Odkrywanie algorytmów kwantowych za pomocą programowania genetycznego
|
|
- Helena Dziedzic
- 9 lat temu
- Przeglądów:
Transkrypt
1 Odkrywanie algorytmów kwantowych za pomocą programowania genetycznego Piotr Rybak Koło naukowe fizyków Migacz, Uniwersytet Wrocławski Piotr Rybak (Migacz UWr) Odkrywanie algorytmów kwantowych 1 / 17
2 Spis treści 1 Problem znajdowania algorytmów kwantowych 2 Algorytmy ewolucyjne 3 Zastosowanie algorytmów ewolucyjnych w algorytmice kwantowej 4 Przykłady 5 Podsumowanie Piotr Rybak (Migacz UWr) Odkrywanie algorytmów kwantowych 2 / 17
3 Podstawy zagadnienia Motywacja Szansa na fizyczną implementację. Istotnie szybsze obliczenia niż na klasycznych komputerach (rozkład liczby na czynniki pierwsze w czasie wielomianowym, znajdowanie danych w bazie w średnim czasie O( n)). Problemy Model obliczeń kwantowych jest znacząco różny od modelu klasycznego. Interesują nas tylko algorytmy sprawniejsze niż na klasycznych komputerach. Wczesne komputery kwantowe są bardzo ograniczone (liczba kubitów, liczba operacji w algorytmie), więc algorytmy, które chcielibyśmy używać w praktyce, powinny być możliwie optymalne pod tym względem. Piotr Rybak (Migacz UWr) Odkrywanie algorytmów kwantowych 3 / 17
4 Odkrywanie algorytmów kwantowych jako problem optymalizacyjny Reprezentacja Przez algorytm kwantowy możemy rozumieć ciąg poleceń dla komputera kwantowego, zapisany w postaci bramek. Przykład Zaczynając od kubitów w stanach klasycznych (0,0) nałóż bramkę H na pierwszy kubit, następnie bramkę NOT na drugi kubit po czym bramkę CNOT na pierwszy kubit z drugim kubitem jako kubit kontrolny. < INIT 0, 1 >< INIT 0, 2 >< H, 1 >< NOT, 2 >< CNOT, 1, 2 > Przestrzeń Tak rozumiane algorytmy kwantowe możemy utożsamiać z elementami przestrzeni na których można wykonywać operację (dodanie bramki, odjęcie bramki, połączenie dwóch algorytmów,... ). Dodatkowo z każdym algorytmem powiązane są pewne wielkości, przede wszystkim szansa na uzyskanie z układu takiego wyjścia jakie oczekujemy, ale i długość układu, krotność wykorzystania poszczególnych bramek. Problem znalezienia konkretnego algorytmu kwantowego zredukujemy do problemu optymalizacji (maksymalizacji) szansy na uzyskanie oczekiwanego wyniku. Możemy również starać się jednocześnie minimalizować inne właściwości (liczbę bramek). Piotr Rybak (Migacz UWr) Odkrywanie algorytmów kwantowych 4 / 17
5 Metody optymalizacji Problem Zdefiniowany problem jest problemem optymalizacji dyskretnej o nieregularnej strukturze. To znaczy, że nie mamy dokładnych i szybkich metod rozwiązywania tego problemu. Przegląd zupełny Przejrzenie całej przestrzeni w celu znalezienia maksimum jest praktycznie niemożliwe. Byłoby to wykonywalne gdyby ograniczyć długość algorytmu przez jakąś stałą, ale ta stała musiałaby być duża co znowu prowadzi do problemu niemożliwego obliczeniowo. Nie będę się zajmować takimi metodami. Metody heurystyczne Szukamy możliwie dobrego rozwiązania problemu godząc się na to, że nie uda nam się znaleźć najlepszego. Możemy stosować bardzo różne metody, od przeszukiwania lokalnego przez próbkowanie losowe do algorytmów populacyjnych. Takie podejście zwykle daje satysfakcjonujące rezultaty. Piotr Rybak (Migacz UWr) Odkrywanie algorytmów kwantowych 5 / 17
6 Algorytmy ewolucyjne Historia Algorytmy ewolucyjne zostały zaproponowane w 1975 roku przez Johna Hollanda, początkowo służyły do optymalizacji wektorów binarnych (poszukiwań wektorów jak najlepiej spełniających podane kryteria). Pomysł mocno czerpie z mechanizmu przyrodniczej ewolucji i przekazywania genów potomstwu. Algorytm Algorytm jest iteracyjny. W każdej iteracji z istniejącej populacji rodziców tworzona jest, przy pomocy operatorów reprodukcji populacja potomków. Z populacji potomków najlepsi osobnicy wybierani są do następnej populacji jako rodzice. Głównym założeniem, które uzasadnia wykorzystanie algorytmu, jest że z dobrych rodziców mamy szansę uzyskać jeszcze lepszego potomka (łącząc dobre cechy każdego z rodziców). Piotr Rybak (Migacz UWr) Odkrywanie algorytmów kwantowych 6 / 17
7 Algorytmy ewolucyjne - klasyczne operatory reprodukcji Mutacja Z jednego rodzica powstaje jeden nowy osobnik. Osobnik tworzony jest poprzez odwrócenie bitów rodzica z jakimś (przeważnie małym) prawdopodobieństwem. Krzyżowanie Z dwójki rodziców powstaje dwójka potomków. Wybierany jest punkt cięcia, pierwszy potomek dostaje pierwszą część drugiego rodzica, a drugą część pierwszego rodzica. Drugi potomek uzyskuje pozostałe geny. Piotr Rybak (Migacz UWr) Odkrywanie algorytmów kwantowych 7 / 17
