WYZNACZANIE CHARAKTERYSTYK UKŁADU LINIOWEGO PRZY REZONANSIE PRZEJŚCIOWYM

Wielkość: px
Rozpocząć pokaz od strony:

Download "WYZNACZANIE CHARAKTERYSTYK UKŁADU LINIOWEGO PRZY REZONANSIE PRZEJŚCIOWYM"

Transkrypt

1 MODELOWANIE INśYNIERSKIE ISSN X 36, s. 7-, Gliwie 8 WYZNACZANIE CHARAKTERYSTYK UKŁADU LINIOWEGO PRZY REZONANSIE PRZEJŚCIOWYM PAWEŁ KRASOWSKI Ktedr Podstw Tehniki, Akdemi Morsk w Gdyni e-mil: pwks@m.gdyni.pl Streszzenie. W rtykule rozptrywno przejśie przez strefę rezonnsu ukłdu liniowego o jednym stopniu swoody przy wzrstjąej zęstośi wymuszeni (rozpędznie ukłdu) orz przy mlejąej zęstośi wymuszeni podzs hmowni ukłdu. N podstwie przeprowdzonyh symulji numeryznyh wyznzono ezwymirowe hrkterystyki dynmizne ukłdu przy przejśiu przez rezonns. Chrkterystyki te określją współzynnik wzmonieni mplitudy orz zęstość rezonnsu dynmiznego w funkji zminy zęstośi wymuszeni.. WSTĘP Wiele ukłdów mehniznyh w tym większość okrętowyh ukłdów npędowyh jest eksplotown powyŝej orotów krytyznyh odpowidjąyh pierwszej zęstośi drgń włsnyh skrętnyh ukłdu npędowego []. W związku z tym istnieje koniezność przehodzeni przez strefę rezonnsu mehniznego przy rozpędzniu ukłdu do prędkośi eksplotyjnej zyli wzrostu zęstośi wymuszeni z zkresu pod do pozrezonnsowego (eksplotyjnego). Odwrotn sytuj istnieje podzs odstwini ukłdu npędowego, zyli zmniejszni zęstośi wymuszeni z zkresu eksplotyjnego. Rezonnsem przejśiowym w odróŝnieniu od rezonnsu stjonrnego nzwiemy stn osiągnięi mksymlnej mplitudy drgń przy wymuszeniu o zmiennej (wzrstjąej lu mlejąej) zęstośi wymuszeni. Zgdnieni rezonnsu przejśiowego rozwŝno w wielu prh juŝ w okresie przed i powojennym, wyjśniją istotę tego zjwisk. Pełną syntetyzną nlizę tyh pr przedstwiono m. in. w []. Częstość rezonnsu przejśiowego jest zwsze przesunięt w stronę zęstośi wyŝszyh przy rozpędzniu ukłdu i w stronę zęstośi niŝszyh przy hmowniu ukłdu, mplitud jest zwsze mniejsz od mplitudy przy rezonnsie stjonrnym [],[]. Wielkość przesunięi zęstośi rezonnsowyh i wielkość mplitudy zleŝy od sposou i prędkośi przejśi przez zkres zęstośi rezonnsowyh. Przeiegi drgń przy rezonnsie przejśiowym wyznzono metodą numeryznej symulji równń ruhu ukłdu.

2 8 P. KRASOWSKI. MODEL UKŁADU DRGAJĄCEGO W rtykule nlizowno drgjąy ukłd liniowy o jednym stopniu swoody (rys.) o prmetrh m,, k hrkteryzująyh włsnośi msowe (m), tłumiąe () i spręŝyste (k). N ukłd dził uogólnion sił wymuszją P(t) o stłej mplitudzie P o i zmiennej zęstośi wymuszeni. Przeieg drgń x(t) przy zdnyh prmetrh rozpędzni lu hmowni ukłdu jest wyznzny n podstwie symulji numeryznego łkowni równni róŝnizkowego opisująego proes drgń ukłdu przy przehodzeniu przez rezonns. Równnie ruhu ukłdu drgjąego w posti przyspieszeni współrzędnej uogólnionej x m postć [4],[5]: ( t) & x + ξωx& + ωx = qsin ϕ () P gdzie: ω k = ; ξ = ; kr = km ; q = m kr m przy zym: ω - zęstość drgń włsnyh ukłdu nietłumionego; ξ - ezwymirowy współzynnik tłumieni; φ(t) funkj kątow zminy zęstośi wymuszeni w zsie t. Rys. Shemt ukłdu drgjąego o jednym stopniu swoody W przypdku jednostjnej (liniowej) zminy zęstośi wymuszeni ω od zęstośi pozątkowej ω p z przyspieszeniem kątowym ε [s - ] funkję kątową φ zminy zęstośi orz zminę zęstośi wymuszeni ω przedstwi się w posti: ω ( t) = ωp + εt ( t) = ω t + εt ϕ p () Szykość i kierunek przehodzeni przez strefę rezonnsu hrkteryzuje znk i wrtość przyspieszeni ε. Stny rezonnsu sttyznego występują dl zkresów ezwymirowego współzynnik tłumieni ξ w grnih ξ ξ. Równnie () wrz z funkją zminy zęstośi gr wymuszeni () opisuje drgni ukłdu przy zmiennej liniowo zęstośi siły wymuszjąej. Jest to równnie róŝnizkowe, którego rozwiąznie nlityzne i numeryzne nlizowno w prh [],[3],[5]. W niniejszej pry rozwiąznie równni uzyskno n drodze numeryznej.

3 WYZNACZANIE CHARAKTERYSTYK UKŁADU LINIOWEGO PRZY REZONANSIE 9 3. SYMULACJA DRGAŃ, CHARAKTERYSTYKI REZONANSOWE Równnie () rozwiązywno numeryznie metodą Rungego-Kutty rzędu zwrtego ze zmiennym utomtyznym doorem kroku łkowni [3]. Wielkośimi określjąymi przejśie przez rezonns yły: zęstość pozątkow wymuszeni ω p orz zmin zęstośi wymuszeni ε. Wszystkie symulje przeprowdzono przy jednkowyh zerowyh wrunkh pozątkowyh wyhyleni orz prędkośi drgń. Podzs symulji stosowno pozątkowe zęstośi wymuszeni ω p umoŝliwijąe jednkowy zs osiągni zęstośi włsnej przy zwiększniu jk i zmniejszniu zęstośi wymuszeni. W wyniku rozwiązni równni otrzymno dl dnego ukłdu drgjąego i dnyh prmetrów zminy zęstośi wymuszeni przeieg wyhyleni x w funkji zsu t, gdzie przykłdowy przeieg tej zleŝnośi przedstwiono n rys. jko frgment okn dilogowego progrmu symulyjnego, gdzie moŝn odzytć Rys. Przemieszzenie x(t) orz sił wymuszją przy rezonnsie dynmiznym wrtość mksymlnej mplitudy x m orz odpowidjąy jej zs t m od rozpozęi symulji. Z zsu t m moŝn wyznzyć ze wzoru () dl zdnyh wrunków symulji ω p i ε zęstość rezonnsową ω R przy której nstępuje mksimum mplitudy. Dl poszzególnyh ukłdów drgjąyh i symulji moŝn zudowć prmetry ezwymirowe nlogizne jk w hrkterystykh rezonnsowyh przy stłej zęstośi wymuszeni [],[5]. Są to prmetry: współzynnik mplitudy przy rezonnsie przejśiowym µ d orz ezwymirow zęstość rezonnsow η d definiowne nstępująo: x m ωr µ d = ; ηd = ; xst ω P xst = k (3) Przykłdowy wykres współzynnik wzmonieni mplitudy µ d w funkji przyspieszeni ε przedstwiono n rys.3 dl tłumieni względnego ξ = (A) i ξ =, (B) dl trzeh przykłdowyh ukłdów drgjąyh róŝniąyh się zęstośią włsną i oznzonyh,,. Wprowdzono wielkość ezwymirowego przyspieszeni ε* zdefiniownego [] nstępująo: * ε = ω ε (4) Wszystkie wykresy współzynnik wzmonieni mplitudy µ d w funkji przyspieszeni ε * dl róŝnyh ukłdów drgjąyh przy tym smym tłumieniu względnym moŝn przedstwić n jednej hrkterystye przedstwionej n rys. 4 dl trzeh róŝnyh wrtośi tłumieni względnego ξ równego ;,;,5 oznzonyh yfrmi,,3. Otrzymne w wyniku symulyjnego przejśi przez strefę rezonnsu przedstwione wykresy są symetryzne względem osi pionowej. Wielkośi mplitudy drgń rezonnsowyh dl zerowego przyspieszeni (ε* = ) osiągją wrtośi jk przy rezonnsie o stłej zęstośi wymuszeni µ rs wynosząej:

