Badania eksperymentalne
|
|
- Krystian Czerwiński
- 7 lat temu
- Przeglądów:
Transkrypt
1 Badania eksperymentalne Analiza CONJOINT mgr Agnieszka Zięba Zakład Badań Marketingowych Instytut Statystyki i Demografii Szkoła Główna Handlowa
2 Najpopularniejsze sposoby oceny wyników eksperymentu w schematach prawdziwych Skala pomiaru wyników eksperymentu (typ zmiennej zależnej) Nominalna Pomiar niezależny Test U dla dwóch frakcji Test niezależności Chi-kwadrat Ryzyko względne Pomiar zależny Test McNemara Test Cochrana Porządkowa Przedziałowa lub ilorazowa Test serii Walda-Wolfowitza Test Kolmogorowa-Smirnowa Test Kruskala-Wallisa Test U lub test t dla dwóch średnich Analiza wariancji dla doboru całkowicie losowego Test Friedmana Test t Analiza wariancji dla schematów blokowych Analiza conjoint
3 Teoria użyteczności Zasada maksymalizacji korzyści (funkcja maksymalizowana przy istniejących ograniczeniach). Użyteczność subiektywnie odczuwana satysfakcja z tytułu realizacji określonej struktury konsumpcji. Konsumenci podejmują w zakresie zakupu dóbr i usług takie decyzje, które realizują zasadę maksymalizacji osiąganych korzyści przy istniejących ograniczeniach. Ograniczony budżet zmusza do wyboru produktu najbliższego idealnemu wizerunkowi w danych warunkach. Tym samym konsument dokonuje zazwyczaj wyboru kompromisowego, w którym kieruje się preferencjami względem poszczególnych cech produktu.
4 Analiza pomiaru łącznego Ocena eksperymentu opartego na kilku pomiarach zależnych (w jednej grupie) Pomiar na skali co najmniej porządkowej Sprawdzenie kilku czynników kontrolowanych o kilku poziomach jednocześnie Nie wymaga użycia wszystkich kombinacji poziomów czynników (respondent nie musi widzieć wszystkich możliwych zestawień, tylko każdy poziom każdego czynnika) Nie ma grupy kontrolnej Jest to badanie wpływu poszczególnych atrybutów (skala nominalna) na preferencje wyrażane za pomocą nadawanej rangi Efektem jest pokazanie jak użyteczność oferty zależy od jej cech Model regresji: - zmienna zależna to preferencja wyrażona rangą tzw. UŻTECZNOŚĆ OBSERWOWANA,, - zmienne niezależne to atrybuty zakodowane jako zmienna -
5 Analiza wg procedury CONJOINT Wybór zestawu cech które będą podlegały ocenie przez respondenta oraz zdefiniowanie ich poziomów lub kategorii Wybór postaci modelu preferencji (regresji wielorakiej) Wybór metody prezentacji cech produktu respondentowi Konstrukcję narzędzi prezentacji kombinacji atrybutów oraz zasad ich oceniania przez respondentów Realizacja badania w terenie (próba min. max. jednostek) Analiza i interpretacja uzyskanych wyników (udziału użyteczności cząstkowych w użyteczności całkowitej) Weryfikacja poprawności modelu
6 Model użyteczności całkowitej Model addytywny uwzględniający jedynie efekty główne (SPSS) generowane przez poszczególne atrybuty produktu definiujący użyteczność całkowitą produktu: x l l y ij k mi i j ( l) ij y ij x ( l ) ij ε l - użyteczność całkowita l-tego wariantu produktu l,,3 n numer wariantu produktu k liczba atrybutów (czynników) m i liczba poziomów czynnika w każdym z atrybutów i,,k - zmienne zero-jedynkowe określają czy dany poziom czynnika wystąpił czy nie - użyteczność cząstkowa przypisana j-tej kategorii i-tego czynnika Model uwzględniający obok efektów głównych również występowanie interakcji między atrybutami produktu: x l y isj isj k m i i j y ij x ( l) ij k k m i i s j y isj x ( l) isj ε - użyteczność cząstkowa przypisana j-tej kategorii i-tego czynnika uwzględniająca efekt interakcji pomiędzy atrybutami i oraz s - zmienne zero-jedynkowe określają czy interakcja wystąpiła czy nie l
7 Model użyteczności całkowitej Model użyteczności całkowitej jest traktowany jako model regresji wielorakiej ze zmiennymi sztucznymi... - wartość użyteczności dla respondenta n n k k - parametr modelu regresji określa użyteczność cząstkową poszczególnych kategorii atrybutów produktu dla respondenta (informuje z jaką siłą wybrana kategoria wpływa na ocenę produktu) - zmienna sztuczna (zerojedynkowa) identyfikująca kategorię atrybutu Liczba zmiennych sztucznych jest zawsze o jeden mniejsza niż liczba kategorii (poziomów) które wyróżnia się dla danego atrybutu (cechy). Należy dysponować niezbędną liczba obserwacji, aby możliwe było zastosowanie metody MNK.
8 Użyteczność oferty Liczba oszacowanych parametrów to: (liczba poziomów wszystkich atrybutów ) x liczba respondentów Użyteczność każdej z badanych ofert uzyskiwana jest przez agregację: ˆ ˆ ˆ p p mi i ˆ - użyteczność całkowita p-tej oferty dla respondenta - użyteczność cząstkowa kategorii i-tego atrybutu, która występuje w p-tej ofercie - stała w równaniu o numerze Użyteczność całkowita badanej oferty to średnia arytmetyczna użyteczności dla respondentów. p numer oferty numer respondenta m i liczba poziomów i-tego atrybutu
9 Relatywna wartość każdego z atrybutów wskaźnik względnej ważności poszczególnych atrybutów produktu: respondent atrybut W i k i { ˆ } min{ ˆ } ( max{ ˆ } min{ ˆ }) max Rozstęp pomiędzy max i min oceną atrybutu Suma rozstępów wszystkich atrybutów W ˆ i -rel. ważnośc i- tego atrybutu dla respondenta - teoretyczna użyteczność cząstkowa p-tej kategorii i-tego atrybutu wskaźnik względnej ważności poszczególnych atrybutów pozwala ocenić daną cechę produktu pod względem cech pozostałych. Wskaźnik konstruowany jest na podstawie użyteczności charakteryzujących każdego respondenta. Dzięki temu wskaźnikowi możliwe jest utworzenie rankingu atrybutów produktu na podstawie wartości średnich wskaźnika obliczonych dla wszystkich respondentów.