8 Programowanie genetyczne dla komputera kwantowego Programowanie genetyczne Programowaniem genetycznym nazywamy algorytm ewolucyjnym w którym zamiast wektorów binarnych występują programy, a operatory reprodukcji są do nich przystosowane. Reprezentacja dla algorytmów kwantowych Najprostszą możliwą reprezentacją jest reprezentacja bezpośrednia. Reprezentujemy algorytm jako ciąg bramek z definicjami na których kubitach działają odpowiednie bramki. Operatory reprodukcji dla algorytmów kwantowych Mutacja: Dodanie bramki, usunięcie bramki, zmiana argumentu bramki, odwrócenie kolejności wykorzystania bramek,... Krzyżowanie: Cięcie osobników, wymiana operacji na poszczególnych kubitach,... Od doboru operatorów reprodukcji zależy skuteczność algorytmu, więc jest to istotne zagadnienie, które operatory sprawdzają się najlepiej można przekonać się w doświadczeniu. Piotr Rybak (Migacz UWr) Odkrywanie algorytmów kwantowych 8 / 17
9 Zmiana reprezentacji dla algorytmów kwantowych Pomysł Zamiast zajmować się bezpośrednio ewolucją programów na komputer kwantowy można ewoluować klasyczne programy, których zadaniem jest wytworzenie algorytmu kwantowego. Programy można przedstawić w prostym języku imperatywnym (C podobnym) dodając do niego instrukcję dodaj bramkę(nazwa bramki, argumenty). Wprowadzając taką modyfikację możemy wykorzystywać klasyczne techniki programowania genetycznego, a poza tym przygotować sposób na opracowanie algorytmów kwantowych dla dowolnej liczby kubitów. Przykład Odwroc_wszystkie(liczba_kubitow) { ak = new algorytm_kwantowy(); for (i = 0; i < liczba_kubitów; ++i) ak.dodaj_bramke(not,i); return ak; } Piotr Rybak (Migacz UWr) Odkrywanie algorytmów kwantowych 9 / 17
10 Optymalizacja z uwzględnieniem długości Motywacja Jak wspominałem wcześniej często zależy nam na tym, żeby mieć jak najmniejsze algorytmy rozwiązujące dany problem. Aby to osiągnąć warto uwzględnić w procesie ewolucji liczbę wykorzystanych bramek. Sposoby Problem można rozwiązać na bardzo wiele sposobów, na przykład: Akceptowanie tylko rozwiązań o liczbie bramek nie przekraczającej pewnej stałej. Optymalizacja względem wartości będącej kombinacją szansy na powodzenie algorytmu i długości algorytmu. Porządek leksykograficzny z prawdopodobieństwem powodzenia jako pierwszym parametrem, a długością jako drugim. Piotr Rybak (Migacz UWr) Odkrywanie algorytmów kwantowych 10 / 17
11 Problem Deutsch-a Problem Mamy daną jedno wejściową bramkę czarną skrzynkę, którą możemy wywołać tylko raz i której postaci nie znamy. Chcemy wiedzieć czy ta bramka dla dowolnych wejść daje ten sam wynik, czy różne wyniki. Trochę dokładniej wynik działania bramki to: F a, b >= a, F (a) b > Gdzie to XOR. Klasyczne rozwiązanie problemu wymaga oczywiście dwóch odwołań do skrzynki. Algorytm którego szukamy ma potrafić to zrobić w jednym odwołaniu (jest to znany algorytm, pierwszy w którym pokazano przewagę algorytmów kwantowych). Podejście ewolucyjne Reprezentacja bezpośrednia 100 osobników w populacji. Suma prawdopodobieństw dobrej odpowiedzi we wszystkich przypadkach. Piotr Rybak (Migacz UWr) Odkrywanie algorytmów kwantowych 11 / 17
12 Problem Deutsch-a - cd Przebieg ewolucji Piotr Rybak (Migacz UWr) Odkrywanie algorytmów kwantowych 12 / 17
13 Problem Deutsch-a z minimalizacją bramek Różnice 300 osobnikw. Leksykograficznie maksymalizacja sumy prawdopodobieństw i minimalizacja liczby bramek. Przebieg ewolucji Piotr Rybak (Migacz UWr) Odkrywanie algorytmów kwantowych 13 / 17
14 Problem Grovera Problem Daną mamy czarną skrzynkę o której wiemy, że dla jednego wejścia (wielokubitowego) zwraca jedynkę, a dla reszty zero. Możemy traktować ten problem jako problem wyszukiwania w bazie danych z jednym elementem pasującym do kryteriów wyszukiwania. Znany jest kwantowy algorytm rozwiązujący ten problem o dowolnej liczbie kubitów z dużym prawdopodobieństwem w czasie (n). W procesie ewolucyjnym skupiono się na problemie z dwoma wejściami (czterema elementami w bazie danych), który wymaga tylko jednego odwołania do czarnej skrzynki. Podejście ewolucyjne 2500 osobników. Pozostałe parametry jak w Deutsch-a. Piotr Rybak (Migacz UWr) Odkrywanie algorytmów kwantowych 14 / 17
15 Problem Grovera - cd Przebieg ewolucji Piotr Rybak (Migacz UWr) Odkrywanie algorytmów kwantowych 15 / 17
16 Czym można się zająć W całej tematyce istnieje wiele kwestii wymagających badań: Sprawdzenie skuteczności różnych operatorów. Ewolucja ogólnego algorytmu (względem liczby kubitów) Ewolucja większych algorytmów. Przyspieszenie symulacji. Testy minimalizacji różnych funkcji. Poprawa algorytmów utworzonych metodami teoretycznymi.... Piotr Rybak (Migacz UWr) Odkrywanie algorytmów kwantowych 16 / 17
17 Literatura Automatic Quantum Computer Programming. A Genetic Programming Approach Lee Spector Springer, 2004 A review of procedures to evolve quantum algorithms Adrian Gepp, Phil Stocks Genetic Programming And Evolvable Machines Volume 10, Number 2, 2009 Piotr Rybak (Migacz UWr) Odkrywanie algorytmów kwantowych 17 / 17
Algorytm genetyczny (genetic algorithm)-
Optymalizacja W praktyce inżynierskiej często zachodzi potrzeba znalezienia parametrów, dla których system/urządzenie będzie działać w sposób optymalny. Klasyczne podejście do optymalizacji: sformułowanie
Algorytmy genetyczne