4 P. KRASOWSKI ξ = µ = rs < ξ < ξgr ξ ξ (5) A µ d 8 ξ= 6 4 -, -,8 -,4,4,8 ε [s [ ], B 5 µ d 4 ξ=, 3 -, -,8 -,4,4,8 - ε [s [ ], Rys.3 Amplitud rezonnsow µ d w funkji przyspieszeni ε przy tłumieniu A) = ; B) ξ =, dl ukłdów: ) ω = [s - ]; ) ω = [s - ]; ) ω =,5[s - ]. Podonie jk mplitudę rezonnsu dynmiznego µ d nlizowno zęstość rezonnsową ω d w funkji przyspieszeni ε i przyspieszeni ezwymirowego ε*.przykłdowe wykresy zęstośi rezonnsowej η d w funkji przyspieszeni ε dl tyh smyh ukłdów drgjąyh jk n rys. µ d , -,8 -,4,4,8 ε*, Rys.4 Bezwymirow mplitud rezonnsow µ d w funkji przyspieszeni ε * dl wrtośi tłumieni względnego ξ :) ξ = ; ) ξ =,; 3) ξ =,5 przedstwiono n rys.5 przy tłumieniu względnym ξ = (A). Usytuownie wykresów,, dl róŝnyh zkresów zęstośi włsnej względem zęstośi ω = jest nlogizne jk n

5 WYZNACZANIE CHARAKTERYSTYK UKŁADU LINIOWEGO PRZY REZONANSIE wykresh z rys i 3 dl mplitud rezonnsowyh. W przypdku przyspieszeni ε = zęstość rezonnsow jest równ zęstośi przy rezonnsie ze stłą zęstośią wymuszeni wynosząą: rs = η ξ (6) Z przedstwionyh wykresów,, wynik, iŝ przesunięie wielkośi strefy rezonnsowej w kierunku wyŝszyh zęstośi przy rosnąej zęstośi wymuszeni jk i przesunięie strefy rezonnsu w stronę niŝszyh zęstośi jest zleŝne od tłumieni orz przyspieszeni zęstośi wymuszeni. A ξ=,5,4,3 η d,,,9,8,7,6,5 - -, -,8 -,4,4,8 ε [s [ ], Rys. 5 Częstość rezonnsow η d w funkji przyspieszeni ε przy tłumieniu względnym A) ξ = ; B) ξ =, dl ukłdów: ) ω = [s - ];) ω = [s - ]; ) ω =,5[s - ] Wzrost tłumieni względnego powoduje zmniejszenie strefy przesunięi zęstośi rezonnsowyh, wzrost wrtośi przyspieszeni powoduje zwiększenie strefy przesunięi zęstośi rezonnsowyh.,5, η d 3,5,,5 3,95,9,85,8,75 -, -,8 -,4,4,8 ε, Rys.6 Bezwymirow zęstość rezonnsow η d w funkji przyspieszeni ε * dl wrtośi tłumieni względnego ξ :) ξ = ; ) ξ =,; 3) ξ =,5 Przykłdowe hrkterystyki przesunięi zęstośi rezonnsowyh w funkji przyspieszeni ezwymirowego ε* przedstwiono n rys.6 dl trzeh róŝnyh współzynników tłumieni względnego ξ oznzone yfrmi,,3.

6 P. KRASOWSKI 4. WNIOSKI N podstwie przeprowdzonyh symulji numeryznyh rezonnsu przejśiowego moŝn określić wrtośi mplitud orz zęstośi rezonnsowyh w zleŝnośi od szykośi zmin zęstośi siły wymuszjąej. Współzynnik mplitudy przy rezonnsie przejśiowym przy dnym tłumieniu względnym jest zwsze mniejszy od tego współzynnik przy rezonnsie stjonrnym. Zkres tego ezpiezeństw widć n wykresh rys.4 i mleje on ze wzrostem tłumieni. Przesunięie zęstośi rezonnsu dynmiznego nstępuje w stronę zęstośi wyŝszyh od zęstośi drgń swoodnyh przy rozpędzniu ukłdu i w stronę zęstośi niŝszyh przy odstwiniu ukłdu. Mleje ono ze wzrostem tłumieni i rośnie ze wzrostem przyspieszeni. Prezentowny model mszyny jko ukłdu drgjąego o jednym stopniu swoody jest zgrunym przyliŝeniem, gdyŝ jest to ukłd dyskretno iągły o większej lizie stopni swoody. Przedstwiony sposó przejśi przez strefę rezonnsową hrkteryzuje się liniową zminą zęstośi i moŝn go rozszerzyć n inne rdziej rozudowne hrkterystyki zminy zęstośi wymuszeni. Bdni symulyjne moŝn zstosowć tkŝe do ukłdów o większej lizie stopni swoody. Anlogizne hrkterystyki rezonns przejśiowego moŝn zudowć przy wymuszeniu ezwłdnośiowym lu przy róŝnyh modelh wymuszeni kinemtyznego. Otrzymnie hrkterystyk rezonnsu przejśiowego n drodze symulji numeryznej równń ruhu ukłdu jest znznie szysze niŝ ih otrzymnie n drodze nlityznej, któr wymg większyh nkłdów zsowyh. LITERATURA. Goliński J.A.: Anliz rezonnsu przejśiowego jednomsowego ukłdu spręŝystego i jej zstosownie do teorii wiroizolji mszyn wirnikowyh. Wrołw 963. Cz. I. Pre IMP z. 3, s Kruszewski J., Wittrodt E.: Drgni ukłdów mehniznyh w ujęiu komputerowym. T.I Zgdnieni liniowe. Wrszw : WNT, Kuhrski T.: Drgni mehnizne. Rozwiązywnie zgdnień z MATHCAD-em. Wrszw: WNT, Mrinik A., Gregule D., Kzmrek J.: Podstwowe proedury numeryzne w języku Turo Psl. Poznń: Mikom, Osiński J. Teori drgń. Wrszw :PWN, 98. THE DETRMINATION CHARACTERISTICS BY TRANSIENT RESONANCE OF LINEAR SYSTEM Summry. Present pper shows trnsient through resonne zone of liner system with one degree of freedom y inresing exiting frequeny (system elertion) nd y deresing exiting frequeny during system rking. On the sis of numeri simultions the dynmi system y the resonne trnsition is presented in dimensionless hrteristis. This hrteristis desries the mplitude gin ftor nd dynmi resonne frequeny in the vrition of exiting frequeny funtion.

2. Funktory TTL cz.2

2. Funktory TTL cz.2 2. Funktory TTL z.2 1.2 Funktory z otwrtym kolektorem (O.. open olletor) ysunek poniżej przedstwi odnośny frgment płyty zołowej modelu. Shemt wewnętrzny pojedynzej rmki NAND z otwrtym kolektorem (O..)

Bardziej szczegółowo

FUNKCJA KWADRATOWA. RÓWNANIA I NIERÓWNOŚCI DRUGIEGO STOPNIA.

FUNKCJA KWADRATOWA. RÓWNANIA I NIERÓWNOŚCI DRUGIEGO STOPNIA. Oprownie: Elżiet Mlnowsk FUNKCJA KWADRATOWA. RÓWNANIA I NIERÓWNOŚCI DRUGIEGO STOPNIA. Określeni podstwowe: Jeżeli kżdej lizie x z pewnego zioru lizowego X przporządkown jest dokłdnie jedn liz, to mówim,

Bardziej szczegółowo

WYZNACZNIKI. . Gdybyśmy rozważali układ dwóch równań liniowych, powiedzmy: Takie układy w matematyce nazywa się macierzami. Przyjmijmy definicję:

WYZNACZNIKI. . Gdybyśmy rozważali układ dwóch równań liniowych, powiedzmy: Takie układy w matematyce nazywa się macierzami. Przyjmijmy definicję: YZNACZNIKI Do opisu pewnh oiektów nie wstrz użć liz. ie n przkłd, że do opisni sił nleż użć wektor. Sił to przeież nie tlko wielkość le i jej punkt przłożeni, zwrot orz kierunek dziłni. Zte jedną lizą

Bardziej szczegółowo

Z INFORMATYKI RAPORT

Z INFORMATYKI RAPORT OKRĘGOWA KOMISJA EGZAMINACYJNA W POZNANIU WYNIKI EGZAMINU MATURALNEGO Z INFORMATYKI RAPORT WOJEWÓDZTWA LUBUSKIE*WIELKOPOLSKIE*ZACHODNIOPOMORSKIE 2 Egzmin mturlny z informtyki zostł przeprowdzony w łym

Bardziej szczegółowo

Wspomaganie obliczeń za pomocą programu MathCad

Wspomaganie obliczeń za pomocą programu MathCad Wprowdzenie do Mthcd' Oprcowł:M. Detk P. Stąpór Wspomgnie oliczeń z pomocą progrmu MthCd Definicj zmiennych e f g h 8 Przykłd dowolnego wyrŝeni Ay zdefinowc znienną e wyierz z klwitury kolejno: e: e f

Bardziej szczegółowo

Realizacje zmiennych są niezależne, co sprawia, że ciąg jest ciągiem niezależnych zmiennych losowych,

Realizacje zmiennych są niezależne, co sprawia, że ciąg jest ciągiem niezależnych zmiennych losowych, Klsyczn Metod Njmniejszych Kwdrtów (KMNK) Postć ć modelu jest liniow względem prmetrów (lbo nleży dokonć doprowdzeni postci modelu do liniowości względem prmetrów), Zmienne objśnijące są wielkościmi nielosowymi,

