SciLab Literatura. Tomasz Łukaszewski. Politechnika Poznańska Instytut Informatyki
|
|
- Franciszek Wróbel
- 8 lat temu
- Przeglądów:
Transkrypt
1 SciLab 2016 Tomasz Łukaszewski Politechnika Poznańska Instytut Informatyki Literatura A. Brozi, Scilab w przykładach, Nakom 2007 W. Treichelt i M.Stachurski, Matlab dla studentów, Witkom
2 Wprowadzenie 3 Zmienne Nazwy: dozwolone nazwy zawierają znaki: od a do z, od A do Z, od 0 do 9 oraz _, #,!, $,? Operator przypisania wartości zmiennej = Przykład x=2 napis= Hello 4 2
3 Operatory Operatory logiczne & (and), (or), ~ (not), == (operator równoważności) Operatory na łańcuchach <lancuch> + <lancuch> (połączenie) Operatory zakresu indeksów <start> : <stop> (zakres ze zmianą równą1) <start> : <krok zmiany> : <stop> Przykład hello + world 3:7 3:2:7 Zadanie 1: wypisz liczby całkowite od 10 do 1 malejąco 5 Macierze Definiowanie przez wprowadzenie z linii poleceń: [ oraz ] oznacza początek i koniec macierzy, oddziela elementy w wierszu ; oddziela wiersze : definiowanie zakresu Przykład a = [1,2,3] // wektor wierszowy b = [4 ; 5 ; 6] // wektor kolumnowy c = [1,2; 3,4; 5,6] // macierz 3 wiersze 2 kolumny d = [1:10] // wektor wartości od 1 do 10 e = 1:10 // wektor wartości od 1 do 10!! f = [d ; e] f = [1:10;1:10] 6 3
4 Macierze Odwołanie się do elementów : ( oraz ) pozwala odwołać się do elementów, podając w nawiasach numer wiersza i kolumny oddzielony, : interpretowany jako cały zakres zmienności $ indeks ostatniego elementu Przykład c(2,1) // 2-gi wiersz i 1-a kolumna c(1:2,1:2) // podmacierz c(1,:) // elementy 1-go wiersza c(:,1) // elementy 1-ej kolumny c($,$) // prawy dolny element Zadanie 2: wypisz 2 pierwsze elementy macierzy c Zadanie 3: wypisz 3 ostatnie elementy macierzy c Zadanie 4: wypisz wszystkie elementy macierzy c 7 Macierze Odwołanie się do elementów : wybieranie elementów za pomocą macierzy wartości logicznych Przykład a=[1:5] b=sin(a) c=b>0 b(c) a(c) // macierz wartości logicznych // wybieranie // wybieranie Zadanie 5: z macierzy o wartościach całkowitych wybierz wartości większe od 7 8 4
5 Macierze cd. Funkcje równomiernie zapełniające zakres linspace(a,b) liniowo od a do b (100 elementow) linspace(a,b,c) liniowo od a do b (c elementow) logspace(a,b) logarytmicznie j.w. Przykład linspace(1,100) linspace(1,100,10) //domyslnie 100 elementow //10 elementow g = logspace(1,3,3) log10(g) 9 Macierze cd. Funkcje tworzące macierze specjalne ones() macierz zawierająca 1 zeros() macierz zawierająca 0 eye() macierz jednostkowa rand() macierz losowa Przykład ones(3,2) // macierz 3x2 zeros(2,3) // macierz 2x3 eye(4,4) // macierz 4x4 rand(2,3) // macierz 2x3 10 5
6 Macierze cd. Funkcje tworzące macierze specjalne diag() utworzenie macierzy diagonalnej z elementów wektora lub wydobycie przekątnej z istniejącej macierzy Przykład h=[1:3] diag(h) // utworzenie macierzy diagonalnej h=rand(3,3) diag(h) // wydobycie przekątnej z macierzy 11 Macierze Operacje: operator transpozycji macierzy A + B dodanie dwóch macierzy +, -, *, / - dzielenie to mnożenie przez odwrotność!!!.*,./ - operacje na elementach macierzy Przykład A=[1,2,3] B=[4;5;6] A+A A+B // ERROR!!! A+B A+3 A B 12 6