10 Przykład: Ocena oferty biura podróży: Kodowanie W przypadku małej liczby respondentów (9 respondentów, współczynników do oszacowania) każdy trzeci poziom czynnika jest kombinacją liniową dwóch pozostałych. czynnik Poziomy czynnika Kodowanie zmiennych w modelu regresji Użyteczność cząstkowa - Miejsce pobytu Nad morzem W górach W dużym mieście Opieka pilota Pełna: organizator i przewodnik Częściowa: organizator Brak Wyżywienie All inclusie Śniadania i obiady/kolacje Na własną rękę - - STAŁA Równanie regresji redukuje się do 7 współczynników:
11 Równanie regresji redukuje się do 7 współczynników: Powstaje równanie regresji dla każdego respondenta. Wyniki te są uśredniane i powstaje wynik ogólny. Jest to model addytywny dekompozycja użyteczności całkowitej na użyteczność cząstkową rozważanych kategorii współczynniki odzwierciedlają preferencje. Model bierze pod uwagę tylko efekty główne nie uwzględnia interakcji. (SPSS wyznaczanie współczynników metodą MNK lub uogólniona ANOVA) Przykład: Ocena oferty biura podróży: Kodowanie '... ' ' 6 6 W przypadku małej liczby respondentów (9 respondentów, współczynników do oszacowania) każdy trzeci poziom czynnika jest kombinacją liniową dwóch pozostałych
12 Literatura M. Walesiak, A. Bąk Conjoint analysis w badaniach marketingowych Wydawnictwo Akademii Ekonomicznej we Wrocławiu, M. Rószkiewicz Narzędzia statystyczne w analizach marketingowych C.H.Beck, Warszawa
Badania eksperymentalne
Badania eksperymentalne Pomiar na skali porządkowej mgr Agnieszka Zięba Zakład Badań Marketingowych Instytut Statystyki i Demografii Szkoła Główna Handlowa Najpopularniejsze sposoby oceny wyników eksperymentu
Bardziej szczegółowoPrzykład 1. (A. Łomnicki)
Plan wykładu: 1. Wariancje wewnątrz grup i między grupami do czego prowadzi ich ocena 2. Rozkład F 3. Analiza wariancji jako metoda badań założenia, etapy postępowania 4. Dwie klasyfikacje a dwa modele
Bardziej szczegółowoBadania eksperymentalne
Badania eksperymentalne Wprowadzenie mgr Agnieszka Zięba Zakład Badań Marketingowych Instytut Statystyki i Demografii Szkoła Główna Handlowa Badania empiryczne badania empiryczne obserwacja wywiad eksperyment
Bardziej szczegółowoSzczegółowy program kursu Statystyka z programem Excel (30 godzin lekcyjnych zajęć)
Szczegółowy program kursu Statystyka z programem Excel (30 godzin lekcyjnych zajęć) 1. Populacja generalna a losowa próba, parametr rozkładu cechy a jego ocena z losowej próby, miary opisu statystycznego
Bardziej szczegółowoTesty nieparametryczne
Testy nieparametryczne Testy nieparametryczne możemy stosować, gdy nie są spełnione założenia wymagane dla testów parametrycznych. Stosujemy je również, gdy dane można uporządkować według określonych kryteriów
Bardziej szczegółowoStatystyka w zarzadzaniu / Amir D. Aczel, Jayavel Sounderpandian. Wydanie 2. Warszawa, Spis treści
Statystyka w zarzadzaniu / Amir D. Aczel, Jayavel Sounderpandian. Wydanie 2. Warszawa, 2018 Spis treści Przedmowa 13 O Autorach 15 Przedmowa od Tłumacza 17 1. Wprowadzenie i statystyka opisowa 19 1.1.
Bardziej szczegółowoSzczegółowy program kursu Statystyka z programem Excel (30 godzin lekcyjnych zajęć)
Szczegółowy program kursu Statystyka z programem Excel (30 godzin lekcyjnych zajęć) 1. Populacja generalna a losowa próba, parametr rozkładu cechy a jego ocena z losowej próby, miary opisu statystycznego
Bardziej szczegółowoBadanie zgodności dwóch rozkładów - test serii, test mediany, test Wilcoxona, test Kruskala-Wallisa
Badanie zgodności dwóch rozkładów - test serii, test mediany, test Wilcoxona, test Kruskala-Wallisa Test serii (test Walda-Wolfowitza) Założenie. Rozpatrywane rozkłady są ciągłe. Mamy dwa uporządkowane
Bardziej szczegółowoweryfikacja hipotez dotyczących parametrów populacji (średnia, wariancja) założenie: znany rozkład populacji (wykorzystuje się dystrybuantę)
PODSTAWY STATYSTYKI 1. Teoria prawdopodobieństwa i elementy kombinatoryki. Zmienne losowe i ich rozkłady 3. Populacje i próby danych, estymacja parametrów 4. Testowanie hipotez 5. Testy parametryczne (na
Bardziej szczegółowoStatystyka od podstaw Janina Jóźwiak, Jarosław Podgórski
Statystyka od podstaw Janina Jóźwiak, Jarosław Podgórski Książka jest nowoczesnym podręcznikiem przeznaczonym dla studentów uczelni i wydziałów ekonomicznych. Wykład podzielono na cztery części. W pierwszej
Bardziej szczegółowoSTATYSTYKA I DOŚWIADCZALNICTWO Wykład 8
STATYSTYKA I DOŚWIADCZALNICTWO Wykład 8 Regresja wielokrotna Regresja wielokrotna jest metodą statystyczną, w której oceniamy wpływ wielu zmiennych niezależnych (X 1, X 2, X 3,...) na zmienną zależną (Y).