Bardziej szczegółowo

a) b) Rys. 6.1. Schemat ideowo-konstrukcyjny układu do przykładu 6.1 a) i jego schemat blokowy

a) b) Rys. 6.1. Schemat ideowo-konstrukcyjny układu do przykładu 6.1 a) i jego schemat blokowy 04 6. Ztoownie metod hemtów lokowh do nliz włśiwośi ukłdów utomtki Shemt lokow ukłdu utomtki jet formą zpiu mtemtznego modelu dnego ukłdu, n podtwie której, wkorztują zd przedtwione rozdzile 3.7, możn

Bardziej szczegółowo

Metoda superpozycji: Sesja poprawkowa. Wykład 1

Metoda superpozycji: Sesja poprawkowa. Wykład 1 Elektrotehnik wykłd Metod superpozyji: E i 8V, E i V Sesj poprwkow Wykłd Zdni Wykłd e d e d E U U E e d 0.77..087 0.7 0.9 0.9.7... Grup : d pkt, d pkt, dst 8 pkt Termin 0. Symole stosowne n shemth. Zsdy

Bardziej szczegółowo

Całki oznaczone. wykład z MATEMATYKI

Całki oznaczone. wykład z MATEMATYKI Cłki oznzone wkłd z MATEMATYKI Budownitwo, studi niestjonrne sem. I, rok k. 28/29 Ktedr Mtemtki Wdził Informtki Politehnik Biłostok 1 Podstwowe pojęi 1.1 Podził P przedziłu, Nieh f ędzie funkją ogrnizoną

Bardziej szczegółowo

WPŁYW WILGOTNOŚCI NA SZTYWNOŚCIOWE TŁUMIENIE DRGAŃ KONSTRUKCJI DREWNIANYCH

WPŁYW WILGOTNOŚCI NA SZTYWNOŚCIOWE TŁUMIENIE DRGAŃ KONSTRUKCJI DREWNIANYCH 95 ROCZNII INŻYNIERII BUDOWLANEJ ZESZYT 3/03 omisj Inżynierii Budowlnej Oddził Polskiej Akdemii Nuk w towicch WPŁYW WILGOTNOŚCI NA SZTYWNOŚCIOWE TŁUMIENIE DRGAŃ ONSTRUCJI DREWNIANYCH mil PAWLI, Zbigniew

Bardziej szczegółowo

ZALEŻNOŚĆ NAPIĘCIA POWIERZCHNIOWEGO ZWILŻANIA OD ZAWARTOŚCI POPIOŁU W ZBIORZE BARDZO DROBNYCH ZIAREN WĘGLOWYCH**

ZALEŻNOŚĆ NAPIĘCIA POWIERZCHNIOWEGO ZWILŻANIA OD ZAWARTOŚCI POPIOŁU W ZBIORZE BARDZO DROBNYCH ZIAREN WĘGLOWYCH** Górnitwo i Geoinżynieri Rok 31 Zeszyt 4 2007 Mrek Lenrtowiz* ZALEŻNOŚĆ NAPIĘCIA POWIERZCHNIOWEGO ZWILŻANIA OD ZAWARTOŚCI POPIOŁU W ZBIORZE BARDZO DROBNYCH ZIAREN WĘGLOWYCH** 1. Wprowdzenie Flotj jest jednym

Bardziej szczegółowo

2. Tensometria mechaniczna

2. Tensometria mechaniczna . Tensometri mechniczn Wstęp Tensometr jk wskzywłby jego nzw to urządzenie służące do pomiru nprężeń. Jk jednk widomo, nprężeni nie są wielkościmi mierzlnymi i stnowią jedynie brdzo wygodne pojęcie mechniki

Bardziej szczegółowo

Metoda sił jest sposobem rozwiązywania układów statycznie niewyznaczalnych, czyli układów o nadliczbowych więzach (zewnętrznych i wewnętrznych).

Metoda sił jest sposobem rozwiązywania układów statycznie niewyznaczalnych, czyli układów o nadliczbowych więzach (zewnętrznych i wewnętrznych). Metod sił jest sposoem rozwiązywni ukłdów sttycznie niewyznczlnych, czyli ukłdów o ndliczowych więzch (zewnętrznych i wewnętrznych). Sprowdz się on do rozwiązni ukłdu sttycznie wyznczlnego (ukłd potwowy

Bardziej szczegółowo

G i m n a z j a l i s t ó w

G i m n a z j a l i s t ó w Ko³o Mtemtyzne G i m n z j l i s t ó w 1. Lizy,, spełniją wrunki: (1) ++ = 0, 1 () + + 1 + + 1 + = 1 4. Olizyć wrtość wyrżeni w = + + Rozwiąznie Stowrzyszenie n rzez Edukji Mtemtyznej Zestw 7 szkie rozwizń

Bardziej szczegółowo

Wymagania na ocenę dopuszczającą z matematyki klasa II Matematyka - Babiański, Chańko-Nowa Era nr prog. DKOS 4015-99/02

Wymagania na ocenę dopuszczającą z matematyki klasa II Matematyka - Babiański, Chańko-Nowa Era nr prog. DKOS 4015-99/02 Wymgni n ocenę dopuszczjącą z mtemtyki kls II Mtemtyk - Bbiński, Chńko-Now Er nr prog. DKOS 4015-99/02 Temt lekcji Zkres treści Osiągnięci uczni WIELOMIANY 1. Stopień i współczynniki wielominu 2. Dodwnie

Bardziej szczegółowo

1. Wstęp. Pojęcie grafu przepływowego. Niech pewien system liniowy będzie opisany układem liniowych równań algebraicznych

1. Wstęp. Pojęcie grafu przepływowego. Niech pewien system liniowy będzie opisany układem liniowych równań algebraicznych Owody i Ukłdy Anliz ukłdów z pomoą grfów przepływowy Mteriły Pomonize. Wstęp. Pojęie grfu przepływowego. Nie pewien system liniowy ędzie opisny ukłdem liniowy równń lgerizny x + x x + x gdzie: x, x - zmienne

Bardziej szczegółowo

Temat lekcji Zakres treści Osiągnięcia ucznia

Temat lekcji Zakres treści Osiągnięcia ucznia ln wynikowy kls 2c i 2e - Jolnt jąk Mtemtyk 2. dl liceum ogólnoksztłcącego, liceum profilownego i technikum. sztłcenie ogólne w zkresie podstwowym rok szkolny 2015/2016 Wymgni edukcyjne określjące oceny:

Bardziej szczegółowo

Zastosowanie multimetrów cyfrowych do pomiaru podstawowych wielkości elektrycznych

Zastosowanie multimetrów cyfrowych do pomiaru podstawowych wielkości elektrycznych Zstosownie multimetrów cyfrowych do pomiru podstwowych wielkości elektrycznych Cel ćwiczeni Celem ćwiczeni jest zpoznnie się z możliwościmi pomirowymi współczesnych multimetrów cyfrowych orz sposobmi wykorzystni

Bardziej szczegółowo

ZADANIA Z ZAKRESU SZKOŁY PODSTAWOWEJ, GIMNAZJUM I SZKOŁY ŚREDNIEJ

ZADANIA Z ZAKRESU SZKOŁY PODSTAWOWEJ, GIMNAZJUM I SZKOŁY ŚREDNIEJ ZADANIA Z ZAKRESU SZKOŁY PODSTAWOWEJ, GIMNAZJUM I SZKOŁY ŚREDNIEJ Nrsowć wkres funkji: f() = + Nrsowć wkres funkji: f() = + Nrsowć wkres funkji: f() = + + Dl jkih wrtośi A, B zhodzi równość: + +5+6 = A

Bardziej szczegółowo

Wymagania kl. 2. Uczeń:

Wymagania kl. 2. Uczeń: Wymgni kl. 2 Zkres podstwowy Temt lekcji Zkres treści Osiągnięci uczni. SUMY ALGEBRAICZNE. Sumy lgebriczne definicj jednominu pojęcie współczynnik jednominu porządkuje jednominy pojęcie sumy lgebricznej

Bardziej szczegółowo

Część 2 7. METODA MIESZANA 1 7. METODA MIESZANA

Część 2 7. METODA MIESZANA 1 7. METODA MIESZANA Część 2 7. METODA MIESZANA 7. 7. METODA MIESZANA Metod mieszn poleg n jednoczesnym wykorzystniu metody sił i metody przemieszczeń przy rozwiązywniu ukłdów sttycznie niewyznczlnych. Nwiązuje on do twierdzeni

Bardziej szczegółowo

XI. Rachunek całkowy funkcji wielu zmiennych. 1. Całka podwójna Całka podwójna po prostokącie. Oznaczenia:

XI. Rachunek całkowy funkcji wielu zmiennych. 1. Całka podwójna Całka podwójna po prostokącie. Oznaczenia: XI. Rhunek łkowy funkji wielu zmiennyh. 1. Cłk podwójn. 1.1. Cłk podwójn po prostokąie. Oznzeni: P = {(x, y) R 2 : x b, y d} = [, b] [, d] - prostokąt n płszzyźnie, f(x, y) - funkj określon i ogrnizon