7 Macierze Przykład A * B // mnożenie w sensie Cauchy ego B * A // mnożenie w sensie Cauchy ego A * B // ERROR!!! A.* B // mnożenie element przez element A * 3 A B 13 Macierze Operacje (uwaga: zdefiniuj wpierw macierze) A + B = B + A // przemienność A + (B+C) = (A + B)+C // łączność I*A = A * I = A A * (B *C) = (A * B)*C // łączność A*B = B*A = I // B macierz odwrotna! Macierz osobliwa to macierz nie posiadająca macierzy odwrotnej, np. A = [1,2; 1,2] Zadania sprawdź powyższe zależności 14 7
8 Rozwiązywanie układów równań a * x = b -> a -1 * a * x = a -1 * b Uwaga: w Scilabie możemy zapisać x = a\b!!! Zadanie (rozwiązanie : x1 = 1, x2 = 2) x1 + 2x2 = 5 2x1 + x2 = 4 Program a=[1,2;2,1] b=[5;4] x=a^-1 * b x=a\b 15 Rozwiązywanie układów równań Zadanie x1+2x2 + 3x3 = 3 -x1-5x2 + 8x3 = 5 4x1 + 9x3 =
9 Proste wykresy Operacje: plot2d(matrix) matrix to wektor Nx1 lub 1xN (lub N x K) Program A=(0:0.1:6.28) B=sin(A) plot2d(b) 17 Proste wykresy Operacje: plot2d(x,y) wymaga wektorów kolumnowych! UWAGA na apostrof przy kopiowaniu ze slajdów Program x=[0:0.1:6.28] y=sin(x) plot2d(x,y) 18 9
10 Proste wykresy Program x=[0:0.1:6.28] y=sin(x) y2=cos(x) plot2d(x,[y,y2],leg= xtitle( sin i cos, x, y ) 19 Proste wykresy Operacje: plot3d(x,y,z) Program x=linspace(0, 6.28,11) y=x z= cos(x) *cos(x) plot3d(x,y,z) 20 10
11 Proste wykresy Zadanie: narysuj wykres funkcji f(x,y) = x 2 +y 2 x i y zmieniają się od -3 do 3 21 Proste wykresy Program: x=linspace(-3, 3,50) y=linspace(-3, 3, 50) xx=x' * ones(y) yy=ones(x)'*y z= (xx.*xx)+(yy.*yy) plot3d(x,y,z) 22 11
12 Proste wykresy Operacje: param3d(x,y,z) wykres trajektorii Program t=linspace(0,4*%pi,101) x=2*cos(t) y=2*sin(t) z=4*t xset("thickness",3) param3d(x,y,z) xset("thickness",1) param3d(x,y,zeros(z)) 23 Funkcje Program cz. 1 function y = kwadrat (x) y = x * x endfunction function z = kwadrat2 (x1,x2) z = x1^2 + x2^2 endfunction 24 12
13 Wykresy 2D Operacje: plot(x,y) Program cz. 2 x=linspace(1,10,50) plot(x,kwadrat) 25 Wykres konturowy Operacje: contour(x,y,z,nz) x (y) - wektor wartości o rozmiarze n1 (n2) z macierz wartości o rozmiarze n1 * n2 nz liczba poziomów Program cz. 3 x=linspace(-1,1,100) y=linspace(-1,1,100) contour(x,y,kwadrat2,10) 26 13
14 Obliczanie PI metodą Monte Carlo Metoda Monte Carlo opiera się na prawie wielkich liczb, zgodnie z którym stosunek liczby zdarzeń spełniających zadane kryteria do całkowitej liczby zdarzeń jest równy prawdopodobieństwu spełnienia tych kryteriów. Wystawiamy na deszcz kwadratową tarczę, w którą wpisano okrąg. Zakładając, że krople deszczu padają równomiernie to prawdopodobieństwo trafienia kropli w koło ograniczone okręgiem będzie równe ilorazowi pola powierzchni koła i pola całej tarczy. 27 Obliczanie PI metodą Monte Carlo 28 14
