekst na niebiesko jest komentarzem lub treścią zadania. Zadanie. Dane są macierze: A D 0 ; E 0 0 0 ; B 0 5 ; C Wykonaj poniższe obliczenia: 0 4 5 Mnożenia, transpozycje etc wykonuję programem i przepisuję
Wektory i wartości własne
Treść wykładu Podprzestrzenie niezmiennicze... Twierdzenie Cayley Hamiltona Podprzestrzenie niezmiennicze Definicja Niech f : V V będzie przekształceniem liniowym. Podprzestrzeń W V nazywamy niezmienniczą
5. Rozwiązywanie układów równań liniowych
5. Rozwiązywanie układów równań liniowych Wprowadzenie (5.1) Układ n równań z n niewiadomymi: a 11 +a 12 x 2 +...+a 1n x n =a 10, a 21 +a 22 x 2 +...+a 2n x n =a 20,..., a n1 +a n2 x 2 +...+a nn x n =a
WYBÓR NAJLEPSZEGO PROJEKTU ZGŁOSZONEGO W R AMACH BO Z WYKORZYSTANIEM METODY WIELOKRYTERIALNEGO GRUPOWEGO PODEJMOWANIA DECYZJI AHP
Studia Informatica Pomerania nr 4/2016 (42) www.wnus.edu.pl/si DOI: 10.18276/si.2016.42-03 27 37 WYBÓR NAJLEPSZEGO PROJEKTU ZGŁOSZONEGO W R AMACH BO Z WYKORZYSTANIEM METODY WIELOKRYTERIALNEGO GRUPOWEGO
Optymalizacja ciągła
Optymalizacja ciągła 5. Metoda stochastycznego spadku wzdłuż gradientu Wojciech Kotłowski Instytut Informatyki PP http://www.cs.put.poznan.pl/wkotlowski/ 04.04.2019 1 / 20 Wprowadzenie Minimalizacja różniczkowalnej
Met Me ody numer yczne Wykład ykład Dr inż. Mic hał ha Łanc Łan zon Instyt Ins ut Elektr Elektr echn iki echn i Elektrot Elektr echn olo echn
Metody numeryczne Wykład 3 Dr inż. Michał Łanczont Instytut Elektrotechniki i Elektrotechnologii E419, tel. 4293, m.lanczont@pollub.pl, http://m.lanczont.pollub.pl Zakres wykładu Pojęcia podstawowe Algebra
Co to jest wektor? Jest to obiekt posiadający: moduł (długość), kierunek wraz ze zwrotem.
1 Wektory Co to jest wektor? Jest to obiekt posiadający: moduł (długość), kierunek wraz ze zwrotem. 1.1 Dodawanie wektorów graficzne i algebraiczne. Graficzne - metoda równoległoboku. Sprowadzamy wektory
Wektory i wartości własne
Treść wykładu Podprzestrzenie niezmiennicze Podprzestrzenie niezmiennicze... Twierdzenie Cayley Hamiltona Podprzestrzenie niezmiennicze Definicja Niech f : V V będzie przekształceniem liniowym. Podprzestrzeń
Diagonalizacja macierzy i jej zastosowania
Diagonalizacja macierzy i jej zastosowania Mirosław Sobolewski Wydział Matematyki, Informatyki i Mechaniki UW 9. wykład z algebry liniowej Warszawa, listopad 2012 Mirosław Sobolewski (UW) Warszawa,listopad
UKŁADY ALGEBRAICZNYCH RÓWNAŃ LINIOWYCH
Transport, studia I stopnia rok akademicki 2011/2012 Instytut L-5, Wydział Inżynierii Lądowej, Politechnika Krakowska Ewa Pabisek Adam Wosatko Uwagi wstępne Układ liniowych równań algebraicznych można
AHP pomoże podjąć decyzję
Akademia Wiedzy BCC /akademia AHP pomoże podjąć decyzję Narzędzie dla menedżerów Czy tylko intuicja? Zarządzanie projektami od kilku lat jest ważną częścią biznesu wielu firm komercyjnych (m.in. konsultingowych,
1 Macierze i wyznaczniki
1 Macierze i wyznaczniki 11 Definicje, twierdzenia, wzory 1 Macierzą rzeczywistą (zespoloną) wymiaru m n, gdzie m N oraz n N, nazywamy prostokątną tablicę złożoną z mn liczb rzeczywistych (zespolonych)
TEORIA GRAFÓW I SIECI
TEORIA GRAFÓW I SIECI Temat nr : Grafy Berge a dr hab. inż. Zbigniew TARAPATA, prof. WAT e-mail: zbigniew.tarapata@wat.edu.pl http://tarapata.edu.pl tel.: 6-83-95-0, p.5/00 Zakład Badań Operacyjnych i
Wielokryteriowa optymalizacja liniowa
Wielokryteriowa optymalizacja liniowa 1. Przy decyzjach złożonych kierujemy się zwykle więcej niż jednym kryterium. Postępowanie w takich sytuacjach nie jest jednoznaczne. Pojawiło się wiele sposobów dochodzenia