Bardziej szczegółowo

Metody generowania skończonych modeli zachowań systemów z czasem

Metody generowania skończonych modeli zachowań systemów z czasem Metody generowni skońzonyh modeli zhowń systemów z zsem Rozprw doktorsk npisn pod kierunkiem do. dr hb. Wojieh Penzk IPI PAN, 5.02.05 p./24 Cel pry Oprownie nowyh, efektywnyh metod generowni modeli bstrkyjnyh

Bardziej szczegółowo

ROZWIĄZYWANIE MAŁYCH TRÓJKĄTÓW SFERYCZNYCH

ROZWIĄZYWANIE MAŁYCH TRÓJKĄTÓW SFERYCZNYCH Mteriły dydktyzne Geodezj geometryzn Mrin Ligs, Ktedr Geomtyki, Wydził Geodezji Górnizej i Inżynierii Środowisk OZWIĄZYWANIE MAŁYCH TÓJKĄTÓW SFEYCZNYCH rezentowne metody rozwiązywni młyh trójkątów sferyznyh

Bardziej szczegółowo

H. Dąbrowski, W. Rożek Próbna matura, grudzień 2014 r. CKE poziom rozszerzony 1. Zadanie 15 różne sposoby jego rozwiązania

H. Dąbrowski, W. Rożek Próbna matura, grudzień 2014 r. CKE poziom rozszerzony 1. Zadanie 15 różne sposoby jego rozwiązania H ąrowski, W Rożek Prón mtur, grudzień 014 r K poziom rozszerzony 1 Zdnie 15 różne sposoy jego rozwiązni Henryk ąrowski, Wldemr Rożek Zdnie 15 Punkt jest środkiem oku prostokąt, w którym Punkt leży n oku

Bardziej szczegółowo

Równania różniczkowe cząstkowe - metoda Fouriera. Przykładowe rozwiązania i wskazówki

Równania różniczkowe cząstkowe - metoda Fouriera. Przykładowe rozwiązania i wskazówki INSTYTUT MATEMATYKI POLITECHNIKA KRAKOWSKA Dr Mrgret Wicik e-mi: mwicik@pk.edu.p Równni różniczkowe cząstkowe - metod Fourier. Przykłdowe rozwiązni i wskzówki zd.1. Wyznczyć funkcję opisującą drgni podłużne

Bardziej szczegółowo

Oznaczenia: K wymagania konieczne; P wymagania podstawowe; R wymagania rozszerzające; D wymagania dopełniające; W wymagania wykraczające

Oznaczenia: K wymagania konieczne; P wymagania podstawowe; R wymagania rozszerzające; D wymagania dopełniające; W wymagania wykraczające Wymgni edukcyjne z mtemtyki ls 2 b lo Zkres podstwowy Oznczeni: wymgni konieczne; wymgni podstwowe; R wymgni rozszerzjące; D wymgni dopełnijące; W wymgni wykrczjące Temt lekcji Zkres treści Osiągnięci

Bardziej szczegółowo

2.3.1. Iloczyn skalarny

2.3.1. Iloczyn skalarny 2.3.1. Ilon sklrn Ilonem sklrnm (sklrowm) dwóh wektorów i nwm sklr równ ilonowi modułów ou wektorów pre kosinus kąt wrtego międ nimi. α O Rs. 2.8. Ilustrj do definiji ilonu sklrnego Jeżeli kąt międ wektormi

Bardziej szczegółowo

Propozycja przedmiotowego systemu oceniania wraz z określeniem wymagań edukacyjnych (zakres podstawowy)

Propozycja przedmiotowego systemu oceniania wraz z określeniem wymagań edukacyjnych (zakres podstawowy) Propozycj przedmiotowego systemu ocenini wrz z określeniem wymgń edukcyjnych (zkres podstwowy) Proponujemy, by omwijąc dne zgdnienie progrmowe lub rozwiązując zdnie, nuczyciel określł do jkiego zkresu

Bardziej szczegółowo

Rozwiązywanie zadań z dynamicznego ruchu płaskiego część I 9

Rozwiązywanie zadań z dynamicznego ruchu płaskiego część I 9 ozwiązywnie zdń z dyniczneo ruchu płskieo część I 9 Wprowdzenie ozwiązywnie zdń w oprciu o dyniczne równni ruchu (D pole n uwolnieniu z więzów kżdeo z cił w sposób znny ze sttyki. Wrunki równowi są zbliżone

Bardziej szczegółowo

usuwa niewymierność z mianownika wyrażenia typu

usuwa niewymierność z mianownika wyrażenia typu Wymgni edukcyjne n poszczególne oceny z mtemtyki Kls pierwsz zkres podstwowy. LICZBY RZECZYWISTE podje przykłdy liczb: nturlnych, cłkowitych, wymiernych, niewymiernych, pierwszych i złożonych orz przyporządkowuje

Bardziej szczegółowo

ZASTOSOWANIE RÓWNANIA NASGRO DO OPISU KRZYWYCH PROPAGACYJI PĘKNIĘĆ ZMĘCZENIOWYCH

ZASTOSOWANIE RÓWNANIA NASGRO DO OPISU KRZYWYCH PROPAGACYJI PĘKNIĘĆ ZMĘCZENIOWYCH Sylwester KŁYSZ *, **, nn BIEŃ **, Pweł SZBRCKI ** ** Instytut Techniczny ojsk Lotniczych, rszw * Uniwersytet rmińsko-mzurski, Olsztyn ZSTOSONIE RÓNNI NSGRO DO OPISU KRZYYCH PROPGCYJI PĘKNIĘĆ ZMĘCZENIOYCH

Bardziej szczegółowo

Wprowadzenie do Sieci Neuronowych Łańcuchy Markowa

Wprowadzenie do Sieci Neuronowych Łańcuchy Markowa Projekt pn. Wzmonienie potenjłu dydktyznego UMK w Toruniu w dziedzinh mtemtyzno-przyrodnizyh relizowny w rmh Poddziłni 4.1.1 Progrmu Operyjnego Kpitł Ludzki Wprowdzenie do Siei Neuronowyh Łńuhy Mrkow Mj

Bardziej szczegółowo

Semantyka i Weryfikacja Programów - Laboratorium 7

Semantyka i Weryfikacja Programów - Laboratorium 7 Semntyk i Weryfikj Progrmów - Lortorium 7 Weryfikj twierdzeń logiznyh Cel. Celem ćwizeni jest zpoznnie się z metodą utomtyznego dowodzeni twierdzeń, tzn. weryfikji, zy dne twierdzenie jest tutologią (twierdzenie

Bardziej szczegółowo

Szkice rozwiązań zadań zawody rejonowe 2019

Szkice rozwiązań zadań zawody rejonowe 2019 XVI Śląski Konkurs Mtemtyzny Szkie rozwiązń zdń zwody rejonowe 9 Zdnie. Znjdź wszystkie lizy pierwsze p, dl któryh liz pp+ + też jest lizą pierwszą. Rozwiąznie Jeżeli p, to pp+ + 3 + i jest to liz złożon.

Bardziej szczegółowo

Rozwiązania maj 2017r. Zadania zamknięte

Rozwiązania maj 2017r. Zadania zamknięte Rozwiązni mj 2017r. Zdni zmknięte Zd 1. 5 16 5 2 5 2 Zd 2. 5 2 27 2 23 2 2 2 2 Zd 3. 2log 3 2log 5log 3 log 5 log 9 log 25log Zd. 120% 8910 1,2 8910 2,2 8910 $%, 050 Zd 5. Njłtwiej jest zuwżyć że dl 1

Bardziej szczegółowo

BADANIE ZALEŻNOŚCI PRZENIKALNOŚCI MAGNETYCZNEJ

BADANIE ZALEŻNOŚCI PRZENIKALNOŚCI MAGNETYCZNEJ ADANIE ZAEŻNOŚCI PRZENIKANOŚCI MAGNETYCZNEJ FERRIMAGNETYKÓW OD TEMPERATURY 1. Teori Włściwości mgnetyczne sstncji chrkteryzje współczynnik przeniklności mgnetycznej. Dl próżni ten współczynnik jest równy

Bardziej szczegółowo

Grażyna Nowicka, Waldemar Nowicki BADANIE RÓWNOWAG KWASOWO-ZASADOWYCH W ROZTWORACH ELEKTROLITÓW AMFOTERYCZNYCH

Grażyna Nowicka, Waldemar Nowicki BADANIE RÓWNOWAG KWASOWO-ZASADOWYCH W ROZTWORACH ELEKTROLITÓW AMFOTERYCZNYCH Ćwiczenie Grżyn Nowick, Wldemr Nowicki BDNIE RÓWNOWG WSOWO-ZSDOWYC W ROZTWORC ELETROLITÓW MFOTERYCZNYC Zgdnieni: ktywność i współczynnik ktywności skłdnik roztworu. ktywność jonów i ktywność elektrolitu.