Algorytmy genetyczne Motto: Zamiast pracowicie poszukiwać najlepszego rozwiązania problemu informatycznego lepiej pozwolić, żeby komputer sam sobie to rozwiązanie wyhodował! Algorytmy genetyczne służą
Algorytmy ewolucyjne NAZEWNICTWO
Algorytmy ewolucyjne http://zajecia.jakubw.pl/nai NAZEWNICTWO Algorytmy ewolucyjne nazwa ogólna, obejmująca metody szczegółowe, jak np.: algorytmy genetyczne programowanie genetyczne strategie ewolucyjne
PLAN WYKŁADU OPTYMALIZACJA GLOBALNA OPERATOR KRZYŻOWANIA ETAPY KRZYŻOWANIA
PLAN WYKŁADU Operator krzyżowania Operator mutacji Operator inwersji Sukcesja Przykłady symulacji AG Kodowanie - rodzaje OPTYMALIZACJA GLOBALNA Wykład 3 dr inż. Agnieszka Bołtuć OPERATOR KRZYŻOWANIA Wymiana
Algorytmy genetyczne
9 listopada 2010 y ewolucyjne - zbiór metod optymalizacji inspirowanych analogiami biologicznymi (ewolucja naturalna). Pojęcia odwzorowujące naturalne zjawiska: Osobnik Populacja Genotyp Fenotyp Gen Chromosom
Algorytmy stochastyczne, wykład 01 Podstawowy algorytm genetyczny
Algorytmy stochastyczne, wykład 01 J. Piersa Wydział Matematyki i Informatyki, Uniwersytet Mikołaja Kopernika 2014-02-21 In memoriam prof. dr hab. Tomasz Schreiber (1975-2010) 1 2 3 Różne Orientacyjny
Algorytmy genetyczne. Materiały do laboratorium PSI. Studia niestacjonarne
Algorytmy genetyczne Materiały do laboratorium PSI Studia niestacjonarne Podstawowy algorytm genetyczny (PAG) Schemat blokowy algorytmu genetycznego Znaczenia, pochodzących z biologii i genetyki, pojęć
Algorytm Genetyczny. zastosowanie do procesów rozmieszczenia stacji raportujących w sieciach komórkowych
Algorytm Genetyczny zastosowanie do procesów rozmieszczenia stacji raportujących w sieciach komórkowych Dlaczego Algorytmy Inspirowane Naturą? Rozwój nowych technologii: złożone problemy obliczeniowe w
Algorytmy genetyczne. Materiały do laboratorium PSI. Studia stacjonarne i niestacjonarne
Algorytmy genetyczne Materiały do laboratorium PSI Studia stacjonarne i niestacjonarne Podstawowy algorytm genetyczny (PAG) Schemat blokowy algorytmu genetycznego Znaczenia, pochodzących z biologii i genetyki,
SCHEMAT ROZWIĄZANIA ZADANIA OPTYMALIZACJI PRZY POMOCY ALGORYTMU GENETYCZNEGO
SCHEMAT ROZWIĄZANIA ZADANIA OPTYMALIZACJI PRZY POMOCY ALGORYTMU GENETYCZNEGO. Rzeczywistość (istniejąca lub projektowana).. Model fizyczny. 3. Model matematyczny (optymalizacyjny): a. Zmienne projektowania
Kryptografia. z elementami kryptografii kwantowej. Ryszard Tanaś Wykład 13
Kryptografia z elementami kryptografii kwantowej Ryszard Tanaś http://zon8.physd.amu.edu.pl/~tanas Wykład 13 Spis treści 19 Algorytmy kwantowe 3 19.1 Bit kwantowy kubit (qubit)........... 3 19. Twierdzenie
Algorytm Grovera. Kwantowe przeszukiwanie zbiorów. Robert Nowotniak
Wydział Fizyki Technicznej, Informatyki i Matematyki Stosowanej Politechnika Łódzka 13 listopada 2007 Plan wystapienia 1 Informatyka Kwantowa podstawy 2 Opis problemu (przeszukiwanie zbioru) 3 Intuicyjna
Strategie ewolucyjne (ang. evolu4on strategies)
Strategie ewolucyjne (ang. evolu4on strategies) Strategia ewolucyjna (1+1) W Strategii Ewolucyjnej(1 + 1), populacja złożona z jednego osobnika generuje jednego potomka. Kolejne (jednoelementowe) populacje
Katedra Informatyki Stosowanej. Algorytmy ewolucyjne. Inteligencja obliczeniowa
Wydział Zarządzania AGH Katedra Informatyki Stosowanej Algorytmy ewolucyjne Treść wykładu Wprowadzenie Zasada działania Podział EA Cechy EA Algorytm genetyczny 2 EA - wprowadzenie Algorytmy ewolucyjne
ALGORYTMY GENETYCZNE ćwiczenia
ćwiczenia Wykorzystaj algorytmy genetyczne do wyznaczenia minimum globalnego funkcji testowej: 1. Wylosuj dwuwymiarową tablicę 100x2 liczb 8-bitowych z zakresu [-100; +100] reprezentujących inicjalną populację
Aproksymacja funkcji a regresja symboliczna
Aproksymacja funkcji a regresja symboliczna Problem aproksymacji funkcji polega na tym, że funkcję F(x), znaną lub określoną tablicą wartości, należy zastąpić inną funkcją, f(x), zwaną funkcją aproksymującą
Metody przeszukiwania
Metody przeszukiwania Co to jest przeszukiwanie Przeszukiwanie polega na odnajdywaniu rozwiązania w dyskretnej przestrzeni rozwiązao. Zwykle przeszukiwanie polega na znalezieniu określonego rozwiązania
Algorytmy ewolucyjne - algorytmy genetyczne. I. Karcz-Dulęba
Algorytmy ewolucyjne - algorytmy genetyczne I. Karcz-Dulęba Algorytmy klasyczne a algorytmy ewolucyjne Przeszukiwanie przestrzeni przez jeden punkt bazowy Przeszukiwanie przestrzeni przez zbiór punktów
Metody Rozmyte i Algorytmy Ewolucyjne
mgr inż. Wydział Matematyczno-Przyrodniczy Szkoła Nauk Ścisłych Uniwersytet Kardynała Stefana Wyszyńskiego Podstawowe operatory genetyczne Plan wykładu Przypomnienie 1 Przypomnienie Metody generacji liczb
Programowanie genetyczne, gra SNAKE
STUDENCKA PRACOWNIA ALGORYTMÓW EWOLUCYJNYCH Tomasz Kupczyk, Tomasz Urbański Programowanie genetyczne, gra SNAKE II UWr Wrocław 2009 Spis treści 1. Wstęp 3 1.1. Ogólny opis.....................................