Definicja macierzy Typy i właściwości macierzy Działania na macierzach Wyznacznik macierzy Macierz odwrotna Normy macierzy RACHUNEK MACIERZOWY
Transport, studia niestacjonarne I stopnia, semestr I Instytut L-5, Wydział Inżynierii Lądowej, Politechnika Krakowska Adam Wosatko Ewa Pabisek Czym jest macierz? Definicja Macierzą A nazywamy funkcję
JEDNORÓWNANIOWY LINIOWY MODEL EKONOMETRYCZNY
JEDNORÓWNANIOWY LINIOWY MODEL EKONOMETRYCZNY Będziemy zapisywać wektory w postaci (,, ) albo traktując go jak macierz jednokolumnową (dzięki temu nie będzie kontrowersji przy transponowaniu wektora ) Model
RACHUNEK MACIERZOWY. METODY OBLICZENIOWE Budownictwo, studia I stopnia, semestr 6. Instytut L-5, Wydział Inżynierii Lądowej, Politechnika Krakowska
RACHUNEK MACIERZOWY METODY OBLICZENIOWE Budownictwo, studia I stopnia, semestr 6 Instytut L-5, Wydział Inżynierii Lądowej, Politechnika Krakowska Ewa Pabisek Czym jest macierz? Definicja Macierzą A nazywamy
Diagonalizacja macierzy i jej zastosowania
Diagonalizacja macierzy i jej zastosowania Mirosław Sobolewski Wydział Matematyki, Informatyki i Mechaniki UW 9. wykład z algebry liniowej Warszawa, grudzień 2011 Mirosław Sobolewski (UW) Warszawa, grudzień
Zaawansowane metody numeryczne
Wykład 10 Rozkład LU i rozwiązywanie układów równań liniowych Niech będzie dany układ równań liniowych postaci Ax = b Załóżmy, że istnieją macierze L (trójkątna dolna) i U (trójkątna górna), takie że macierz
Analiza numeryczna Lista nr 3 (ćwiczenia) x x 2 n x.
Analiza numeryczna Lista nr 3 (ćwiczenia) Sprawdzić że macierz ma wartości własne2+ 222 2 2 Niechx R n Udowodnić że 2 0 0 x x 2 n x 3 NiechA R n n będzie macierzą symetryczną Wiadomo że wówczas istnieje
Rozdział 2: Metoda największej wiarygodności i nieliniowa metoda najmniejszych kwadratów
Rozdział : Metoda największej wiarygodności i nieliniowa metoda najmniejszych kwadratów W tym rozdziale omówione zostaną dwie najpopularniejsze metody estymacji parametrów w ekonometrycznych modelach nieliniowych,
Programowanie celowe #1
Programowanie celowe #1 Problem programowania celowego (PC) jest przykładem problemu programowania matematycznego nieliniowego, który można skutecznie zlinearyzować, tzn. zapisać (i rozwiązać) jako problem
Programowanie liniowe
Badania operacyjne Problem Model matematyczny Metoda rozwiązania Znaleźć optymalny program produkcji. Zmaksymalizować 1 +3 2 2 3 (1) Przy ograniczeniach 3 1 2 +2 3 7 (2) 2 1 +4 2 12 (3) 4 1 +3 2 +8 3 10
2 1 3 c c1. e 1, e 2,..., e n A= e 1 e 2...e n [ ] M. Przybycień Matematyczne Metody Fizyki I
Liniowa niezależno ność wektorów Przykład: Sprawdzić czy następujące wektory z przestrzeni 3 tworzą bazę: e e e3 3 Sprawdzamy czy te wektory są liniowo niezależne: 3 c + c + c3 0 c 0 c iei 0 c + c + 3c3
Metody iteracyjne rozwiązywania układów równań liniowych (5.3) Normy wektorów i macierzy (5.3.1) Niech. x i. i =1
Normy wektorów i macierzy (5.3.1) Niech 1 X =[x x Y y =[y1 x n], oznaczają wektory przestrzeni R n, a yn] niech oznacza liczbę rzeczywistą. Wyrażenie x i p 5.3.1.a X p = p n i =1 nosi nazwę p-tej normy
Algebra liniowa. Macierze i układy równań liniowych
Algebra liniowa Macierze i układy równań liniowych Własności wyznaczników det I = 1, det(ab) = det A det B, det(a T ) = det A. Macierz nieosobliwa Niech A będzie macierzą kwadratową wymiaru n n. Mówimy,
Matematyka stosowana i metody numeryczne
Ewa Pabisek Adam Wosatko Piotr Pluciński Matematyka stosowana i metody numeryczne Konspekt z wykładów Błędy obliczeń Błędy można podzielić na: modelu, metody, wejściowe (początkowe), obcięcia, zaokrągleń..