Bardziej szczegółowo

Wymagania edukacyjne matematyka klasa 2b, 2c, 2e zakres podstawowy rok szkolny 2015/2016. 1.Sumy algebraiczne

Wymagania edukacyjne matematyka klasa 2b, 2c, 2e zakres podstawowy rok szkolny 2015/2016. 1.Sumy algebraiczne Wymgni edukcyjne mtemtyk kls 2b, 2c, 2e zkres podstwowy rok szkolny 2015/2016 1.Sumy lgebriczne N ocenę dopuszczjącą: 1. rozpoznje jednominy i sumy lgebriczne 2. oblicz wrtości liczbowe wyrżeń lgebricznych

Bardziej szczegółowo

Wpływ zapadów napięcia na pracę silnika synchronicznego dużej mocy z regulatorem mocy biernej

Wpływ zapadów napięcia na pracę silnika synchronicznego dużej mocy z regulatorem mocy biernej MARIAN HYLA Wpływ zpdów npięi n prę silnik synhroniznego dużej moy z regultorem moy iernej W rtykule przedstwiono wpływ zpdów npięi n prę silnik synhroniznego w stnie synhronizmu. Wyznzono hrkterystyki

Bardziej szczegółowo

Metody Lagrange a i Hamiltona w Mechanice

Metody Lagrange a i Hamiltona w Mechanice Metody Lgrnge i Hmilton w Mechnice Mriusz Przybycień Wydził Fizyki i Informtyki Stosownej Akdemi Górniczo-Hutnicz Wykłd 3 M. Przybycień (WFiIS AGH) Metody Lgrnge i Hmilton... Wykłd 3 1 / 15 Przestrzeń

Bardziej szczegółowo

Rachunek prawdopodobieństwa i statystyka matematyczna.

Rachunek prawdopodobieństwa i statystyka matematyczna. Rchunek rwdoodobieństw i sttystyk mtemtyczn. Zd 8. {(, : i } Zleżność tą możn rzedstwić w ostci nstęującej interretcji grficznej: Arkdiusz Kwosk Rfł Kukliński Informtyk sem.4 gr. Srwdźmy, czy odne zmienne

Bardziej szczegółowo

POLITECHNIKA GDAŃSKA Wydział Elektrotechniki i Automatyki Katedra Energoelektroniki i Maszyn Elektrycznych

POLITECHNIKA GDAŃSKA Wydział Elektrotechniki i Automatyki Katedra Energoelektroniki i Maszyn Elektrycznych POLITECHNIKA GDAŃSKA Wydził Elektrotechniki i Automtyki Ktedr Energoelektroniki i Mszyn Elektrycznych S Y S T E M Y E L E K T R O M E C H A N I C Z N E PROJEKT/LABORATORIUM ĆWICZENIE (SPS) SILNIK PRĄDU

Bardziej szczegółowo

POLITECHNIKA GDAŃSKA Wydział Elektrotechniki i Automatyki Katedra Energoelektroniki i Maszyn Elektrycznych M O D E L O W A N I E I S Y M U L A C J A

POLITECHNIKA GDAŃSKA Wydział Elektrotechniki i Automatyki Katedra Energoelektroniki i Maszyn Elektrycznych M O D E L O W A N I E I S Y M U L A C J A POLTECHNKA GDAŃSKA Wydził Elektrotechniki i Automtyki Ktedr Energoelektroniki i Mszyn Elektrycznych M O D E L O W A N E S Y M U L A C J A S Y S T E M Ó W M E C H A T O N K Kierunek Automtyk i obotyk Studi

Bardziej szczegółowo

WYMAGANIA EDUKACYJNE Z MATEMATYKI W KLASIE IIc ZAKRES PODSTAWOWY I ROZSZERZONY

WYMAGANIA EDUKACYJNE Z MATEMATYKI W KLASIE IIc ZAKRES PODSTAWOWY I ROZSZERZONY WYMAGANIA EDUKACYJNE Z MATEMATYKI W KLASIE IIc ZAKRES PODSTAWOWY I ROZSZERZONY. JĘZYK MATEMATYKI oblicz wrtość bezwzględną liczby rzeczywistej stosuje interpretcję geometryczną wrtości bezwzględnej liczby

Bardziej szczegółowo

Równania i nierówności kwadratowe z jedną niewiadomą

Równania i nierówności kwadratowe z jedną niewiadomą 50 REPETYTORIUM 31 Równni i nierówności kwdrtowe z jedną niewidomą Równnie wielominowe to równość dwóch wyrżeń lgebricznych Kżd liczb, któr po podstwieniu w miejscu niewidomej w równniu o jednej niewidomej

Bardziej szczegółowo

STYLE. TWORZENIE SPISÓW TREŚCI

STYLE. TWORZENIE SPISÓW TREŚCI STYLE. TWORZENIE SPISÓW TREŚCI Ćwiczenie 1 Tworzenie nowego stylu n bzie istniejącego 1. Formtujemy jeden kpit tekstu i zznczmy go (stnowi on wzorzec). 2. Wybiermy Nrzędzi główne, rozwijmy okno Style (lub

Bardziej szczegółowo

Wymagania edukacyjne matematyka klasa 2 zakres podstawowy 1. SUMY ALGEBRAICZNE

Wymagania edukacyjne matematyka klasa 2 zakres podstawowy 1. SUMY ALGEBRAICZNE Wymgni edukcyjne mtemtyk kls 2 zkres podstwowy 1. SUMY ALGEBRAICZNE Uczeń otrzymuje ocenę dopuszczjącą lub dostteczną, jeśli: rozpoznje jednominy i sumy lgebriczne oblicz wrtości liczbowe wyrżeń lgebricznych

Bardziej szczegółowo

Klucz odpowiedzi do zadań zamkniętych i schemat oceniania zadań otwartych

Klucz odpowiedzi do zadań zamkniętych i schemat oceniania zadań otwartych Klucz odpowiedzi do zdń zmkniętc i scemt ocenini zdń otwrtc Klucz odpowiedzi do zdń zmkniętc 4 7 9 0 4 7 9 0 D D D Scemt ocenini zdń otwrtc Zdnie (pkt) Rozwiąż nierówność x x 0 Oliczm wróżnik i miejsc

Bardziej szczegółowo

Wektor kolumnowy m wymiarowy macierz prostokątna o wymiarze n=1 Wektor wierszowy n wymiarowy macierz prostokątna o wymiarze m=1

Wektor kolumnowy m wymiarowy macierz prostokątna o wymiarze n=1 Wektor wierszowy n wymiarowy macierz prostokątna o wymiarze m=1 Rchunek mcierzowy Mcierzą A nzywmy funkcję 2-zmiennych, któr prze liczb nturlnych (i,j) gdzie i = 1,2,3,4.,m; j = 1,2,3,4,n przyporządkowuje dokłdnie jeden element ij. 11 21 A = m1 12 22 m2 1n 2n mn Wymirem

Bardziej szczegółowo

MATeMAtyka 3 inf. Przedmiotowy system oceniania wraz z określeniem wymagań edukacyjnych. Zakres podstawowy i rozszerzony. Dorota Ponczek, Karolina Wej

MATeMAtyka 3 inf. Przedmiotowy system oceniania wraz z określeniem wymagań edukacyjnych. Zakres podstawowy i rozszerzony. Dorota Ponczek, Karolina Wej Dorot Ponczek, Krolin Wej MATeMAtyk 3 inf Przedmiotowy system ocenini wrz z określeniem wymgń edukcyjnych Zkres podstwowy i rozszerzony Wyróżnione zostły nstępujące wymgni progrmowe: konieczne (K), podstwowe

Bardziej szczegółowo

ANALIZA PRACY SYSTEMU ENERGETYCZNO-NAPĘDOWEGO STATKU TYPU OFFSHORE Z WYKORZYSTANIEM METODY DRZEW USZKODZEŃ

ANALIZA PRACY SYSTEMU ENERGETYCZNO-NAPĘDOWEGO STATKU TYPU OFFSHORE Z WYKORZYSTANIEM METODY DRZEW USZKODZEŃ MGR INŻ. LSZK CHYBOWSKI Politchnik Szczcińsk Wydził Mchniczny Studium Doktorncki ANALIZA PRACY SYSTMU NRGTYCZNO-NAPĘDOWGO STATKU TYPU OFFSHOR Z WYKORZYSTANIM MTODY DRZW USZKODZŃ STRSZCZNI W mtril przdstwiono

Bardziej szczegółowo

MATEMATYKA Przed próbną maturą. Sprawdzian 1. (poziom podstawowy) Rozwiązania zadań

MATEMATYKA Przed próbną maturą. Sprawdzian 1. (poziom podstawowy) Rozwiązania zadań MTMTYK Przed próbną mturą. Sprwdzin. (poziom podstwow) Rozwiązni zdń Zdnie. ( pkt) 0,() < P.. Uczeń przedstwi liczb rzeczwiste w różnch postcich. Odpowiedź:., czli < Zdnie. ( pkt) P.. Uczeń rozwiązuje