Bardziej szczegółowoMetody komputerowe statystyki Computer Methods in Statistics. Matematyka. Poziom kwalifikacji: II stopnia. Liczba godzin/tydzień: 2W, 3L
Nazwa przedmiotu: Kierunek: Metody komputerowe statystyki Computer Methods in Statistics Matematyka Rodzaj przedmiotu: przedmiot obowiązkowy dla specjalności matematyka przemysłowa Rodzaj zajęć: wykład,
Bardziej szczegółowoTESTY NIEPARAMETRYCZNE. 1. Testy równości średnich bez założenia normalności rozkładu zmiennych: Manna-Whitney a i Kruskala-Wallisa.
TESTY NIEPARAMETRYCZNE 1. Testy równości średnich bez założenia normalności rozkładu zmiennych: Manna-Whitney a i Kruskala-Wallisa. Standardowe testy równości średnich wymagają aby badane zmienne losowe
Bardziej szczegółowoCopyright by Wydawnictwo Naukowe Scholar, Warszawa 2000, 2008
Redaktor: Alicja Zagrodzka Korekta: Krystyna Chludzińska Projekt okładki: Katarzyna Juras Copyright by Wydawnictwo Naukowe Scholar, Warszawa 2000, 2008 ISBN 978-83-7383-296-1 Wydawnictwo Naukowe Scholar
Bardziej szczegółowoPrzykład 2. Na podstawie książki J. Kowal: Metody statystyczne w badaniach sondażowych rynku
Przykład 2 Na podstawie książki J. Kowal: Metody statystyczne w badaniach sondażowych rynku Sondaż sieciowy analiza wyników badania sondażowego dotyczącego motywacji w drodze do sukcesu Cel badania: uzyskanie
Bardziej szczegółowoTablica Wzorów Rachunek Prawdopodobieństwa i Statystyki
Tablica Wzorów Rachunek Prawdopodobieństwa i Statystyki Spis treści I. Wzory ogólne... 2 1. Średnia arytmetyczna:... 2 2. Rozstęp:... 2 3. Kwantyle:... 2 4. Wariancja:... 2 5. Odchylenie standardowe:...
Bardziej szczegółowoWnioskowanie statystyczne. Statystyka w 5
Wnioskowanie statystyczne tatystyka w 5 Rozkłady statystyk z próby Próba losowa pobrana z populacji stanowi realizacje zmiennej losowej jak ciąg zmiennych losowych (X, X,... X ) niezależnych i mających
Bardziej szczegółowoPrzedmowa Wykaz symboli Litery alfabetu greckiego wykorzystywane w podręczniku Symbole wykorzystywane w zagadnieniach teorii
SPIS TREŚCI Przedmowa... 11 Wykaz symboli... 15 Litery alfabetu greckiego wykorzystywane w podręczniku... 15 Symbole wykorzystywane w zagadnieniach teorii mnogości (rachunku zbiorów)... 16 Symbole stosowane
Bardziej szczegółowoSpis treści. Przedmowa... XI. Rozdział 1. Pomiar: jednostki miar... 1. Rozdział 2. Pomiar: liczby i obliczenia liczbowe... 16
Spis treści Przedmowa.......................... XI Rozdział 1. Pomiar: jednostki miar................. 1 1.1. Wielkości fizyczne i pozafizyczne.................. 1 1.2. Spójne układy miar. Układ SI i jego
Bardziej szczegółowoImportowanie danych do SPSS Eksportowanie rezultatów do formatu MS Word... 22
Spis treści Przedmowa do wydania pierwszego.... 11 Przedmowa do wydania drugiego.... 15 Wykaz symboli.... 17 Litery alfabetu greckiego wykorzystywane w podręczniku.... 17 Symbole wykorzystywane w zagadnieniach
Bardziej szczegółowoRecenzenci: prof. dr hab. Henryk Domański dr hab. Jarosław Górniak
Recenzenci: prof. dr hab. Henryk Domański dr hab. Jarosław Górniak Redakcja i korekta Bogdan Baran Projekt graficzny okładki Katarzyna Juras Copyright by Wydawnictwo Naukowe Scholar, Warszawa 2011 ISBN
Bardziej szczegółowoBadanie zależności skala nominalna
Badanie zależności skala nominalna I. Jak kształtuje się zależność miedzy płcią a wykształceniem? II. Jak kształtuje się zależność między płcią a otyłością (opis BMI)? III. Jak kształtuje się zależność
Bardziej szczegółowoDoświadczalnictwo leśne. Wydział Leśny SGGW Studia II stopnia
Doświadczalnictwo leśne Wydział Leśny SGGW Studia II stopnia Metody nieparametryczne Do tej pory omawialiśmy metody odpowiednie do opracowywania danych ilościowych, mierzalnych W kaŝdym przypadku zakładaliśmy
Bardziej szczegółowoP: Czy studiujący i niestudiujący preferują inne sklepy internetowe?