Algorytmy ewolucyjne 1
Algorytmy ewolucyjne 1 2 Zasady zaliczenia przedmiotu Prowadzący (wykład i pracownie specjalistyczną): Wojciech Kwedlo, pokój 205. Konsultacje dla studentów studiów dziennych: poniedziałek,środa, godz
Algorytm hybrydowy dla alokacji portfela inwestycyjnego przy ograniczonych zasobach
Adam Stawowy Algorytm hybrydowy dla alokacji portfela inwestycyjnego przy ograniczonych zasobach Summary: We present a meta-heuristic to combine Monte Carlo simulation with genetic algorithm for Capital
6. Klasyczny algorytm genetyczny. 1
6. Klasyczny algorytm genetyczny. 1 Idea algorytmu genetycznego została zaczerpnięta z nauk przyrodniczych opisujących zjawiska doboru naturalnego i dziedziczenia. Mechanizmy te polegają na przetrwaniu
Generowanie i optymalizacja harmonogramu za pomoca
Generowanie i optymalizacja harmonogramu za pomoca na przykładzie generatora planu zajęć Matematyka Stosowana i Informatyka Stosowana Wydział Fizyki Technicznej i Matematyki Stosowanej Politechnika Gdańska
Obliczenia ewolucyjne - plan wykładu
Obliczenia ewolucyjne - plan wykładu Wprowadzenie Algorytmy genetyczne Programowanie genetyczne Programowanie ewolucyjne Strategie ewolucyjne Inne modele obliczeń ewolucyjnych Podsumowanie Ewolucja Ewolucja
LABORATORIUM 4: Algorytmy ewolucyjne cz. 2 wpływ operatorów krzyżowania i mutacji na skuteczność poszukiwań AE
Instytut Mechaniki i Inżynierii Obliczeniowej Wydział Mechaniczny Technologiczny, Politechnika Śląska www.imio.polsl.pl METODY HEURYSTYCZNE LABORATORIUM 4: Algorytmy ewolucyjne cz. 2 wpływ operatorów krzyżowania
Wykorzystanie metod ewolucyjnych w projektowaniu algorytmów kwantowych
Wykorzystanie metod ewolucyjnych w projektowaniu algorytmów kwantowych mgr inż. Robert Nowotniak Politechnika Łódzka 1 października 2008 Robert Nowotniak 1 października 2008 1 / 18 Plan referatu 1 Informatyka
Wybrane podstawowe rodzaje algorytmów
Wybrane podstawowe rodzaje algorytmów Tomasz Głowacki tglowacki@cs.put.poznan.pl Zajęcia finansowane z projektu "Rozwój i doskonalenie kształcenia na Politechnice Poznańskiej w zakresie technologii informatycznych
Zadanie transportowe i problem komiwojażera. Tadeusz Trzaskalik
Zadanie transportowe i problem komiwojażera Tadeusz Trzaskalik 3.. Wprowadzenie Słowa kluczowe Zbilansowane zadanie transportowe Rozwiązanie początkowe Metoda minimalnego elementu macierzy kosztów Metoda
w analizie wyników badań eksperymentalnych, w problemach modelowania zjawisk fizycznych, w analizie obserwacji statystycznych.
Aproksymacja funkcji a regresja symboliczna Problem aproksymacji funkcji polega na tym, że funkcję F(), znaną lub określoną tablicą wartości, należy zastąpić inną funkcją, f(), zwaną funkcją aproksymującą
Strategie ewolucyjne. Gnypowicz Damian Staniszczak Łukasz Woźniak Marek
Strategie ewolucyjne Gnypowicz Damian Staniszczak Łukasz Woźniak Marek Strategie ewolucyjne, a algorytmy genetyczne Podobieństwa: Oba działają na populacjach rozwiązań Korzystają z zasad selecji i przetwarzania
Algorytmy memetyczne (hybrydowe algorytmy ewolucyjne)
Algorytmy memetyczne (hybrydowe algorytmy ewolucyjne) 1 2 Wstęp Termin zaproponowany przez Pablo Moscato (1989). Kombinacja algorytmu ewolucyjnego z algorytmem poszukiwań lokalnych, tak że algorytm poszukiwań
Zadanie 5 - Algorytmy genetyczne (optymalizacja)
Zadanie 5 - Algorytmy genetyczne (optymalizacja) Marcin Pietrzykowski mpietrzykowski@wi.zut.edu.pl wersja 1.0 1 Cel Celem zadania jest zapoznanie się z Algorytmami Genetycznymi w celu rozwiązywanie zadania
Dobór parametrów algorytmu ewolucyjnego
Dobór parametrów algorytmu ewolucyjnego 1 2 Wstęp Algorytm ewolucyjny posiada wiele parametrów. Przykładowo dla algorytmu genetycznego są to: prawdopodobieństwa stosowania operatorów mutacji i krzyżowania.