Bardziej szczegółowo

T W O R Z Y M Y. 15 godzin w cyklu 3-godzinnym

T W O R Z Y M Y. 15 godzin w cyklu 3-godzinnym T W O R Z Y M Y 5 godzin -godzinnym Szzegółowe ele ksztłeni i wyhowni: doskonlenie umiejętnośi pry z edytorem grfiznym poznnie zsd poprwnego tworzeni prezentji multimedilnyh nyie umiejętnośi smodzielnego

Bardziej szczegółowo

Dorota Ponczek, Karolina Wej. MATeMAtyka 2. Plan wynikowy. Zakres podstawowy

Dorota Ponczek, Karolina Wej. MATeMAtyka 2. Plan wynikowy. Zakres podstawowy Dorot Ponczek, rolin Wej MATeMAtyk Pln wynikowy Zkres podstwowy MATeMAtyk. Pln wynikowy. ZP Oznczeni: wymgni konieczne, P wymgni podstwowe, R wymgni rozszerzjące, D wymgni dopełnijące, W wymgni wykrczjące

Bardziej szczegółowo

WYMAGANIA NA OCENĘ DOPUSZCZAJĄCĄ DLA UCZNIÓW KLASY Ia TECHNIKUM

WYMAGANIA NA OCENĘ DOPUSZCZAJĄCĄ DLA UCZNIÓW KLASY Ia TECHNIKUM WYMAGANIA NA OCENĘ DOPUSZCZAJĄCĄ DLA UCZNIÓW KLASY I TECHNIKUM Egzmin poprwkowy n ocenę dopuszczjącą będzie obejmowł zdni zgodne z poniższymi wymgnimi n ocenę dopuszczjącą. Egzmin poprwkowy n wyższą ocenę

Bardziej szczegółowo

dr inż. Zbigniew Szklarski

dr inż. Zbigniew Szklarski Wkłd 3: Kinemtk dr inż. Zbigniew Szklrski szkl@gh.edu.pl http://ler.uci.gh.edu.pl/z.szklrski/ Wstęp Opis ruchu KINEMATYKA Dlczego tki ruch? Przczn ruchu DYNAMIKA MECHANIKA Podstwowe pojęci dl ruchu prostoliniowego

Bardziej szczegółowo

Analiza matematyczna v.1.6 egzamin mgr inf niestacj 1. x p. , przy założeniu, że istnieją lim

Analiza matematyczna v.1.6 egzamin mgr inf niestacj 1. x p. , przy założeniu, że istnieją lim Anliz mtemtyczn v..6 egzmin mgr inf niestcj Oznczeni: f, g, h : J R funkcje rzeczywiste określone n J R J przedził, b),, b], [, b), [, b], półprost, b),, b],, ), [, ) lub prost R α, β [min{α, β}, m{α,

Bardziej szczegółowo

Wykład 2. Pojęcie całki niewłaściwej do rachunku prawdopodobieństwa

Wykład 2. Pojęcie całki niewłaściwej do rachunku prawdopodobieństwa Wykłd 2. Pojęcie cłki niewłściwej do rchunku prwdopodobieństw dr Mriusz Grządziel 4 mrc 24 Pole trpezu krzywoliniowego Przypomnienie: figurę ogrniczoną przez: wykres funkcji y = f(x), gdzie f jest funkcją

Bardziej szczegółowo

Sumy algebraiczne i funkcje wymierne

Sumy algebraiczne i funkcje wymierne Sumy lgebriczne i funkcje wymierne Moduł - dził -temt Zkres treści Sumy lgebriczne 1 definicj jednominu, sumy lgebricznej, wyrzów podobnych pojęcie współczynnik jednominu Dodwnie i odejmownie sum lgebricznych

Bardziej szczegółowo

Przetworniki Elektromaszynowe st. n. st. sem. V (zima) 2018/2019

Przetworniki Elektromaszynowe st. n. st. sem. V (zima) 2018/2019 Kolokwium główne Wrint A Przetworniki lektromszynowe st. n. st. sem. V (zim 018/019 Trnsormtor Trnsormtor trójzowy m nstępujące dne znmionowe: S 00 kva 50 Hz HV / LV 15 ±x5% / 0,4 kv poł. Dyn Pondto widomo,

Bardziej szczegółowo

RÓWNOWAGA CHEMICZNA. Reakcje chemiczne: nieodwracalne ( praktycznie nieodwracalne???) reakcje wybuchowe, np. wybuch nitrogliceryny: 2 C H 2

RÓWNOWAGA CHEMICZNA. Reakcje chemiczne: nieodwracalne ( praktycznie nieodwracalne???) reakcje wybuchowe, np. wybuch nitrogliceryny: 2 C H 2 RÓWNOWG CHEMICZN N O 4 NO Rekje hemizne: nieowrlne ( rktyznie nieowrlne???) rekje wyuhowe, n. wyuh nitroglieryny: C 3 H 5 N 3 O 9 6 CO + 3 N + 5 H O + / O rekje rozu romieniotwórzego, n. roz urnu gy jeen

Bardziej szczegółowo

Klasa druga: II TK1, II TK2 Poziom podstawowy 3 godz. x 30 tyg.= 90 nr programu DKOS /07 I. Funkcja kwadratowa

Klasa druga: II TK1, II TK2 Poziom podstawowy 3 godz. x 30 tyg.= 90 nr programu DKOS /07 I. Funkcja kwadratowa Kls drug: II TK1, II TK2 Poziom podstwowy 3 godz. 30 tyg.= 0 nr progrmu DKOS-5002-7/07 I. Funkcj kwdrtow Moduł - dził - L.p. temt Wykres 1 f()= 2 2 Zkres treści Pojęcie Rysownie wykresów Związek współczynnik

Bardziej szczegółowo

DOBÓR LINIOWO-ŁAMANEGO ROZDZIAŁU SIŁ HAMUJĄCYCH W SAMOCHODACH DOSTAWCZYCH

DOBÓR LINIOWO-ŁAMANEGO ROZDZIAŁU SIŁ HAMUJĄCYCH W SAMOCHODACH DOSTAWCZYCH Zgnew Kmńsk DOBÓ INIOWO-ŁMNEO OZDZIŁU SIŁ HMUJĄCYCH W SMOCHODCH DOSTWCZYCH Streszczene. W rtykule opsno sposoy dooru lnowo-łmnego rozdzłu sł mującyc w smocodc dostwczyc według wymgń egulmnu 3 ECE. Przedstwono

Bardziej szczegółowo

Algebra Boola i podstawy systemów liczbowych. Ćwiczenia z Teorii Układów Logicznych, dr inż. Ernest Jamro. 1. System dwójkowy reprezentacja binarna

Algebra Boola i podstawy systemów liczbowych. Ćwiczenia z Teorii Układów Logicznych, dr inż. Ernest Jamro. 1. System dwójkowy reprezentacja binarna lger Bool i podstwy systemów liczowych. Ćwiczeni z Teorii Ukłdów Logicznych, dr inż. Ernest Jmro. System dwójkowy reprezentcj inrn Ukłdy logiczne operują tylko n dwóch stnch ozncznymi jko zero (stn npięci

Bardziej szczegółowo

2. FUNKCJE WYMIERNE Poziom (K) lub (P)

2. FUNKCJE WYMIERNE Poziom (K) lub (P) Kls drug poziom podstwowy 1. SUMY ALGEBRAICZNE Uczeń otrzymuje ocenę dopuszczjącą lub dostteczną, jeśli: rozpoznje jednominy i sumy lgebriczne oblicz wrtości liczbowe wyrżeń lgebricznych redukuje wyrzy

Bardziej szczegółowo

KRYTERIA OCENIANIA ODPOWIEDZI Próbna Matura z OPERONEM. Matematyka. Poziom rozszerzony. Listopad Wskazówki do rozwiązania zadania =

KRYTERIA OCENIANIA ODPOWIEDZI Próbna Matura z OPERONEM. Matematyka. Poziom rozszerzony. Listopad Wskazówki do rozwiązania zadania = Vdemecum GIELDAMATURALNA.PL ODBIERZ KOD DOSTĘPU* Mtemtyk - Twój indywidulny klucz do wiedzy! *Kod n końcu klucz odpowiedzi KRYTERIA OCENIANIA ODPOWIEDZI Prón Mtur z OPERONEM Operon 00% MATURA 07 VA D EMECUM

Bardziej szczegółowo

Zawór regulacyjny ZK210 z wielostopniową dyszą promieniową

Zawór regulacyjny ZK210 z wielostopniową dyszą promieniową Zwór regulcyjny z wielostopniową dyszą promieniową Zwór regulcyjny Opis Zwór regulcyjny służący do prcy przy wysokich ciśnienich różnicowych. Stosowny jest między innymi, w instlcjch przemysłowych i elektrownich,

Bardziej szczegółowo

Materiały pomocnicze do ćwiczeń z przedmiotu: Ogrzewnictwo, wentylacja i klimatyzacja II. Klimatyzacja

Materiały pomocnicze do ćwiczeń z przedmiotu: Ogrzewnictwo, wentylacja i klimatyzacja II. Klimatyzacja Mteriły pomocnicze do ćwiczeń z przedmiotu: Orzewnictwo, wentylcj i klimtyzcj II. Klimtyzcj Rozdził 1 Podstwowe włsności powietrz jko nośnik ciepł mr inż. Anieszk Sdłowsk-Słę Mteriły pomocnicze do klimtyzcji.