2 Test niezależności chi-kwadrat stosuje się (między innymi) w celu sprawdzenia czy pomiędzy zmiennymi istnieje związek/zależność. Stosujemy go w sytuacji, kiedy zmienna zależna mierzona jest na skali
Bardziej szczegółowoMETODOLOGIA BADAŃ PSYCHOLOGICZNYCH I STATYSTYKA. opracowała dr Anna Szałańska
METODOLOGIA BADAŃ PSYCHOLOGICZNYCH I STATYSTYKA opracowała dr Anna Szałańska ANALIZA WARIANCJI WPROWADZENIE TEORETYCZNE - ZASTOSOWANIE Stosujemy kiedy znane są parametry rozkładu zmiennej zależnej badanych
Bardziej szczegółowoStatystyka w pracy badawczej nauczyciela Wykład 4: Analiza współzależności. dr inż. Walery Susłow walery.suslow@ie.tu.koszalin.pl
Statystyka w pracy badawczej nauczyciela Wykład 4: Analiza współzależności dr inż. Walery Susłow walery.suslow@ie.tu.koszalin.pl Statystyczna teoria korelacji i regresji (1) Jest to dział statystyki zajmujący
Bardziej szczegółowoOpis zakładanych efektów kształcenia na studiach podyplomowych WIEDZA
Opis zakładanych efektów kształcenia na studiach podyplomowych Nazwa studiów: BIOSTATYSTYKA PRAKTYCZNE ASPEKTY STATYSTYKI W BADANIACH MEDYCZNYCH Typ studiów: doskonalące Symbol Efekty kształcenia dla studiów
Bardziej szczegółowoSTATYSTYKA MATEMATYCZNA
STATYSTYKA MATEMATYCZNA 1. Wykład wstępny. Teoria prawdopodobieństwa i elementy kombinatoryki 2. Zmienne losowe i ich rozkłady 3. Populacje i próby danych, estymacja parametrów 4. Testowanie hipotez 5.
Bardziej szczegółowoSTATYSTYKA I DOŚWIADCZALNICTWO Wykład 6
STATYSTYKA I DOŚWIADCZALNICTWO Wykład 6 Metody sprawdzania założeń w analizie wariancji: -Sprawdzanie równości (jednorodności) wariancji testy: - Cochrana - Hartleya - Bartletta -Sprawdzanie zgodności
Bardziej szczegółowoRegresja wieloraka Ogólny problem obliczeniowy: dopasowanie linii prostej do zbioru punktów. Najprostszy przypadek - jedna zmienna zależna i jedna
Regresja wieloraka Regresja wieloraka Ogólny problem obliczeniowy: dopasowanie linii prostej do zbioru punktów. Najprostszy przypadek - jedna zmienna zależna i jedna zmienna niezależna (można zobrazować
Bardziej szczegółowoSTATYSTYKA - PRZYKŁADOWE ZADANIA EGZAMINACYJNE
STATYSTYKA - PRZYKŁADOWE ZADANIA EGZAMINACYJNE 1 W trakcie badania obliczono wartości średniej (15,4), mediany (13,6) oraz dominanty (10,0). Określ typ asymetrii rozkładu. 2 Wymień 3 cechy rozkładu Gauss
Bardziej szczegółowoW1. Wprowadzenie. Statystyka opisowa
W1. Wprowadzenie. Statystyka opisowa dr hab. Jerzy Nakielski Zakład Biofizyki i Morfogenezy Roślin Plan wykładu: 1. O co chodzi w statystyce 2. Etapy badania statystycznego 3. Zmienna losowa, rozkład
Bardziej szczegółowoSTRESZCZENIE. rozprawy doktorskiej pt. Zmienne jakościowe w procesie wyceny wartości rynkowej nieruchomości. Ujęcie statystyczne.
STRESZCZENIE rozprawy doktorskiej pt. Zmienne jakościowe w procesie wyceny wartości rynkowej nieruchomości. Ujęcie statystyczne. Zasadniczym czynnikiem stanowiącym motywację dla podjętych w pracy rozważań
Bardziej szczegółowoCechy X, Y są dowolnego typu: Test Chi Kwadrat niezależności. Łączny rozkład cech X, Y jest normalny: Test współczynnika korelacji Pearsona
Badanie zależności między cechami Obserwujemy dwie cechy: X oraz Y Obiekt (X, Y ) H 0 : Cechy X oraz Y są niezależne Próba: (X 1, Y 1 ),..., (X n, Y n ) Cechy X, Y są dowolnego typu: Test Chi Kwadrat niezależności
Bardziej szczegółowoStatystyka SYLABUS A. Informacje ogólne
Statystyka SYLABUS A. Informacje ogólne Elementy składowe sylabusu Nazwa jednostki prowadzącej kierunek Nazwa kierunku studiów Poziom kształcenia Profil studiów Forma studiów Kod Język Rodzaj Dziedzina
Bardziej szczegółowoMetody Ilościowe w Socjologii
Metody Ilościowe w Socjologii wykład 2 i 3 EKONOMETRIA dr inż. Maciej Wolny AGENDA I. Ekonometria podstawowe definicje II. Etapy budowy modelu ekonometrycznego III. Wybrane metody doboru zmiennych do modelu
Bardziej szczegółowoStatystyka w pracy badawczej nauczyciela
Statystyka w pracy badawczej nauczyciela Wykład 1: Terminologia badań statystycznych dr inż. Walery Susłow walery.suslow@ie.tu.koszalin.pl Statystyka (1) Statystyka to nauka zajmująca się zbieraniem, badaniem
Bardziej szczegółowoStosowana Analiza Regresji
Model jako : Stosowana Analiza Regresji Wykład XI 21 Grudnia 2011 1 / 11 Analiza kowariancji Model jako : Oprócz czynnika o wartościach nominalnych chcemy uwzględnić wpływ predyktora o wartościach ilościowych
Bardziej szczegółowoMetodologia badań psychologicznych
Metodologia badań psychologicznych Lucyna Golińska SPOŁECZNA AKADEMIA NAUK Psychologia jako nauka empiryczna Wprowadzenie pojęć Wykład 5 Cele badań naukowych 1. Opis- (funkcja deskryptywna) procedura definiowania
Bardziej szczegółowoPodstawy statystyki dla psychologów. Podręcznik akademicki. Wydanie drugie poprawione. Wiesław Szymczak
Podstawy statystyki dla psychologów. Podręcznik akademicki. Wydanie drugie poprawione. Wiesław Szymczak Autor prezentuje spójny obraz najczęściej stosowanych metod statystycznych, dodatkowo omawiając takie
Bardziej szczegółowoConjoint analysis jako metoda analizy preferencji konsumentów
Anna Szymańska Dorota Dziedzic Conjoint analysis jako metoda analizy preferencji konsumentów Wstęp Istotnym aspektem, mającym decydujący wpływ na sukcesy rynkowe przedsiębiorstwa jest zrozumienie postępowania
Bardziej szczegółowoAnaliza współzależności zjawisk
Analiza współzależności zjawisk Informacje ogólne Jednostki tworzące zbiorowość statystyczną charakteryzowane są zazwyczaj za pomocą wielu cech zmiennych, które nierzadko pozostają ze sobą w pewnym związku.