INTERPOLACJA I APROKSYMACJA FUNKCJI
Transport, studia niestacjonarne I stopnia, semestr I Instytut L-5, Wydział Inżynierii Lądowej, Politechnika Krakowska Ewa Pabisek Adam Wosatko Wprowadzenie Na czym polega interpolacja? Interpolacja polega
Macierzowe algorytmy równoległe
Macierzowe algorytmy równoległe Zanim przedstawimy te algorytmy zapoznajmy się z metodami dekompozycji macierzy, możemy wyróżnić dwa sposoby dekompozycji macierzy: Dekompozycja paskowa - kolumnowa, wierszowa
a 11 a a 1n a 21 a a 2n... a m1 a m2... a mn x 1 x 2... x m ...
Wykład 15 Układy równań liniowych Niech K będzie ciałem i niech α 1, α 2,, α n, β K. Równanie: α 1 x 1 + α 2 x 2 + + α n x n = β z niewiadomymi x 1, x 2,, x n nazywamy równaniem liniowym. Układ: a 21 x
Procesy stochastyczne WYKŁAD 2-3. Łańcuchy Markowa. Łańcuchy Markowa to procesy "bez pamięci" w których czas i stany są zbiorami dyskretnymi.
Procesy stochastyczne WYKŁAD 2-3 Łańcuchy Markowa Łańcuchy Markowa to procesy "bez pamięci" w których czas i stany są zbiorami dyskretnymi. 2 Łańcuchem Markowa nazywamy proces będący ciągiem zmiennych
WEKTORY I MACIERZE. Strona 1 z 11. Lekcja 7.
Strona z WEKTORY I MACIERZE Wektory i macierze ogólnie nazywamy tablicami. Wprowadzamy je:. W sposób jawny: - z menu Insert Matrix, - skrót klawiszowy: {ctrl}+m, - odpowiedni przycisk z menu paska narzędziowego
Optymalizacja ciągła
Optymalizacja ciągła 5. Metody kierunków poparwy (metoda Newtona-Raphsona, metoda gradientów sprzężonych) Wojciech Kotłowski Instytut Informatyki PP http://www.cs.put.poznan.pl/wkotlowski/ 28.03.2019 1
= i Ponieważ pierwiastkami stopnia 3 z 1 są (jak łatwo wyliczyć) liczby 1, 1+i 3
ZESTAW I 1. Rozwiązać równanie. Pierwiastki zaznaczyć w płaszczyźnie zespolonej. z 3 8(1 + i) 3 0, Sposób 1. Korzystamy ze wzoru a 3 b 3 (a b)(a 2 + ab + b 2 ), co daje: (z 2 2i)(z 2 + 2(1 + i)z + (1 +
PRACE NAUKOWE UNIWERSYTETU EKONOMICZNEGO WE WROCŁAWIU
PRACE NAUKOWE UNIWERSYTETU EKONOMICZNEGO WE WROCŁAWIU nr 207 RESEARCH PAPERS OF WROCŁAW UNIVERSITY OF ECONOMICS nr 427 2016 Taksonomia 27 ISSN 1899-3192 Klasyfikacja i analiza danych teoria i zastosowania
Układy równań liniowych
Układy równań liniowych Niech K będzie ciałem. Niech n, m N. Równanie liniowe nad ciałem K z niewiadomymi (lub zmiennymi) x 1, x 2,..., x n K definiujemy jako formę zdaniową zmiennej (x 1,..., x n ) K
Badania eksperymentalne
Badania eksperymentalne Analiza CONJOINT mgr Agnieszka Zięba Zakład Badań Marketingowych Instytut Statystyki i Demografii Szkoła Główna Handlowa Najpopularniejsze sposoby oceny wyników eksperymentu w schematach
Wyznaczniki. Mirosław Sobolewski. Wydział Matematyki, Informatyki i Mechaniki UW. 6. Wykład z algebry liniowej Warszawa, listopad 2013