15 Obliczanie PI metodą Monte Carlo Realizacja Utworzymy 2 wektory liczb losowych współrzędne punktów upadku kropel Sprawdzimy, które z nich trafiły w koło i utworzymy wektor wartości logicznych Policzymy ile wartości prawdziwych znajduje się w tym wektorze, podzielimy przez długość wektora i pomnożymy przez 4 będzie to przybliżenie wartości PI. Założymy, że r = 1 29 Obliczanie PI metodą Monte Carlo Program (bez wykresu) liczba=1000 x=-1 + 2*rand(1,liczba) y=-1 + 2*rand(1,liczba) Nkolo=sum((x.^2+y.^2)<1) PI=4*Nkolo/liczba 30 15
16 Obliczanie PI metodą Monte Carlo Wykorzystamy pętlę for w celu zwiększania liczby kropel i obserwacji wyniku Konstrukcja for i = 1:10 do polecenia end 31 Obliczanie PI metodą Monte Carlo Program clear// usunięcie zmiennych xdel(winsid()) //zamkniecie okien rand('seed', ) // inicjalizacja generatora liczba_prob=100 // liczba prob liczba_elem=1000 // liczba el. wektora // inicjalizacja trafienia=0 wartosc_pi=zeros(liczba_prob) // wektor kolumnowy for k=1:liczba_prob x=-1 + 2*rand(1,liczba_elem) y=-1 + 2*rand(1,liczba_elem) trafienia=trafienia+sum((x.^2+y.^2)<1) wartosc_pi(k)=4*trafienia/(k*liczba_elem) end pi_odn =%pi*ones(wartosc_pi) plot2d([1:liczba_prob]*liczba_elem,wartosc_pi,style=5) plot2d([1:liczba_prob]*liczba_elem,pi_odn,style=2) 32 16
17 Obliczanie PI metodą Monte Carlo 33 Obliczanie PI metodą Monte Carlo 34 17
18 Metoda Monte Carlo Pod koniec wojny trwają prace nad pierwszym elektronicznym komputerem ENIAC Pomysłodawcy Eniaca zwracają się z propozycją przetestowania tej maszyny przez Ballistics Research Laboratory w Aberdeen Konsultantem BRL w Aberdeen był profesor John von Neumann, który był także konsultantem dla Los Alamos w którym były prowadzone prace związane z problematyką termonekluarną. Zaproponował on zespołowi z Los Alamos budowę modelu reakcji termonekluarnej, który możnaby rozwiązać korzystając z ENIAC a. Marzec 1945 rozpoczęcie współpracy naukowców z Los Alamos i twórców ENIAC a. Wiosna 1946 do zespołu dołącza Stanisław Ulam, który dostrzegł możliwość wykorzystania ENIACa do rozwiązywania problemów metodą statystycznego próbkowania. 35 Metoda Monte Carlo Idea zaproponowanej metody była zbieżna z zainteresowaniami S. Ulama związanymi z procesami losowymi. Prowadzone badania były stymulowane jego doświadczeniem w grę pokera, czy też poszukiwaniem wolnego miejsca ma zatłoczonym parkingu. Stworzył koncepcję szczęśliwych liczb przypominających liczby pierwsze. Był zainteresowany rozwijaniem wzorców w przestrzeni dwuwymiarowej zgodnie z pewnymi prostymi regułami dziś koncepcja znana jest pod nazwą automatów komórkowych. Nazwę Monte Carlo zaproponował współtwórca metody N.Metropolis (i podobno nazwa metody nie miała nic wspólnego z faktem, że wujek S. Ulama zebrał od rodziny pieniądze i pojechał do Monte Carlo) 36 18
19 Funkcja ODE Funkcja ODE pozwala rozwiązywać równania różniczkowe pierwszego rzędu zapisanych w postaci: dx/dt = f(t,x) Wywołanie funkcji ode wynik = ode(x0,t0,t,f) gdzie wynik rozwiązanie x0 położenie początkowe t0 moment początkowy t wektor wierszowy f nazwa funkcji określającej równanie różniczkowe 37 Funkcja ODE Równanie prędkości: dx/dt = v Program function z = f(t, x) z = v endfunction v = 1; x0 = 0; t0 = 0; tk = 10; t = t0:0.1:tk; x = ode (x0,t0,t,f); plot2d(t,x); 38 19