Bardziej szczegółowoREGRESJA I KORELACJA MODEL REGRESJI LINIOWEJ MODEL REGRESJI WIELORAKIEJ. Analiza regresji i korelacji
Statystyka i opracowanie danych Ćwiczenia 5 Izabela Olejarczyk - Wożeńska AGH, WIMiIP, KISIM REGRESJA I KORELACJA MODEL REGRESJI LINIOWEJ MODEL REGRESJI WIELORAKIEJ MODEL REGRESJI LINIOWEJ Analiza regresji
Bardziej szczegółowoPOMIAR WIELOCZYNNIKOWY W ANALIZIE PREFERENCJI KONSUMENTÓW ŻYWNOŚCIOWYCH PRODUKTÓW REGIONALNYCH
Agnieszka Tłuczak Uniwersytet Opolski POMIAR WIELOCZYNNIKOWY W ANALIZIE PREFERENCJI KONSUMENTÓW ŻYWNOŚCIOWYCH PRODUKTÓW REGIONALNYCH Wprowadzenie Preferencje konsumentów są podstawowym zagadnieniem w badaniach
Bardziej szczegółowoparametrów strukturalnych modelu = Y zmienna objaśniana, X 1,X 2,,X k zmienne objaśniające, k zmiennych objaśniających,
诲 瞴瞶 瞶 ƭ0 ƭ 瞰 parametrów strukturalnych modelu Y zmienna objaśniana, = + + + + + X 1,X 2,,X k zmienne objaśniające, k zmiennych objaśniających, α 0, α 1, α 2,,α k parametry strukturalne modelu, k+1 parametrów
Bardziej szczegółowoSTATYSTYKA OPISOWA. Dr Alina Gleska. 12 listopada Instytut Matematyki WE PP
STATYSTYKA OPISOWA Dr Alina Gleska Instytut Matematyki WE PP 12 listopada 2017 1 Analiza współzależności dwóch cech 2 Jednostka zbiorowości - para (X,Y ). Przy badaniu korelacji nie ma znaczenia, która
Bardziej szczegółowoStatystyka opisowa. Wykład V. Regresja liniowa wieloraka
Statystyka opisowa. Wykład V. e-mail:e.kozlovski@pollub.pl Spis treści 1 Prosta regresji cechy Y względem cech X 1,..., X k. 2 3 Wyznaczamy zależność cechy Y od cech X 1, X 2,..., X k postaci Y = α 0 +
Bardziej szczegółowoKsięgarnia PWN: George A. Ferguson, Yoshio Takane - Analiza statystyczna w psychologii i pedagogice
Księgarnia PWN: George A. Ferguson, Yoshio Takane - Analiza statystyczna w psychologii i pedagogice Przedmowa do wydania polskiego Przedmowa CZĘŚĆ I. PODSTAWY STATYSTYKI Rozdział 1 Podstawowe pojęcia statystyki
Bardziej szczegółowoSTATYSTYKA MATEMATYCZNA
STATYSTYKA MATEMATYCZNA 1. Wykład wstępny. Teoria prawdopodobieństwa i elementy kombinatoryki 3. Zmienne losowe 4. Populacje i próby danych 5. Testowanie hipotez i estymacja parametrów 6. Test t 7. Test
Bardziej szczegółowoStatystyka i opracowanie danych Podstawy wnioskowania statystycznego. Prawo wielkich liczb. Centralne twierdzenie graniczne. Estymacja i estymatory
Statystyka i opracowanie danych Podstawy wnioskowania statystycznego. Prawo wielkich liczb. Centralne twierdzenie graniczne. Estymacja i estymatory Dr Anna ADRIAN Paw B5, pok 407 adrian@tempus.metal.agh.edu.pl
Bardziej szczegółowoMarcin Hundert Wykorzystanie metody conjoint do badania preferencji konsumentów telefonii ruchomej. Ekonomiczne Problemy Usług nr 42, 46-54
Marcin Hundert Wykorzystanie metody conjoint do badania preferencji konsumentów telefonii ruchomej Ekonomiczne Problemy Usług nr 42, 46-54 2009 ZESZYTY NAUKOW E UNIW ERSYTETU SZCZECIŃ SK IEG O NR 559 EKONOM
Bardziej szczegółowoRecenzenci: prof. dr hab. Henryk Domański dr hab. Jarosław Górniak
Recenzenci: prof. dr hab. Henryk Domański dr hab. Jarosław Górniak Redakcja i korekta Bogdan Baran Projekt graficzny okładki Katarzyna Juras Copyright by Wydawnictwo Naukowe Scholar, Warszawa 2011 ISBN
Bardziej szczegółowoW kolejnym kroku należy ustalić liczbę przedziałów k. W tym celu należy wykorzystać jeden ze wzorów:
Na dzisiejszym wykładzie omówimy najważniejsze charakterystyki liczbowe występujące w statystyce opisowej. Poszczególne wzory będziemy podawać w miarę potrzeby w trzech postaciach: dla szeregu szczegółowego,
Bardziej szczegółowoNazwa przedmiotu: Informatyczne systemy statystycznej obróbki danych. Informatics systems for the statistical treatment of data Kierunek:
Nazwa przedmiotu: Informatyczne systemy statystycznej obróbki danych I KARTA PRZEDMIOTU CEL PRZEDMIOTU Informatics systems for the statistical treatment of data Kierunek: Forma studiów Informatyka Stacjonarne
Bardziej szczegółowoKARTA KURSU. (do zastosowania w roku akademickim 2015/16) Kod Punktacja ECTS* 3. Dr hab. Tadeusz Sozański