Wyznaczniki Mirosław Sobolewski Wydział Matematyki, Informatyki i Mechaniki UW 6. Wykład z algebry liniowej Warszawa, listopad 2013 Mirosław Sobolewski (UW) Warszawa, listopad 2013 1 / 13 Terminologia
Funkcje charakterystyczne zmiennych losowych, linie regresji 1-go i 2-go rodzaju
Funkcje charakterystyczne zmiennych losowych, linie regresji -go i 2-go rodzaju Dr Joanna Banaś Zakład Badań Systemowych Instytut Sztucznej Inteligencji i Metod Matematycznych Wydział Informatyki Politechniki
Metody numeryczne Wykład 4
Metody numeryczne Wykład 4 Dr inż. Michał Łanczont Instytut Elektrotechniki i Elektrotechnologii E419, tel. 4293, m.lanczont@pollub.pl, http://m.lanczont.pollub.pl Zakres wykładu Metody skończone rozwiązywania
ZASTOSOWANIE PROGRAMOWANIA LINIOWEGO W ZAGADNIENIACH WSPOMAGANIA PROCESU PODEJMOWANIA DECYZJI
Wstęp ZASTOSOWANIE PROGRAMOWANIA LINIOWEGO W ZAGADNIENIACH WSPOMAGANIA PROCESU PODEJMOWANIA DECYZJI Problem podejmowania decyzji jest jednym z zagadnień sterowania nadrzędnego. Proces podejmowania decyzji
Rozdział 5. Macierze. a 11 a a 1m a 21 a a 2m... a n1 a n2... a nm
Rozdział 5 Macierze Funkcję, która każdej parze liczb naturalnych (i,j) (i = 1,,n;j = 1,,m) przyporządkowuje dokładnie jedną liczbę a ij F, gdzie F = R lub F = C, nazywamy macierzą (rzeczywistą, gdy F
UKŁADY RÓWNAŃ LINIOWYCH -Metody dokładne
UKŁADY RÓWNAŃ LINIOWYCH -Metody dokładne Układy równań liniowych Rozpatruje się układ n równań liniowych zawierających n niewiadomych: a + a +... + ann b a + a +... + ann b... an + an+... + annn bn który
3 1 + i 1 i i 1 2i 2. Wyznaczyć macierze spełniające własność komutacji: [A, X] = B
1. Dla macierzy a) A = b) A = c) A = d) A = 3 1 + i 1 i i i 0 i i 0 1 + i 1 i 0 0 0 0 1 0 1 0 1 + i 1 i Wyznaczyć macierze spełniające własność komutacji: A, X = B. Obliczyć pierwiaski z macierzy: A =
Algebra WYKŁAD 3 ALGEBRA 1
Algebra WYKŁAD 3 ALGEBRA 1 Liczby zespolone Postać wykładnicza liczby zespolonej Niech e oznacza stałą Eulera Definicja Równość e i cos isin nazywamy wzorem Eulera. ALGEBRA 2 Liczby zespolone Każdą liczbę
ALGEBRA LINIOWA Z ELEMENTAMI GEOMETRII ANALITYCZNEJ
ALGEBRA LINIOWA Z ELEMENTAMI GEOMETRII ANALITYCZNEJ WSHE, O/K-CE 10. Homomorfizmy Definicja 1. Niech V, W będą dwiema przestrzeniami liniowymi nad ustalonym ciałem, odwzorowanie ϕ : V W nazywamy homomorfizmem
KADD Minimalizacja funkcji
Minimalizacja funkcji n-wymiarowych Forma kwadratowa w n wymiarach Procedury minimalizacji Minimalizacja wzdłuż prostej w n-wymiarowej przestrzeni Metody minimalizacji wzdłuż osi współrzędnych wzdłuż kierunków
Procesy stochastyczne WYKŁAD 2-3. Łańcuchy Markowa. Łańcuchy Markowa to procesy "bez pamięci" w których czas i stany są zbiorami dyskretnymi.