Optymalizacja. Wybrane algorytmy
dr hab. inż. Instytut Informatyki Politechnika Poznańska www.cs.put.poznan.pl/mkomosinski, Andrzej Jaszkiewicz Problem optymalizacji kombinatorycznej Problem optymalizacji kombinatorycznej jest problemem
OSTASZEWSKI Paweł (55566) PAWLICKI Piotr (55567) Algorytmy i Struktury Danych PIŁA
OSTASZEWSKI Paweł (55566) PAWLICKI Piotr (55567) 16.01.2003 Algorytmy i Struktury Danych PIŁA ALGORYTMY ZACHŁANNE czas [ms] Porównanie Algorytmów Rozwiązyjących problem TSP 100 000 000 000,000 10 000 000
Podejście memetyczne do problemu DCVRP - wstępne wyniki. Adam Żychowski
Podejście memetyczne do problemu DCVRP - wstępne wyniki Adam Żychowski Na podstawie prac X. S. Chen, L. Feng, Y. S. Ong A Self-Adaptive Memeplexes Robust Search Scheme for solving Stochastic Demands Vehicle
Algorytmy genetyczne. Dariusz Banasiak. Katedra Informatyki Technicznej Wydział Elektroniki
Dariusz Banasiak Katedra Informatyki Technicznej Wydział Elektroniki Obliczenia ewolucyjne (EC evolutionary computing) lub algorytmy ewolucyjne (EA evolutionary algorithms) to ogólne określenia używane
Algorytmy genetyczne
Politechnika Łódzka Katedra Informatyki Stosowanej Algorytmy genetyczne Wykład 2 Przygotował i prowadzi: Dr inż. Piotr Urbanek Powtórzenie Pytania: Jaki mechanizm jest stosowany w naturze do takiego modyfikowania
FOLIA POMERANAE UNIVERSITATIS TECHNOLOGIAE STETINENSIS Folia Pomer. Univ. Technol. Stetin. 2009, Oeconomica 275 (57), 53 58
FOLIA POMERANAE UNIVERSITATIS TECHNOLOGIAE STETINENSIS Folia Pomer. Univ. Technol. Stetin. 2009, Oeconomica 275 (57), 53 58 Anna LANDOWSKA ROZWIĄZANIE PROBLEMU OPTYMALNEGO PRZYDZIAŁU ZA POMOCĄ KLASYCZNEGO
Optymalizacja optymalizacji
7 maja 2008 Wstęp Optymalizacja lokalna Optymalizacja globalna Algorytmy genetyczne Badane czasteczki Wykorzystane oprogramowanie (Algorytm genetyczny) 2 Sieć neuronowa Pochodne met-enkefaliny Optymalizacja
Elementy kognitywistyki II: Sztuczna inteligencja. WYKŁAD III: Problemy agenta
Elementy kognitywistyki II: Sztuczna inteligencja WYKŁAD III: Problemy agenta To już było: AI to dziedzina zajmująca się projektowaniem agentów Określenie agenta i agenta racjonalnego Charakterystyka PAGE
Badania operacyjne: Wykład Zastosowanie kolorowania grafów w planowaniu produkcji typu no-idle
Badania operacyjne: Wykład Zastosowanie kolorowania grafów w planowaniu produkcji typu no-idle Paweł Szołtysek 12 czerwca 2008 Streszczenie Planowanie produkcji jest jednym z problemów optymalizacji dyskretnej,
Algorytmy ewolucyjne. wprowadzenie
Algorytmy ewolucyjne wprowadzenie Gracjan Wilczewski, www.mat.uni.torun.pl/~gracjan Toruń, 2005 Historia Podstawowy algorytm genetyczny został wprowadzony przez Johna Hollanda (Uniwersytet Michigan) i
KARTA MODUŁU KSZTAŁCENIA
KARTA MODUŁU KSZTAŁCENIA I. Informacje ogólne 1 Nazwa modułu kształcenia Sztuczna inteligencja 2 Nazwa jednostki prowadzącej moduł Instytut Informatyki, Zakład Informatyki Stosowanej 3 Kod modułu (wypełnia
Luty 2001 Algorytmy (7) 2000/2001 s-rg@siwy.il.pw.edu.pl
System dziesiętny 7 * 10 4 + 3 * 10 3 + 0 * 10 2 + 5 *10 1 + 1 * 10 0 = 73051 Liczba 10 w tym zapisie nazywa się podstawą systemu liczenia. Jeśli liczba 73051 byłaby zapisana w systemie ósemkowym, co powinniśmy
Algorytmy ewolucyjne. Łukasz Przybyłek Studenckie Koło Naukowe BRAINS
Algorytmy ewolucyjne Łukasz Przybyłek Studenckie Koło Naukowe BRAINS 1 Wprowadzenie Algorytmy ewolucyjne ogólne algorytmy optymalizacji operujące na populacji rozwiązań, inspirowane biologicznymi zjawiskami,
Obliczenia inspirowane Naturą
Obliczenia inspirowane Naturą Wykład 12 - Algorytmy i protokoły kwantowe Jarosław Miszczak IITiS PAN Gliwice 19/05/2016 1 / 39 1 Motywacja rozwoju informatyki kwantowej. 2 Stany kwantowe. 3 Notacja Diraca.
Informatyka kwantowa. Karol Bartkiewicz
Informatyka kwantowa Karol Bartkiewicz Informacja = Wielkość fizyczna Jednostka informacji: Zasada Landauera: I A =log 2 k B T ln 2 1 P A R. Landauer, Fundamental Physical Limitations of the Computational
Maciej Piotr Jankowski
Reduced Adder Graph Implementacja algorytmu RAG Maciej Piotr Jankowski 2005.12.22 Maciej Piotr Jankowski 1 Plan prezentacji 1. Wstęp 2. Implementacja 3. Usprawnienia optymalizacyjne 3.1. Tablica ekspansji
Algorytmy metaheurystyczne podsumowanie
dr hab. inż. Instytut Informatyki Politechnika Poznańska www.cs.put.poznan.pl/mkomosinski, Andrzej Jaszkiewicz Problem optymalizacji kombinatorycznej Problem optymalizacji kombinatorycznej jest problemem
Wstęp do Sztucznej Inteligencji
Wstęp do Sztucznej Inteligencji Algorytmy Genetyczne Joanna Kołodziej Politechnika Krakowska Wydział Fizyki, Matematyki i Informatyki Metody heurystyczne Algorytm efektywny: koszt zastosowania (mierzony
operacje porównania, a jeśli jest to konieczne ze względu na złe uporządkowanie porównywanych liczb zmieniamy ich kolejność, czyli przestawiamy je.