KARTA KURSU (do zastosowania w roku akademickim 2015/16) Nazwa Statystyka 2 Nazwa w j. ang. Statistics 2 Kod Punktacja ECTS* 3 Koordynator Dr hab. Tadeusz Sozański (koordynator, konwersatorium) Zespół
Bardziej szczegółowoKARTA KURSU. Kod Punktacja ECTS* 1
KARTA KURSU Nazwa Nazwa w j. ang. Wprowadzenie do statystyki Introduction to statistics Kod Punktacja ECTS* 1 Koordynator Prof. dr hab. Jerzy Wołek Zespół dydaktyczny Prof. dr hab. Jerzy Wołek doktoranci
Bardziej szczegółowoRok akademicki: 2030/2031 Kod: ZZP MK-n Punkty ECTS: 3. Poziom studiów: Studia II stopnia Forma i tryb studiów: Niestacjonarne
Nazwa modułu: Komputerowe wspomaganie decyzji Rok akademicki: 2030/2031 Kod: ZZP-2-403-MK-n Punkty ECTS: 3 Wydział: Zarządzania Kierunek: Zarządzanie Specjalność: Marketing Poziom studiów: Studia II stopnia
Bardziej szczegółowoRozdział 2: Metoda największej wiarygodności i nieliniowa metoda najmniejszych kwadratów
Rozdział : Metoda największej wiarygodności i nieliniowa metoda najmniejszych kwadratów W tym rozdziale omówione zostaną dwie najpopularniejsze metody estymacji parametrów w ekonometrycznych modelach nieliniowych,
Bardziej szczegółowo3. Modele tendencji czasowej w prognozowaniu
II Modele tendencji czasowej w prognozowaniu 1 Składniki szeregu czasowego W teorii szeregów czasowych wyróżnia się zwykle następujące składowe szeregu czasowego: a) składowa systematyczna; b) składowa
Bardziej szczegółowoSPIS TEŚCI CZĘŚĆ I RACHUNEK PRAWDOPODOBIEŃSTWA
SPIS TEŚCI PRZEDMOWA...13 CZĘŚĆ I RACHUNEK PRAWDOPODOBIEŃSTWA 1. ZDARZENIA LOSOWE I PRAWDOPODOBIEŃSTWO...17 1.1. UWAGI WSTĘPNE... 17 1.2. ZDARZENIA LOSOWE... 17 1.3. RELACJE MIĘDZY ZDARZENIAMI... 18 1.4.
Bardziej szczegółowoWspółczynnik korelacji. Współczynnik korelacji jest miernikiem zależności między dwiema cechami Oznaczenie: ϱ
Współczynnik korelacji Współczynnik korelacji jest miernikiem zależności między dwiema cechami Oznaczenie: ϱ Własności współczynnika korelacji 1. Współczynnik korelacji jest liczbą niemianowaną 2. ϱ 1,
Bardziej szczegółowoJak wybrać 45 najlepszych prezentacji na FORUM?
Być data driven company w erze Big Data. Jak wybrać 45 najlepszych prezentacji na FORUM? Doświadczenia z budowy platformy do prowadzenia na dużą skalę eksperymentów A/B Joanna Radosław Komuda, Kita, IAB
Bardziej szczegółowoOpis efektów kształcenia dla modułu zajęć
Nazwa modułu: Wprowadzenie do analizy danych Rok akademicki: 2012/2013 Kod: IET-2-303-SU-s Punkty ECTS: 2 Wydział: Informatyki, Elektroniki i Telekomunikacji Kierunek: Elektronika i Telekomunikacja Specjalność:
Bardziej szczegółowoWłasności statystyczne regresji liniowej. Wykład 4
Własności statystyczne regresji liniowej Wykład 4 Plan Własności zmiennych losowych Normalna regresja liniowa Własności regresji liniowej Literatura B. Hansen (2017+) Econometrics, Rozdział 5 Własności
Bardziej szczegółowoKorelacja krzywoliniowa i współzależność cech niemierzalnych
Korelacja krzywoliniowa i współzależność cech niemierzalnych Dr Joanna Banaś Zakład Badań Systemowych Instytut Sztucznej Inteligencji i Metod Matematycznych Wydział Informatyki Politechniki Szczecińskiej
Bardziej szczegółowoZJAZD 4. gdzie E(x) jest wartością oczekiwaną x
ZJAZD 4 KORELACJA, BADANIE NIEZALEŻNOŚCI, ANALIZA REGRESJI Analiza korelacji i regresji jest działem statystyki zajmującym się badaniem zależności i związków pomiędzy rozkładami dwu lub więcej badanych
Bardziej szczegółowoEstymacja punktowa i przedziałowa
Temat: Estymacja punktowa i przedziałowa Kody znaków: żółte wyróżnienie nowe pojęcie czerwony uwaga kursywa komentarz 1 Zagadnienia 1. Statystyczny opis próby. Idea estymacji punktowej pojęcie estymatora
Bardziej szczegółowoK wartość kapitału zaangażowanego w proces produkcji, w tys. jp.
Sprawdzian 2. Zadanie 1. Za pomocą KMNK oszacowano następującą funkcję produkcji: Gdzie: P wartość produkcji, w tys. jp (jednostek pieniężnych) K wartość kapitału zaangażowanego w proces produkcji, w tys.
Bardziej szczegółowoEKONOMETRIA. Prof. dr hab. Eugeniusz Gatnar.