Bardziej szczegółowo

Prędkość i przyspieszenie punktu bryły w ruchu kulistym

Prędkość i przyspieszenie punktu bryły w ruchu kulistym Pędkość i pzyspieszenie punktu były w uchu kulistym Położenie dowolnego punktu były okeślmy z pomocą wekto (o stłej długości) któego współzędne możemy podć w nieuchomym ukłdzie osi x y z ) z b) ζ ζ η z

Bardziej szczegółowo

Połączenie (1) Optymalizacja poleceń SQL Część 3. Algorytm nested loops. Połączenie (2)

Połączenie (1) Optymalizacja poleceń SQL Część 3. Algorytm nested loops. Połączenie (2) Połązenie () Optymlizj poleeń SQL zęść. Metody połązeń, metody sortowni, wskzówki Operj inrn zwsze udził iorą dwie tele, jedn zostje nzwn telą zewnętrzną, drug telą wewnętrzną. W przypdku poleeni łąząego

Bardziej szczegółowo

Wykład 2. Granice, ciągłość, pochodna funkcji i jej interpretacja geometryczna

Wykład 2. Granice, ciągłość, pochodna funkcji i jej interpretacja geometryczna 1 Wykłd Grnice, ciągłość, pocodn unkcji i jej interpretcj geometryczn.1 Grnic unkcji. Grnic lewostronn i grnic prwostronn unkcji Deinicj.1 Mówimy, że liczb g jest grnicą lewostronną unkcji w punkcie =,

Bardziej szczegółowo

LISTA02: Projektowanie układów drugiego rzędu Przygotowanie: 1. Jakie własności ma równanie 2-ego rzędu & x &+ bx&

LISTA02: Projektowanie układów drugiego rzędu Przygotowanie: 1. Jakie własności ma równanie 2-ego rzędu & x &+ bx& LISTA: Projektownie ukłdów drugiego rzędu Przygotownie: 1. Jkie włsności m równnie -ego rzędu & &+ b + c u jeśli: ) c>; b) c; c) c< Określ położenie biegunów, stbilność, oscylcje Zdni 1: Wyzncz bieguny.

Bardziej szczegółowo

PRZEŁĄCZNIK MIEJSC POMIAROWYCH PMP

PRZEŁĄCZNIK MIEJSC POMIAROWYCH PMP CZAKI THERMO-PRODUCT ul. 19 Kwietni 58 05-090 Rszyn-Ryie tel. (22) 7202302 fx. (22) 7202305 www.zki.pl hndlowy@zki.pl PRZEŁĄCZNIK MIEJSC POMIAROWYCH PMP-201-10 INSTRUKCJA OBSŁUGI GWARANCJA Spis treśi 1.

Bardziej szczegółowo

Semantyka i Weryfikacja Programów - Laboratorium 2 Działania na ułamkach, krotki i rekordy

Semantyka i Weryfikacja Programów - Laboratorium 2 Działania na ułamkach, krotki i rekordy Semntyk i Weryfikj Progrmów - Lortorium Dziłni n ułmkh, krotki i rekory Cz. I. Dziłni n ułmkh Prolem. Oprowć zestw funkji o ziłń rytmetyznyh n ułmkh zwykłyh posti q, gzie, są lizmi łkowitymi i 0. Rozwiąznie

Bardziej szczegółowo

Projektowanie żelbetowych kominów przemysłowych wieloprzewodowych

Projektowanie żelbetowych kominów przemysłowych wieloprzewodowych Budownitwo i Arhitektur 3 (2008) 71-80 Projektownie żelbetowyh kominów przemysłowyh wieloprzewodowyh Mrt Słowik 1, Młgorzt Dobrowolsk 2, Krzysztof Borzęki 2 1 Ktedr Konstrukji Budowlnyh, Wydził Inżynierii

Bardziej szczegółowo

1 klasyfikacja trójkątów twierdzenie o sumie miar kątów w trójkącie

1 klasyfikacja trójkątów twierdzenie o sumie miar kątów w trójkącie Funkcj kwdrtow - powtórzenie z klsy pierwszej (5godzin) PLANIMETRIA Moduł - dził - temt Miry kątów w trójkącie Lp Zkres treści 1 klsyfikcj trójkątów twierdzenie o sumie mir kątów w trójkącie Trójkąty przystjące

Bardziej szczegółowo

WYMAGANIA I KRYTERIA OCENIANIA DO EGZAMINU POPRAWKOWEGO MATEMATYKA. Zakresie podstawowym i rozszerzonym. Klasa II rok szkolny 2011/2012

WYMAGANIA I KRYTERIA OCENIANIA DO EGZAMINU POPRAWKOWEGO MATEMATYKA. Zakresie podstawowym i rozszerzonym. Klasa II rok szkolny 2011/2012 mgr Jolnt Chlebd mgr Mri Mślnk mgr Leszek Mślnk mgr inż. Rent itl mgr inż. Henryk Stępniowski Zespół Szkół ondgimnzjlnych Młopolsk Szkoł Gościnności w Myślenicch WYMAGANIA I RYTERIA OCENIANIA DO EGZAMINU

Bardziej szczegółowo

Wprowadzenie do Sieci Neuronowych Łańcuchy Markowa

Wprowadzenie do Sieci Neuronowych Łańcuchy Markowa Wprowdzenie do Siei Neuronowyh Łńuhy Mrkow Mj Czoków, Jrosłw Piers 213-1-14 1 Przypomnienie Łńuh Mrkow jest proesem stohstyznym (iągiem zmiennyh losowyh), w którym rozkłd zmiennej w hwili t zleży wyłąznie

Bardziej szczegółowo

Podstawy programowania obiektowego

Podstawy programowania obiektowego 1/3 Podstwy progrmowni oiektowego emil: m.tedzki@p.edu.pl stron: http://rgorn.p.ilystok.pl/~tedzki/ Mrek Tędzki Wymgni wstępne: Wskzn yły znjomość podstw progrmowni strukturlnego (w dowolnym języku). Temty

Bardziej szczegółowo

Szczegółowe wymagania edukacyjne z matematyki, klasa 2C, poziom podstawowy

Szczegółowe wymagania edukacyjne z matematyki, klasa 2C, poziom podstawowy Szczegółowe wymgni edukcyjne z mtemtyki, kls 2C, poziom podstwowy Wymgni konieczne () dotyczą zgdnieo elementrnych, stnowiących swego rodzju podstwę, ztem powinny byd opnowne przez kżdego uczni. Wymgni

Bardziej szczegółowo

Integralność konstrukcji

Integralność konstrukcji 1 Integrlność konstrukcji Wykłd Nr 5 PROJEKTOWANIE W CELU UNIKNIĘCIA ZMĘCZENIOWEGO Wydził Inżynierii Mechnicznej i Robotyki Ktedr Wytrzymłości, Zmęczeni Mteriłów i Konstrukcji http://zwmik.imir.gh.edu.pl/dydktyk/imir/index.htm

Bardziej szczegółowo

Uzsdnienie podjęi bdń W produkth żywnośiowyh obenyh n rynku jko zmiennik tłuszzu zzwyzj stosuje się węglowodny. Prktyznie nie m n rynku produktów, w k

Uzsdnienie podjęi bdń W produkth żywnośiowyh obenyh n rynku jko zmiennik tłuszzu zzwyzj stosuje się węglowodny. Prktyznie nie m n rynku produktów, w k Wysokobiłkowe sery topione Dr hb. inż. Brtosz Sołowiej Uniwersytet Przyrodnizy w Lublinie Wydził Nuk o Żywnośi i Biotehnologii Zkłd Tehnologii Mlek i Hydrokoloidów Uzsdnienie podjęi bdń W produkth żywnośiowyh

Bardziej szczegółowo

Wytrzymałość Materiałów I

Wytrzymałość Materiałów I Wytrzymłość Mteriłów I kierunek Budownictwo, sem. III mteriły pomocnicze do ćwiczeń oprcownie: dr hb. inŝ. Mrcin Kmiński TREŚĆ WYKŁADU Ro, podstwowe pojęci i złoŝeni orz zkres wytrzymłości mteriłów. Rozciągnie

Bardziej szczegółowo

Elektroniczna aparatura w Laboratorium Metrologii, cz. I

Elektroniczna aparatura w Laboratorium Metrologii, cz. I Lortorium Metrologii I Politehnik Rzeszowsk Zkł Metrologii i Systemów Pomirowyh Lortorium Metrologii I Elektronizn prtur w Lortorium Metrologii, z. I Grup Nr ćwiz.... kierownik...... 4... Dt Oen I. Cel

Bardziej szczegółowo

METODYKA OCENY WŁAŚCIWOŚCI SYSTEMU IDENTYFIKACJI PARAMETRYCZNEJ OBIEKTU BALISTYCZNEGO

METODYKA OCENY WŁAŚCIWOŚCI SYSTEMU IDENTYFIKACJI PARAMETRYCZNEJ OBIEKTU BALISTYCZNEGO MODELOWANIE INŻYNIERSKIE ISNN 1896-771X 32, s. 151-156, Gliwice 2006 METODYKA OCENY WŁAŚCIWOŚCI SYSTEMU IDENTYFIKACJI PARAMETRYCZNEJ OBIEKTU BALISTYCZNEGO JÓZEF GACEK LESZEK BARANOWSKI Instytut Elektromechniki,