Problem porządkowania zwanego również sortowaniem jest jednym z najważniejszych i najpopularniejszych zagadnień informatycznych. Dane: Liczba naturalna n i ciąg n liczb x 1, x 2,, x n. Wynik: Uporządkowanie
bity kwantowe zastosowania stanów splątanych
bity kwantowe zastosowania stanów splątanych Jacek Matulewski Karolina Słowik Jarosław Zaremba Jacek Jurkowski MECHANIKA KWANTOWA DLA NIEFIZYKÓW Bit kwantowy zawiera więcej informacji niż bit klasyczny
Algorytm faktoryzacji Petera Shora dla komputera kwantowego
Algorytm faktoryzacji Petera Shora dla komputera kwantowego Peter Shor (ur. 14 sierpnia 1959 roku w USA Matematyk oraz informatyk teoretyk Autor kwantowego Algorytmu Shora Pracuje w AT&T Bell Laboratories
Algorytmy genetyczne. Paweł Cieśla. 8 stycznia 2009
Algorytmy genetyczne Paweł Cieśla 8 stycznia 2009 Genetyka - nauka o dziedziczeniu cech pomiędzy pokoleniami. Geny są czynnikami, które decydują o wyglądzie, zachowaniu, rozmnażaniu każdego żywego organizmu.
LABORATORIUM 3: Wpływ operatorów krzyżowania na skuteczność poszukiwań AE
Instytut Mechaniki i Inżynierii Obliczeniowej Wydział Mechaniczny Technologiczny, Politechnika Śląska www.imio.polsl.pl OBLICZENIA EWOLUCYJNE LABORATORIUM 3: Wpływ operatorów krzyżowania na skuteczność
Wstęp do algorytmiki kwantowej
Koło naukowe fizyków Migacz, Uniwersytet Wrocławski Komputer kwantowy - co to właściwie jest? Komputer kwantowy Komputer, którego zasada działania nie może zostać wyjaśniona bez użycia formalizmu mechaniki
Programowanie genetyczne - gra SNAKE
PRACOWNIA Z ALGORYTMÓW EWOLUCYJNYCH Tomasz Kupczyk, Tomasz Urbański Programowanie genetyczne - gra SNAKE II UWr Wrocław 2009 Spis treści 1. Wstęp 3 1.1. Ogólny opis.....................................
Algorytmy genetyczne w interpolacji wielomianowej
Algorytmy genetyczne w interpolacji wielomianowej (seminarium robocze) Seminarium Metod Inteligencji Obliczeniowej Warszawa 22 II 2006 mgr inż. Marcin Borkowski Plan: Przypomnienie algorytmu niszowego
Testy De Jonga. Problemy. 1 Optymalizacja dyskretna i ciągła
Problemy 1 Optymalizacja dyskretna i ciągła Problemy 1 Optymalizacja dyskretna i ciągła 2 Środowisko pomiarowe De Jonga Problemy 1 Optymalizacja dyskretna i ciągła 2 Środowisko pomiarowe De Jonga 3 Ocena
Problemy z ograniczeniami
Problemy z ograniczeniami 1 2 Dlaczego zadania z ograniczeniami Wiele praktycznych problemów to problemy z ograniczeniami. Problemy trudne obliczeniowo (np-trudne) to prawie zawsze problemy z ograniczeniami.
Programowanie celowe #1
Programowanie celowe #1 Problem programowania celowego (PC) jest przykładem problemu programowania matematycznego nieliniowego, który można skutecznie zlinearyzować, tzn. zapisać (i rozwiązać) jako problem
Algorytmy i struktury danych. Wykład 4
Wykład 4 Różne algorytmy - obliczenia 1. Obliczanie wartości wielomianu 2. Szybkie potęgowanie 3. Algorytm Euklidesa, liczby pierwsze, faktoryzacja liczby naturalnej 2017-11-24 Algorytmy i struktury danych
przetworzonego sygnału
Synteza falek ortogonalnych na podstawie oceny przetworzonego sygnału Instytut Informatyki Politechnika Łódzka 28 lutego 2012 Plan prezentacji 1 Sformułowanie problemu 2 3 4 Historia przekształcenia falkowego
Techniki optymalizacji
Techniki optymalizacji Algorytm kolonii mrówek Idea Smuga feromonowa 1 Sztuczne mrówki w TSP Sztuczna mrówka agent, który porusza się z miasta do miasta Mrówki preferują miasta połączone łukami z dużą
Historia. Zasada Działania
Komputer kwantowy układ fizyczny do opisu którego wymagana jest mechanika kwantowa, zaprojektowany tak, aby wynik ewolucji tego układu reprezentował rozwiązanie określonego problemu obliczeniowego. Historia
Struktury danych i złożoność obliczeniowa Wykład 5. Prof. dr hab. inż. Jan Magott
Struktury danych i złożoność obliczeniowa Wykład 5 Prof. dr hab. inż. Jan Magott DMT rozwiązuje problem decyzyjny π przy kodowaniu e w co najwyżej wielomianowym czasie, jeśli dla wszystkich łańcuchów wejściowych
Algorytmy ewolucyjne (3)
Algorytmy ewolucyjne (3) http://zajecia.jakubw.pl/nai KODOWANIE PERMUTACJI W pewnych zastosowaniach kodowanie binarne jest mniej naturalne, niż inne sposoby kodowania. Na przykład, w problemie komiwojażera
Struktury danych i złożoność obliczeniowa Wykład 7. Prof. dr hab. inż. Jan Magott
Struktury danych i złożoność obliczeniowa Wykład 7 Prof. dr hab. inż. Jan Magott Problemy NP-zupełne Transformacją wielomianową problemu π 2 do problemu π 1 (π 2 π 1 ) jest funkcja f: D π2 D π1 spełniająca
MIO - LABORATORIUM. Imię i nazwisko Rok ak. Gr. Sem. Komputer Data ... 20 / EC3 VIII LAB...