20 Funkcja ODE Równanie logistyczne: dn/dt = rn(1-n/k) Program function z = f(t, N) z = r*n*(1-n/k) endfunction r = 1; K=150; N0 = 10; t0 =0; tk=10; t = t0:0.1:tk; N = ode (N0,t0,t,f); plot2d(t,n); 39 Funkcja ODE Model Lotki-Volterra: dx/dt = ax bxy dy/dt = cxy dy x(t) liczebność ofiar w czasie t y(t) liczebność drapieżników w czasie t a współczynnik przyrostu ofiar b współczynnik umierania ofiar na skutek drapieżnictwa c współczynnik przyrostu drapieżników d współczynnik umierania drapieżników 40 20
21 Funkcja ODE Model Lotki-Volterra: Program cz. 1 function [w] = f(t,y) w(1) = a*y(1)-b*y(1)*y(2); w(2) = c*y(1)*y(2)-d*y(2); endfunction 41 Funkcja ODE Model Lotki-Volterra: Program cz. 2 a = 1; b = 1; d = 10; c = 1; t0 = 0; y0 = [10.0;5.0]; // wartości początkowe obu populacji t = [0:0.1:10]; // obliczenia od 0 do 10 co 0.1 jednostki y = ode(y0, t0, t, f); y1 = y(1,:); y2 = y(2,:); plot2d(t,y1,style=3); plot2d(t,y2,style=5); 42 21
22 Optymalizacja Programowanie liniowe (linpro) Zadanie min z = 3x1 + 5x2 2x3 x1 + 3x2 = 5 x1 + x2 x3 = 2 2x1 x2 <= 3 x1 + x2 + x3 <=25 0 <= x1 <= 5, 0 <= x2 <= 5, 0 <= x3 <= 3 43 Optymalizacja Program p=[3;5;-2] C=[1,3,0;1,1,-1;2,-1,0;1,1,1]; b=[5;2;3;25] xl=[0;0;0] xu=[5;10;3] [xopt,lagr,fopt]=linpro(p,c,b,xl,xu,2) // 2 ograniczenia równościowe!!! UWAGA wymaga zainstalowania Quapro poleceniem atomsinstall("quapro") oraz ponownego uruchomienia Scilaba 44 22
23 Optymalizacja Zadanie Sprawdź dla poprzedniego zadania, jakie są rozwiązania, gdy liczba ograniczeń równościowych zmienia się od 0 do 4 45 Optymalizacja Programowanie kwadratowe (quapro) Zadanie min z = x1 2 +x1x2+3x1+5x2-2x3 x1 + 3x2 = 5 x1 + x2 x3 = 2 2x1 x2 <= 3 x1 + x2 + x3 <=25 0 <= x1 <= 5, 0 <= x2 <= 5, 0 <= x3 <=
24 Optymalizacja Program Q=[2,1,0;1,0,0;0,0,0] p=[3;5;-2] C=[1,3,0;1,1,-1;2,-1,0;1,1,1]; b=[5;2;3;25] xl=[0;0;0] xu=[5;10;3] [xopt,lagr,fopt]=quapro(q,p,c,b,xl,xu,2) // 2 ogr. równościowe UWAGA macierz Q musi być symetryczna i pozytywnie określona 47 Optymalizacja Zadanie Napisz program dla funkcji celu postaci: min z = x1 2 +2x1x2+3x1+5x2-2x
25 Optymalizacja Programowanie nieliniowe (optim) Zadanie min z = sin(x1*x2) + cos(x1) 0 <= x1 <= 10, 0 <= x2 <= Optymalizacja Programowanie nieliniowe (optim) Wymagane jest zdefiniowanie funkcji kosztu (np. o nazwie costf), która ma następujące wywołanie function[f, g, ind] = costf(x, ind) x to aktualne rozwiązanie, ind to flaga f to minimalizowana funkcja g to gradient funkcji 50 25
26 Optymalizacja Programowanie nieliniowe (optim) Wywołanie funkcji optim(costf,'b',[0;0],[10;10],[1;1]) Costf b oznacza że są aktywne ograniczenia dolne i górne ograniczenia punkt startowy domyślnie stosowana metoda quasi-newtona z BFGS 51 Optymalizacja 52 26