Procesy stochastyczne WYKŁAD 2-3 Łańcuchy Markowa Łańcuchy Markowa to procesy "bez pamięci" w których czas i stany są zbiorami dyskretnymi. Przykład Symetryczne błądzenie przypadkowe na prostej. 1 2 Łańcuchem
A A A A A A A A A n n
DODTEK NR GEBR MCIERZY W dodatku tym podamy najważniejsze definicje rachunku macierzowego i omówimy niektóre funkcje i transformacje macierzy najbardziej przydatne w zastosowaniach numerycznych a w szczególności
Zestaw 12- Macierz odwrotna, układy równań liniowych
Zestaw - Macierz odwrotna, układy równań liniowych Przykładowe zadania z rozwiązaniami Załóżmy, że macierz jest macierzą kwadratową stopnia n. Mówimy, że macierz tego samego wymiaru jest macierzą odwrotną
Wstęp do metod numerycznych Uwarunkowanie Eliminacja Gaussa. P. F. Góra
Wstęp do metod numerycznych Uwarunkowanie Eliminacja Gaussa P. F. Góra http://th-www.if.uj.edu.pl/zfs/gora/ 2012 Uwarunkowanie zadania numerycznego Niech ϕ : R n R m będzie pewna funkcja odpowiednio wiele
SPOTKANIE 11: Reinforcement learning
Wrocław University of Technology SPOTKANIE 11: Reinforcement learning Adam Gonczarek Studenckie Koło Naukowe Estymator adam.gonczarek@pwr.edu.pl 19.01.2016 Uczenie z nadzorem (ang. supervised learning)
04 Układy równań i rozkłady macierzy - Ćwiczenia. Przykład 1 A =
04 Układy równań i rozkłady macierzy - Ćwiczenia 1. Wstęp Środowisko Matlab można z powodzeniem wykorzystać do rozwiązywania układów równań z wykorzystaniem rozkładów macierzy m.in. Rozkładu Choleskiego,
Programowanie dynamiczne
Programowanie dynamiczne Programowanie rekurencyjne: ZALETY: - prostota - naturalność sformułowania WADY: - trudność w oszacowaniu zasobów (czasu i pamięci) potrzebnych do realizacji Czy jest możliwe wykorzystanie
Wykład 7 Macierze i wyznaczniki
Wykład 7 Macierze i wyznaczniki Andrzej Sładek sladek@ux2mathusedupl Instytut Matematyki, Uniwersytet Śląski w Katowicach Andrzej Sładek (Instytut Matematyki, Uniwersytet Śląski Wykład w Katowicach) 7
O MACIERZACH I UKŁADACH RÓWNAŃ
O MACIERZACH I UKŁADACH RÓWNAŃ Problem Jak rozwiązać podany układ równań? 2x + 5y 8z = 8 4x + 3y z = 2x + 3y 5z = 7 x + 8y 7z = Definicja Równanie postaci a x + a 2 x 2 + + a n x n = b gdzie a, a 2, a
Statystyka opisowa. Wykład V. Regresja liniowa wieloraka
Statystyka opisowa. Wykład V. e-mail:e.kozlovski@pollub.pl Spis treści 1 Prosta regresji cechy Y względem cech X 1,..., X k. 2 3 Wyznaczamy zależność cechy Y od cech X 1, X 2,..., X k postaci Y = α 0 +
Wielokryterialne wspomaganie decyzji Redakcja naukowa Tadeusz Trzaskalik
Wielokryterialne wspomaganie decyzji Redakcja naukowa Tadeusz Trzaskalik W książce autorzy przedstawiają dyskretne problemy wielokryterialne, w których liczba rozpatrywanych przez decydenta wariantów decyzyjnych
WYBÓR SYSTEMU INFORMATYCZNEGO METODĄ AHP
ZESZYTY NAUKOWE POLITECHNIKI ŚLĄSKIEJ 06 Seria: ORGANIZACJA I ZARZĄDZANIE z. 96 Nr kol. 963 Aleksandra CZUPRYNA-NOWAK Politechnika Śląska Wydział Organizacji i Zarządzania aleksandra.nowak@polsl.pl WYBÓR
, A T = A + B = [a ij + b ij ].