EKONOMETRIA Prof. dr hab. Eugeniusz Gatnar egatnar@mail.wz.uw.edu.pl Sprawy organizacyjne Wykłady - prezentacja zagadnień dotyczących: budowy i weryfikacji modelu ekonometrycznego, doboru zmiennych, estymacji
Bardziej szczegółowoEkonometria egzamin 02/02/ W trakcie egzaminu wolno używać jedynie długopisu o innym kolorze atramentu niż czerwony oraz kalkulatora.
imię, nazwisko, nr indeksu: Ekonometria egzamin 02/02/2011 1. Egzamin trwa 90 minut. 2. Rozwiązywanie zadań należy rozpocząć po ogłoszeniu początku egzaminu a skończyć wraz z ogłoszeniem końca egzaminu.
Bardziej szczegółowoMetody badań w naukach ekonomicznych
Metody badań w naukach ekonomicznych Tomasz Poskrobko Metodyka badań naukowych Metody badań ilościowe jakościowe eksperymentalne Metody badań ilościowe jakościowe eksperymentalne Metody ilościowe metody
Bardziej szczegółowoKARTA KURSU. (do zastosowania w roku ak. 2015/16) Kod Punktacja ECTS* 4
KARTA KURSU (do zastosowania w roku ak. 2015/16) Nazwa Statystyka 1 Nazwa w j. ang. Statistics 1 Kod Punktacja ECTS* 4 Koordynator Dr hab. Tadeusz Sozański (koordynator, wykłady) Dr Paweł Walawender (ćwiczenia)
Bardziej szczegółowoSterowanie jakością badań i analiza statystyczna w laboratorium
Sterowanie jakością badań i analiza statystyczna w laboratorium CS-17 SJ CS-17 SJ to program wspomagający sterowanie jakością badań i walidację metod badawczych. Może działać niezależnie od innych składników
Bardziej szczegółowoPRZEWODNIK PO PRZEDMIOCIE. Statystyka opisowa. Zarządzanie. niestacjonarne. I stopnia. dr Agnieszka Strzelecka. ogólnoakademicki.
Politechnika Częstochowska, Wydział Zarządzania PRZEWODNIK PO PRZEDMIOCIE Nazwa przedmiotu Kierunek Forma studiów Poziom kwalifikacji Rok Semestr Jednostka prowadząca Osoba sporządzająca Profil Rodzaj
Bardziej szczegółowoSylabus. Zaawansowana analiza danych eksperymentalnych (Advanced statistical analysis of experimental data)
Sylabus Nazwa przedmiotu (w j. polskim i angielskim) Nazwisko i imię prowadzącego (stopień i tytuł naukowy) Rok i semestr studiów Zaawansowana analiza danych eksperymentalnych (Advanced statistical analysis
Bardziej szczegółowo5. WNIOSKOWANIE PSYCHOMETRYCZNE
5. WNIOSKOWANIE PSYCHOMETRYCZNE Model klasyczny Gulliksena Wynik otrzymany i prawdziwy Błąd pomiaru Rzetelność pomiaru testem Standardowy błąd pomiaru Błąd estymacji wyniku prawdziwego Teoria Odpowiadania
Bardziej szczegółowoEstymacja parametrów rozkładu cechy
Estymacja parametrów rozkładu cechy Estymujemy parametr θ rozkładu cechy X Próba: X 1, X 2,..., X n Estymator punktowy jest funkcją próby ˆθ = ˆθX 1, X 2,..., X n przybliżającą wartość parametru θ Przedział
Bardziej szczegółowoWspółczynniki korelacji czastkowej i wielorakiej STATYSTYKA OPISOWA. Dr Alina Gleska. Instytut Matematyki WE PP. 18 listopada 2017
STATYSTYKA OPISOWA Dr Alina Gleska Instytut Matematyki WE PP 18 listopada 2017 1 Regresja krzywoliniowa 2 Model potęgowy Model potęgowy y = αx β e można sprowadzić poprzez zlogarytmowanie obu stron równania
Bardziej szczegółowoNatalia Neherbecka. 11 czerwca 2010
Natalia Neherbecka 11 czerwca 2010 1 1. Konsekwencje heteroskedastyczności i autokorelacji 2. Uogólniona MNK 3. Stosowalna Uogólniona MNK 4. Odporne macierze wariancji i kowariancji b 2 1. Konsekwencje
Bardziej szczegółowoBudowanie macierzy danych geograficznych Procedura normalizacji Budowanie wskaźnika syntetycznego
Metody Analiz Przestrzennych Budowanie macierzy danych geograficznych Procedura normalizacji Budowanie wskaźnika syntetycznego mgr Marcin Semczuk Zakład Przedsiębiorczości i Gospodarki Przestrzennej Instytut
Bardziej szczegółowoMODELE LINIOWE. Dr Wioleta Drobik
MODELE LINIOWE Dr Wioleta Drobik MODELE LINIOWE Jedna z najstarszych i najpopularniejszych metod modelowania Zależność między zbiorem zmiennych objaśniających, a zmienną ilościową nazywaną zmienną objaśnianą
Bardziej szczegółowoAnaliza wariancji w analizie regresji - weryfikacja prawdziwości przyjętego układu ograniczeń Problem Przykłady
Analiza wariancji w analizie regresji - weryfikacja prawdziwości przyjętego układu ograniczeń 1. Problem ozwaŝamy zjawisko (model): Y = β 1 X 1 X +...+ β k X k +Z Ηβ = w r Hipoteza alternatywna: Ηβ w r
Bardziej szczegółowoKORELACJE I REGRESJA LINIOWA
KORELACJE I REGRESJA LINIOWA Korelacje i regresja liniowa Analiza korelacji: Badanie, czy pomiędzy dwoma zmiennymi istnieje zależność Obie analizy się wzajemnie przeplatają Analiza regresji: Opisanie modelem
Bardziej szczegółowoPDF created with FinePrint pdffactory Pro trial version http://www.fineprint.com
Analiza korelacji i regresji KORELACJA zależność liniowa Obserwujemy parę cech ilościowych (X,Y). Doświadczenie jest tak pomyślane, aby obserwowane pary cech X i Y (tzn i ta para x i i y i dla różnych
Bardziej szczegółowoĆWICZENIE 11 NIEPARAMETRYCZNE TESTY ISTOTNOŚCI
ĆWICZENIE 11 NIEPARAMETRYCZNE TESTY ISTOTNOŚCI ANALIZA KORELACJI Korelacja 1. Współczynnik korelacji 2. Współczynnik korelacji liniowej definicja 3. Estymacja współczynnika korelacji 4. Testy istotności
Bardziej szczegółowoStatystyka opisowa. Wykład VI. Analiza danych jakośiowych
Statystyka opisowa. Wykład VI. e-mail:e.kozlovski@pollub.pl Spis treści Rangowanie 1 Rangowanie 3 Rangowanie Badaniu statystycznemu czasami podlegają cechy niemierzalne jakościowe), np. kolor włosów, stopień
Bardziej szczegółowoSTATYSTYKA MATEMATYCZNA
STATYSTYKA MATEMATYCZNA 1. Wykład wstępny 2. Zmienne losowe i teoria prawdopodobieństwa 3. Populacje i próby danych 4. Testowanie hipotez i estymacja parametrów 5. Najczęściej wykorzystywane testy statystyczne
Bardziej szczegółowoRegresja wielokrotna jest metodą statystyczną, w której oceniamy wpływ wielu zmiennych niezależnych (X1, X2, X3,...) na zmienną zależną (Y).