27 Optymalizacja Program function [f,g,ind]=costf(x,ind) f = sin(x(1)*x(2))+cos(x(1)) g = [0;0] g(1)= x(2)*cos(x(1)*x(2))-sin(x(1)) g(2)= x(1)*cos(x(1)*x(2)) endfunction [fopt,xopt]=optim(costf,'b',[0;0],[10;10],[1;1]) 53 Optymalizacja Zadanie Przeanalizuj działanie programu podanego w pomocy Scilaba dla funkcji optim, znajdującego minimum dla funkcji Rosenbrocka 54 27
Metody optymalizacji - wprowadzenie do SciLab a
Metody optymalizacji - wprowadzenie do SciLab a 1 Zmienne Nazwy: dozwolone nazwy zawierają znaki: od a do z, od A do Z, od 0 do 9 oraz _, #,!, $,? Operator przypisania wartości zmiennej = Przykład x=2
Wprowadzenie. SciLab Zmienne. Operatory. Macierze. Macierze. Tomasz Łukaszewski. Politechnika Poznańska Instytut Informatyki
SciLab 2016 Tomasz Łukaszewski Wprowadzenie Politechnika Poznańska Instytut Informatyki 2 Zmienne Operatory Nazwy: dozwolone nazwy zawierają znaki: od a do z, od A do Z, od 0 do 9 oraz _, #,!, $,? Przypisanie
Równania nieliniowe, nieliniowe układy równań, optymalizacja
4 maj 2009 Nieliniowe równania i układy rówań Slajd 1 Równania nieliniowe, nieliniowe układy równań, optymalizacja 4 maj 2009 Nieliniowe równania i układy rówań Slajd 2 Plan zajęć Rozwiązywanie równań
Scilab - wprowadzenie
Strona 1 Scilab jest darmowym programem (freeware) przeznaczonym do badań matematycznych. Może pomóc w statystycznym opracowaniu wyników badań (pomiarów). Można przy jego pomocy rysować grafy, wykresy
Równania nieliniowe, nieliniowe układy równań, optymalizacja
Nieliniowe równania i układy rówań Slajd 1 Równania nieliniowe, nieliniowe układy równań, optymalizacja Nieliniowe równania i układy rówań Slajd 2 Plan zajęć Rozwiązywanie równań nieliniowych -metoda bisekcji
Wprowadzenie do Scilab: macierze
Wprowadzenie do Scilab: macierze Narzędzia Informatyki Magdalena Deckert Izabela Szczęch Barbara Wołyńska Bartłomiej Prędki Politechnika Poznańska Instytut Informatyki Agenda Definiowanie macierzy Funkcje
Wprowadzenie do Scilab: macierze
Wprowadzenie do Scilab: macierze Narzędzia Informatyki Magdalena Deckert Izabela Szczęch Barbara Wołyńska Bartłomiej Prędki Politechnika Poznańska Instytut Informatyki Agenda Definiowanie macierzy Funkcje
Metody i analiza danych
2015/2016 Metody i analiza danych Macierze Laboratorium komputerowe 2 Anna Kiełbus Zakres tematyczny 1. Funkcje wspomagające konstruowanie macierzy 2. Dostęp do elementów macierzy. 3. Działania na macierzach
Matlab Składnia + podstawy programowania
Matlab Składnia + podstawy programowania Matlab Matrix Laboratory środowisko stworzone z myślą o osobach rozwiązujących problemy matematyczne, w których operuje się na danych stanowiących wielowymiarowe
Matlab Składnia + podstawy programowania
Matlab Składnia + podstawy programowania Matlab Matrix Laboratory środowisko stworzone z myślą o osobach rozwiązujących problemy matematyczne, w których operuje się na danych stanowiących wielowymiarowe
LABORATORIUM 3 ALGORYTMY OBLICZENIOWE W ELEKTRONICE I TELEKOMUNIKACJI. Wprowadzenie do środowiska Matlab