1 Macierze Jeżeli każdej uporządkowanej parze liczb naturalnych (i, j), 1 i m, 1 j n jest przyporządkowana dokładnie jedna liczba a ij, to mówimy, że jest określona macierz prostokątna A = a ij typu m
Kolejny krok iteracji polega na tym, że przechodzimy do następnego wierzchołka, znajdującego się na jednej krawędzi z odnalezionym już punktem, w
Metoda Simpleks Jak wiadomo, problem PL z dowolną liczbą zmiennych można rozwiązać wyznaczając wszystkie wierzchołkowe punkty wielościanu wypukłego, a następnie porównując wartości funkcji celu w tych
Przekształcanie równań stanu do postaci kanonicznej diagonalnej
Przekształcanie równań stanu do postaci kanonicznej diagonalnej Przygotowanie: Dariusz Pazderski Liniowe przekształcenie równania stanu Rozważmy liniowe równanie stanu i równanie wyjścia układu niesingularnego
Przekształcenia liniowe
Przekształcenia liniowe Zadania Które z następujących przekształceń są liniowe? (a) T : R 2 R 2, T (x, x 2 ) = (2x, x x 2 ), (b) T : R 2 R 2, T (x, x 2 ) = (x + 3x 2, x 2 ), (c) T : R 2 R, T (x, x 2 )
Analiza składowych głównych. Wprowadzenie
Wprowadzenie jest techniką redukcji wymiaru. Składowe główne zostały po raz pierwszy zaproponowane przez Pearsona(1901), a następnie rozwinięte przez Hotellinga (1933). jest zaliczana do systemów uczących
1. PODSTAWY TEORETYCZNE
1. PODSTAWY TEORETYCZNE 1 1. 1. PODSTAWY TEORETYCZNE 1.1. Wprowadzenie W pierwszym wykładzie przypomnimy podstawowe działania na macierzach. Niektóre z nich zostały opisane bardziej szczegółowo w innych
ANALIZA SPÓJNOŚCI OCEN W PROCESIE PODEJMOWANIA DECYZJI STRATEGICZNYCH
ZESZYTY NAUKOWE POLITECHNIKI ŚLĄSKIEJ 2016 Seria: ORGANIZACJA I ZARZĄDZANIE z. 88 Nr kol. 1948 Paweł CABAŁA Uniwersytet Ekonomiczny w Krakowie cabalap@uek.krakow.pl ANALIZA SPÓJNOŚCI OCEN W PROCESIE PODEJMOWANIA
Metody i analiza danych
2015/2016 Metody i analiza danych Macierze Laboratorium komputerowe 2 Anna Kiełbus Zakres tematyczny 1. Funkcje wspomagające konstruowanie macierzy 2. Dostęp do elementów macierzy. 3. Działania na macierzach
Pokazać, że wyżej zdefiniowana struktura algebraiczna jest przestrzenią wektorową nad ciałem
Zestaw zadań 9: Przestrzenie wektorowe. Podprzestrzenie () Wykazać, że V = C ze zwykłym dodawaniem jako dodawaniem wektorów i operacją mnożenia przez skalar : C C C, (z, v) z v := z v jest przestrzenią
5. Wprowadzenie do prawdopodobieństwa Wprowadzenie Wyniki i zdarzenia Różne podejścia do prawdopodobieństwa Zdarzenia wzajemnie wykluczające się i
Spis treści Przedmowa do wydania polskiego - Tadeusz Tyszka Słowo wstępne - Lawrence D. Phillips Przedmowa 1. : rola i zastosowanie analizy decyzyjnej Decyzje złożone Rola analizy decyzyjnej Zastosowanie
budowlanymi - WAP Aleksandra Radziejowska
budowlanymi - WAP Aleksandra Radziejowska Co to jest optymalizacja wielokryterialna? ustalenie kryterium poszukiwania i oceny optymalnego. Co to jest optymalizacja wielokryterialna? pod zakup maszyny budowlanej
Transformaty. Kodowanie transformujace
Transformaty. Kodowanie transformujace Kodowanie i kompresja informacji - Wykład 10 10 maja 2009 Szeregi Fouriera Każda funkcję okresowa f (t) o okresie T można zapisać jako f (t) = a 0 + a n cos nω 0