Bardziej szczegółowo

Zastosowanie analizy widmowej sygnału ultradwikowego do okrelenia gruboci cienkich warstw

Zastosowanie analizy widmowej sygnału ultradwikowego do okrelenia gruboci cienkich warstw AMME 1 1th JUBILEE INTERNATIONAL SC IENTIFIC CONFERENCE Zstosownie nlizy widmowej sygnłu ultrdwikowego do okreleni gruboci cienkich wrstw A. Kruk Wydził Metlurgii i Inynierii Mteriłowej, Akdemi Górniczo-Hutnicz

Bardziej szczegółowo

ZASTOSOWANIE ANALIZY CZASOWO-CZĘSTOTLIWOŚCIOWEJ W DIAGNOZOWANIU LOKALNYCH USZKODZEŃ PRZEKŁADNI ZĘBATYCH

ZASTOSOWANIE ANALIZY CZASOWO-CZĘSTOTLIWOŚCIOWEJ W DIAGNOZOWANIU LOKALNYCH USZKODZEŃ PRZEKŁADNI ZĘBATYCH Szybkobieżne Pojzdy Gąsienicowe (14) nr 1, 2001 Andrzej WILK Henryk MADEJ Bogusłw ŁAZARZ ZASTOSOWANIE ANALIZY CZASOWO-CZĘSTOTLIWOŚCIOWEJ W DIAGNOZOWANIU LOKALNYCH USZKODZEŃ PRZEKŁADNI ZĘBATYCH Streszczenie:

Bardziej szczegółowo

1. LINIE WPŁYWOWE W UKŁADACH STATYCZNIE WYZNACZALNYCH

1. LINIE WPŁYWOWE W UKŁADACH STATYCZNIE WYZNACZALNYCH zęść. LINIE WPŁYWOWE W UKŁH STTYZNIE WYZNZLNYH.. LINIE WPŁYWOWE W UKŁH STTYZNIE WYZNZLNYH.. Zdnie l belki przedstwionej n poniższym rysunku wyznczyć linie wpływowe zznczonych wielkości sttycznych (linie

Bardziej szczegółowo

FUNKCJA KWADRATOWA. Moduł - dział -temat Lp. Zakres treści. z.p. z.r Funkcja kwadratowa - powtórzenie PLANIMETRIA 1

FUNKCJA KWADRATOWA. Moduł - dział -temat Lp. Zakres treści. z.p. z.r Funkcja kwadratowa - powtórzenie PLANIMETRIA 1 FUNKCJA KWADRATOWA Moduł - dził -temt Funkcj kwdrtow - powtórzenie Lp Lp z.p. z.r. 1 1 Równni kwdrtowe 2 Postć iloczynow funkcji kwdrtowej 3 Równni sprowdzlne do równń kwdrtowych Nierówności kwdrtowe 5

Bardziej szczegółowo

WYZNACZANIE OGNISKOWEJ SOCZEWEK CIENKICH ZA POMOCĄ ŁAWY OPTYCZNEJ

WYZNACZANIE OGNISKOWEJ SOCZEWEK CIENKICH ZA POMOCĄ ŁAWY OPTYCZNEJ Ćwiczenie 9 WYZNACZANIE OGNISKOWEJ SOCZEWEK CIENKICH ZA POMOCĄ ŁAWY OPTYCZNEJ 9.. Opis teoretyczny Soczewką seryczną nzywmy przezroczystą bryłę ogrniczoną dwom powierzchnimi serycznymi o promienich R i

Bardziej szczegółowo

ph ROZTWORÓW WODNYCH

ph ROZTWORÓW WODNYCH ph ROZTWORÓW WODNYCH ph roztworów monyh kwsów i zsd H O H O A α 00 % MeOH Me OH MeOH α 00 % np.: HCl, r, HI, HNO, HClO i HClO NOH, OH, CsOH i ROH [H O [OH MeOH ph - log poh - log MeOH Mone kwsy dwuprotonowe,

Bardziej szczegółowo

Analiza matematyczna i algebra liniowa

Analiza matematyczna i algebra liniowa Anliz mtemtyczn i lgebr liniow Mteriły pomocnicze dl studentów do wykłdów Mcierze liczbowe i wyznczniki. Ukłdy równń liniowych. Mcierze. Wyznczniki. Mcierz odwrotn. Równni mcierzowe. Rząd mcierzy. Ukłdy

Bardziej szczegółowo

Kodowanie liczb. Kodowanie stałopozycyjne liczb całkowitych. Niech liczba całkowita a ma w systemie dwójkowym postać: Kod prosty

Kodowanie liczb. Kodowanie stałopozycyjne liczb całkowitych. Niech liczba całkowita a ma w systemie dwójkowym postać: Kod prosty Kodownie licz Kodownie stłopozycyjne licz cłkowitych Niech licz cłkowit m w systemie dwójkowym postć: nn 0 Wtedy może yć on przedstwion w postci ( n+)-itowej przy pomocy trzech niżej zdefiniownych kodów

Bardziej szczegółowo

Wymagania edukacyjne z matematyki FUNKCJE dopuszczającą dostateczną dobrą bardzo dobrą

Wymagania edukacyjne z matematyki FUNKCJE dopuszczającą dostateczną dobrą bardzo dobrą Wymgni edukcyjne z mtemtyki Kls IIC. Rok szkolny 013/014 Poziom podstwowy FUNKCJE Uczeń otrzymuje ocenę dopuszczjącą lub dostteczną, jeśli: rozpoznje przyporządkowni będące funkcjmi określ funkcję różnymi

Bardziej szczegółowo

KSIĘGA ZNAKU. Znak posiada swój obszar ochronny i w jego obrębie nie mogą się znajdować żadne elementy, nie związane ze znakiem.

KSIĘGA ZNAKU. Znak posiada swój obszar ochronny i w jego obrębie nie mogą się znajdować żadne elementy, nie związane ze znakiem. KSIĘGA ZNAKU KSIĘGA ZNAKU Poniżej przedstwion jest chrkterystyk znku 7 lt Uniwersytetu Łódzkiego. Wszystkie proporcje i sposób rozmieszczeni poszczególnych elementów są ściśle określone. Wprowdznie jkichkolwiek

Bardziej szczegółowo

1 Definicja całki podwójnej po prostokącie

1 Definicja całki podwójnej po prostokącie 1 efinij łki podwójnej po prostokąie efinij 1 Podziłem prostokąt = {(x, y) : x b, y d} (inzej: = [, b] [, d]) nzywmy zbiór P złożony z prostokątów 1, 2,..., n które łkowiie go wypełniją i mją prmi rozłązne

Bardziej szczegółowo

Dla danego czynnika termodynamicznego i dla określonej przemiany ciepło właściwe w ogólności zależy od dwóch niezależnych

Dla danego czynnika termodynamicznego i dla określonej przemiany ciepło właściwe w ogólności zależy od dwóch niezależnych Ciepło włśiwe Nieh zynnik ermodynmizny m sn określony przez emperurę orz iśnienie p. Dl dowolnej elemenrnej przeminy zzynjąej się od ego snu możemy npisć dq [J/kg] ( Równnie ( wiąże pohłninie lub oddwnie

Bardziej szczegółowo

EGZAMIN MATURALNY OD ROKU SZKOLNEGO 2014/2015 MATEMATYKA POZIOM ROZSZERZONY ROZWIĄZANIA ZADAŃ I SCHEMATY PUNKTOWANIA (A1, A2, A3, A4, A6, A7)

EGZAMIN MATURALNY OD ROKU SZKOLNEGO 2014/2015 MATEMATYKA POZIOM ROZSZERZONY ROZWIĄZANIA ZADAŃ I SCHEMATY PUNKTOWANIA (A1, A2, A3, A4, A6, A7) EGZAMIN MATURALNY OD ROKU SZKOLNEGO 01/015 MATEMATYKA POZIOM ROZSZERZONY ROZWIĄZANIA ZADAŃ I SCHEMATY PUNKTOWANIA (A1, A, A, A, A6, A7) GRUDZIEŃ 01 Klucz odpowiedzi do zdń zmkniętych Nr zdni 1 5 Odpowiedź

Bardziej szczegółowo

Rys Wyrównanie spostrzeżeń zawarunkowanych jednakowo dokładnych C. KRAKOWIANY

Rys Wyrównanie spostrzeżeń zawarunkowanych jednakowo dokładnych C. KRAKOWIANY Rys. 9.. Wyrównnie spostrzeżeń zwrunkownyh jednkowo dokłdnyh C. KRAKOWIANY 9.9. Informje wstępne o krkowinh Krkowin jest zespołem liz rozmieszzonyh w prostokątnej teli o k kolumnh i w wierszh, dl którego

Bardziej szczegółowo