MIO - LABORATORIUM Temat ćwiczenia: TSP - Problem komiwojażera Imię i nazwisko Rok ak. Gr. Sem. Komputer Data Podpis prowadzącego... 20 / EC3 VIII LAB...... Zadanie Zapoznać się z problemem komiwojażera
Schemat programowania dynamicznego (ang. dynamic programming)
Schemat programowania dynamicznego (ang. dynamic programming) Jest jedną z metod rozwiązywania problemów optymalizacyjnych. Jej twórcą (1957) był amerykański matematyk Richard Ernest Bellman. Schemat ten
Algorytm poprawny jednoznaczny szczegółowy uniwersalny skończoność efektywność (sprawność) zmiennych liniowy warunkowy iteracyjny
Algorytm to przepis; zestawienie kolejnych kroków prowadzących do wykonania określonego zadania; to uporządkowany sposób postępowania przy rozwiązywaniu zadania, problemu, z uwzględnieniem opisu danych
Obliczenia Naturalne - Algorytmy genetyczne
Literatura Obliczenia Naturalne - Algorytmy genetyczne Paweł Paduch Politechnika Świętokrzyska 20 marca 2014 Paweł Paduch Obliczenia Naturalne - Algorytmy genetyczne 1 z 45 Plan wykładu Literatura 1 Literatura
Algorytmy genetyczne w optymalizacji
Algorytmy genetyczne w optymalizacji Literatura 1. David E. Goldberg, Algorytmy genetyczne i ich zastosowania, WNT, Warszawa 1998; 2. Zbigniew Michalewicz, Algorytmy genetyczne + struktury danych = programy
Algorytm indukcji klasyfikatora za pomocą EA z automatycznym przełączaniem ukierunkowań
Algorytm indukcji klasyfikatora za pomocą EA z automatycznym przełączaniem ukierunkowań Anna Manerowska, Michal Kozakiewicz 2.12.2009 1 Wstęp Jako projekt na przedmiot MEUM (Metody Ewolucyjne Uczenia Maszyn)
Zad. 3: Układ równań liniowych
1 Cel ćwiczenia Zad. 3: Układ równań liniowych Wykształcenie umiejętności modelowania kluczowych dla danego problemu pojęć. Definiowanie właściwego interfejsu klasy. Zwrócenie uwagi na dobór odpowiednich
Algorytmy ewolucyjne `
Algorytmy ewolucyjne ` Wstęp Czym są algorytmy ewolucyjne? Rodzaje algorytmów ewolucyjnych Algorytmy genetyczne Strategie ewolucyjne Programowanie genetyczne Zarys historyczny Alan Turing, 1950 Nils Aall
FOLIA POMERANAE UNIVERSITATIS TECHNOLOGIAE STETINENSIS Folia Pomer. Univ. Technol. Stetin., Oeconomica 2017, 337(88)3, 5 12
DOI: 10.21005/oe.2017.88.3.01 FOLIA POMERANAE UNIVERSITATIS TECHNOLOGIAE STETINENSIS Folia Pomer. Univ. Technol. Stetin., Oeconomica 2017, 337(88)3, 5 12 Anna LANDOWSKA ZASTOSOWANIE KLASYCZNEGO ALGORYTMU
Obliczenia inspirowane Naturą
Obliczenia inspirowane Naturą Wykład 07 - Genetyka i automaty (uzupełnienie wykładu 06) Jarosław Miszczak IITiS PAN Gliwice 21/04/2016 1 / 21 1 Wprowadzenie 2 3 2 / 21 Wprowadzenie 1 Wprowadzenie 2 3 3
WAE Jarosław Arabas Pełny schemat algorytmu ewolucyjnego
WAE Jarosław Arabas Pełny schemat algorytmu ewolucyjnego Algorytm ewolucyjny algorytm ewolucyjny inicjuj P 0 {P 0 1, P 0 2... P 0 μ } t 0 H P 0 while! stop for (i 1: λ) if (a< p c ) O t i mutation(crossover
Informatyka kwantowa. Zaproszenie do fizyki. Zakład Optyki Nieliniowej. wykład z cyklu. Ryszard Tanaś. mailto:tanas@kielich.amu.edu.
Zakład Optyki Nieliniowej http://zon8.physd.amu.edu.pl 1/35 Informatyka kwantowa wykład z cyklu Zaproszenie do fizyki Ryszard Tanaś Umultowska 85, 61-614 Poznań mailto:tanas@kielich.amu.edu.pl Spis treści
Modyfikacje i ulepszenia standardowego algorytmu genetycznego
Modyfikacje i ulepszenia standardowego algorytmu genetycznego 1 2 Przypomnienie: pseudokod SGA t=0; initialize(p 0 ); while(!termination_condition(p t )) { evaluate(p t ); T t =selection(p t ); O t =crossover(t
Spis treści 377 379 WSTĘP... 9
Spis treści 377 379 Spis treści WSTĘP... 9 ZADANIE OPTYMALIZACJI... 9 PRZYKŁAD 1... 9 Założenia... 10 Model matematyczny zadania... 10 PRZYKŁAD 2... 10 PRZYKŁAD 3... 11 OPTYMALIZACJA A POLIOPTYMALIZACJA...