Statystyka i opracowanie danych Ćwiczenia 12 Izabela Olejarczyk - Wożeńska AGH, WIMiIP, KISIM REGRESJA WIELORAKA Regresja wielokrotna jest metodą statystyczną, w której oceniamy wpływ wielu zmiennych niezależnych
Bardziej szczegółowo1 Estymacja przedziałowa
1 Estymacja przedziałowa 1. PRZEDZIAŁY UFNOŚCI DLA ŚREDNIEJ (a) MODEL I Badana cecha ma rozkład normalny N(µ, σ) o nieznanym parametrze µ i znanym σ. Przedział ufności: [ ( µ x u 1 α ) ( σn ; x + u 1 α
Bardziej szczegółowoRegresja logistyczna (LOGISTIC)
Zmienna zależna: Wybór opcji zachodniej w polityce zagranicznej (kodowana jako tak, 0 nie) Zmienne niezależne: wiedza o Unii Europejskiej (WIEDZA), zamieszkiwanie w regionie zachodnim (ZACH) lub wschodnim
Bardziej szczegółowoPodstawowe pojęcia statystyczne
Podstawowe pojęcia statystyczne Istnieją trzy rodzaje kłamstwa: przepowiadanie pogody, statystyka i komunikat dyplomatyczny Jean Rigaux Co to jest statystyka? Nauka o metodach ilościowych badania zjawisk
Bardziej szczegółowoMetoda Automatycznej Detekcji Interakcji CHAID
Metoda Automatycznej Detekcji Interakcji CHAID Metoda ta pozwala wybrać z konkretnego, dużego zbioru zmiennych te z nich, które najsilniej wpływają na wskazaną zmienną (objaśnianą) zmienne porządkowane
Bardziej szczegółowoWeryfikacja hipotez statystycznych
Weryfikacja hipotez statystycznych Hipoteza Test statystyczny Poziom istotności Testy jednostronne i dwustronne Testowanie równości wariancji test F-Fishera Testowanie równości wartości średnich test t-studenta
Bardziej szczegółowoDwuczynnikowa ANOVA dla prób niezależnych w schemacie 2x2
Dwuczynnikowa ANOVA dla prób niezależnych w schemacie 2x2 Poniżej prezentujemy przykładowe pytania z rozwiązaniami dotyczącymi dwuczynnikowej analizy wariancji w schemacie 2x2. Wszystkie rozwiązania są
Bardziej szczegółowoWojciech Skwirz
1 Regularyzacja jako metoda doboru zmiennych objaśniających do modelu statystycznego. 2 Plan prezentacji 1. Wstęp 2. Część teoretyczna - Algorytm podziału i ograniczeń - Regularyzacja 3. Opis wyników badania
Bardziej szczegółowoAnaliza współzależności dwóch cech I
Analiza współzależności dwóch cech I Współzależność dwóch cech W tym rozdziale pokażemy metody stosowane dla potrzeb wykrywania zależności lub współzależności między dwiema cechami. W celu wykrycia tych
Bardziej szczegółowoEksperyment jako metoda badawcza
Metodologia badań naukowych - wykład 4 Eksperyment jako metoda badawcza Zmienne w eksperymencie Własności badania eksperymentalnego Kontrolowanie zmienych niezależnych. Plany eksperymentalne i quasi-eksperymentalne
Bardziej szczegółowoStanisław Cichocki. Natalia Nehrebecka
Stanisław Cichocki Natalia Nehrebecka 1 1. Wstęp a) Binarne zmienne zależne b) Interpretacja ekonomiczna c) Interpretacja współczynników 2. Liniowy model prawdopodobieństwa a) Interpretacja współczynników
Bardziej szczegółowoZadania ze statystyki cz. 8 I rok socjologii. Zadanie 1.
Zadania ze statystyki cz. 8 I rok socjologii Zadanie 1. W potocznej opinii pokutuje przekonanie, że lepsi z matematyki są chłopcy niż dziewczęta. Chcąc zweryfikować tę opinię, przeprowadzono badanie w
Bardziej szczegółowoPRACE NAUKOWE AKADEMII EKONOMICZNEJ WE WROCŁAWIU Nr 780 PROGNOZOWANIE W ZARZĄDZANIU FIRMĄ 1997
PRACE NAUKOWE AKADEMII EKONOMICZNEJ WE WROCŁAWIU Nr 780 PROGNOZOWANIE W ZARZĄDZANIU FIRMĄ 1997 Marek Walesiak, Józef Dziechciarz, Anna Blaczkowska Akademia Ekonomiczna we Wrocławiu CONJOINT MEASUREMENT
Bardziej szczegółowo