BIOCYBERNETYKA ALGORYTMY GENETYCZNE I METODY EWOLUCYJNE. Adrian Horzyk. Akademia Górniczo-Hutnicza
BIOCYBERNETYKA ALGORYTMY GENETYCZNE I METODY EWOLUCYJNE Adrian Horzyk Akademia Górniczo-Hutnicza Wydział Elektrotechniki, Automatyki, Informatyki i Inżynierii Biomedycznej Katedra Automatyki i Inżynierii
Metody Programowania
POLITECHNIKA KRAKOWSKA - WIEiK KATEDRA AUTOMATYKI i TECHNIK INFORMACYJNYCH Metody Programowania www.pk.edu.pl/~zk/mp_hp.html Wykładowca: dr inż. Zbigniew Kokosiński zk@pk.edu.pl Wykład 8: Wyszukiwanie
Tomasz Pawlak. Zastosowania Metod Inteligencji Obliczeniowej
1 Zastosowania Metod Inteligencji Obliczeniowej Tomasz Pawlak 2 Plan prezentacji Sprawy organizacyjne Wprowadzenie do metod inteligencji obliczeniowej Studium wybranych przypadków zastosowań IO 3 Dane
Algorytmy genetyczne (AG)
Algorytmy genetyczne (AG) 1. Wprowadzenie do AG a) ewolucja darwinowska b) podstawowe definicje c) operatory genetyczne d) konstruowanie AG e) standardowy AG f) przykład rozwiązania g) naprawdę bardzo,
znalezienia elementu w zbiorze, gdy w nim jest; dołączenia nowego elementu w odpowiednie miejsce, aby zbiór pozostał nadal uporządkowany.
Przedstawiamy algorytmy porządkowania dowolnej liczby elementów, którymi mogą być liczby, jak również elementy o bardziej złożonej postaci (takie jak słowa i daty). Porządkowanie, nazywane również często
Programowanie dynamiczne cz. 2
Programowanie dynamiczne cz. 2 Wykład 7 16 kwietnia 2019 (Wykład 7) Programowanie dynamiczne cz. 2 16 kwietnia 2019 1 / 19 Outline 1 Mnożenie ciągu macierzy Konstruowanie optymalnego rozwiązania 2 Podstawy
Informatyka Kwantowa Sekcja Informatyki Kwantowej prezentacja
Informatyka Kwantowa Sekcja Informatyki Kwantowej prezentacja Robert Nowotniak Wydział FTIMS, Politechnika Łódzka XV konferencja SIS, 26 października 2007 Streszczenie Informatyka kwantowa jest dziedziną
Zasady analizy algorytmów
Zasady analizy algorytmów A więc dziś w programie: - Kilka ważnych definicji i opisów formalnych - Złożoność: czasowa i pamięciowa - Kategorie problemów - Jakieś przykłady Problem: Zadanie możliwe do rozwiązania
Algorytmy ewolucyjne
Algorytmy ewolucyjne wprowadzenie Piotr Lipiński lipinski@ii.uni.wroc.pl Piotr Lipiński Algorytmy ewolucyjne p.1/16 Cel wykładu zapoznanie studentów z algorytmami ewolucyjnymi, przede wszystkim nowoczesnymi
Peter W. Shor - Polynomial-Time Algorithms for Prime Factorization and Discrete Logarithms on a Quantum Computer. 19 listopada 2004 roku
Peter W. Shor - Polynomial-Time Algorithms for Prime Factorization and Discrete Logarithms on a Quantum Computer. 19 listopada 2004 roku Wstęp czyli (próba) odpowiedzi na pewne pytania (Silna) Teza Church
ALGORYTMY EWOLUCYJNE W OPTYMALIZACJI JEDNOKRYTERIALNEJ
ALGORYTMY EWOLUCYJNE W OPTYMALIZACJI JEDNOKRYTERIALNEJ Zalety: nie wprowadzają żadnych ograniczeń na sformułowanie problemu optymalizacyjnego. Funkcja celu może być wielowartościowa i nieciągła, obszar
Algorytm. a programowanie -
Algorytm a programowanie - Program komputerowy: Program komputerowy można rozumieć jako: kod źródłowy - program komputerowy zapisany w pewnym języku programowania, zestaw poszczególnych instrukcji, plik
PLAN WYKŁADU OPTYMALIZACJA GLOBALNA ZADANIE KOMIWOJAŻERA METODY ROZWIĄZYWANIA. Specyfika zadania komiwojażera Reprezentacje Operatory
PLAN WYKŁADU Specyfika zadania komiwojażera Reprezentacje Operatory OPTYMALIZACJA GLOBALNA Wykład 5 dr inż. Agnieszka Bołtuć ZADANIE KOMIWOJAŻERA Koncepcja: komiwojażer musi odwiedzić każde miasto na swoim
Wstęp do Sztucznej Inteligencji
Wstęp do Sztucznej Inteligencji Rozwiązywanie problemów-i Joanna Kołodziej Politechnika Krakowska Wydział Fizyki, Matematyki i Informatyki Rozwiązywanie problemów Podstawowe fazy: Sformułowanie celu -
Rozdział 9 PROGRAMOWANIE DYNAMICZNE
Wprowadzenie do badań operacyjnych z komputerem Opisy programów, ćwiczenia komputerowe i zadania. T. Trzaskalik (red.) Rozdział 9 PROGRAMOWANIE DYNAMICZNE 9.2. Ćwiczenia komputerowe Ćwiczenie 9.1 Wykorzystując
Politechnika Wrocławska Wydział Elektroniki INFORMATYKA SYSTEMÓW AUTONOMICZNYCH. Heurystyka, co to jest, potencjalne zastosowania
Politechnika Wrocławska Wydział Elektroniki INFORMATYKA SYSTEMÓW AUTONOMICZNYCH Autor: Łukasz Patyra indeks: 133325 Prowadzący zajęcia: dr inż. Marek Piasecki Ocena pracy: Wrocław 2007 Spis treści 1 Wstęp