LABORATORIUM 3 ALGORYTMY OBLICZENIOWE W ELEKTRONICE I TELEKOMUNIKACJI Wprowadzenie do środowiska Matlab 1. Podstawowe informacje Przedstawione poniżej informacje maja wprowadzić i zapoznać ze środowiskiem
dr Mariusz Grządziel 15,29 kwietnia 2014 Przestrzeń R k R k = R R... R k razy Elementy R k wektory;
Wykłady 8 i 9 Pojęcia przestrzeni wektorowej i macierzy Układy równań liniowych Elementy algebry macierzy dodawanie, odejmowanie, mnożenie macierzy; macierz odwrotna dr Mariusz Grządziel 15,29 kwietnia
MATLAB - laboratorium nr 1 wektory i macierze
MATLAB - laboratorium nr 1 wektory i macierze 1. a. Małe i wielkie litery nie są równoważne (MATLAB rozróżnia wielkość liter). b. Wpisanie nazwy zmiennej spowoduje wyświetlenie jej aktualnej wartości na
Podstawowe operacje na macierzach
Podstawowe operacje na macierzach w pakiecie GNU octave. (wspomaganie obliczeń inżynierskich) Cel ćwiczenia Celem ćwiczenia jest zapoznanie się z tworzeniem macierzy i wektorów w programie GNU octave.
//warunki początkowe m=500; T=30; c=0.4; t=linspace(0,t,m); y0=[-2.5;2.5];
4.3. Przykłady wykorzystania funkcji bibliotecznych 73 MATLAB % definiowanie funkcji function [dx]=vderpol(t,y) global c; dx=[y(2); c*(1-y(1)^2)*y(2)-y(1)]; SCILAB // definiowanie układu function [f]=vderpol(t,y,c)
Drugi sposób definiowania funkcji polega na wykorzystaniu polecenia:
ĆWICZENIE 6. Scilab: Obliczenia symboliczne i numeryczne Uwaga: Podczas operacji kopiowania i wklejania potrzeba skasować wklejone pojedyńcze cudzysłowy i wpisać je ręcznie dla każdego ich wystąpienia
Wprowadzenie do Mathcada 1
Wprowadzenie do Mathcada Ćwiczenie. - Badanie zmienności funkcji kwadratowej Ćwiczenie. pokazuje krok po kroku tworzenie prostego dokumentu w Mathcadzie. Dokument ten składa się z następujących elementów:.
WPROWADZENIE DO ŚRODOWISKA SCILAB
Politechnika Gdańska Wydział Elektrotechniki i Automatyki WPROWADZENIE DO ŚRODOWISKA SCILAB Materiały pomocnicze do ćwiczeń laboratoryjnych Opracowanie: Paweł Lieder Gdańsk, 007 Podstawy pracy z Scilab.
Przykładowe zadania na egzamin z matematyki - dr Anita Tlałka - 1
Przykładowe zadania na egzamin z matematyki - dr Anita Tlałka - 1 Zadania rozwiązywane na wykładzie Zadania rozwiązywane na ćwiczeniach Przy rozwiązywaniu zadań najistotniejsze jest wykazanie się rozumieniem
Zajęcia nr 1 (1h) Dwumian Newtona. Indukcja. Zajęcia nr 2 i 3 (4h) Trygonometria
Technologia Chemiczna 008/09 Zajęcia wyrównawcze. Pokazać, że: ( )( ) n k k l = ( n l )( n l k l Zajęcia nr (h) Dwumian Newtona. Indukcja. ). Rozwiązać ( ) ( równanie: ) n n a) = 0 b) 3 ( ) n 3. Znaleźć
Elementy metod numerycznych - zajęcia 9
Poniższy dokument zawiera informacje na temat zadań rozwiązanych w trakcie laboratoriów. Elementy metod numerycznych - zajęcia 9 Tematyka - Scilab 1. Labolatoria Zajęcia za 34 punktów. Proszę wysłać krótkie
Metody Numeryczne. Laboratorium 1. Wstęp do programu Matlab
Metody Numeryczne Laboratorium 1 Wstęp do programu Matlab 1. Wiadomości wstępne liczby, format Program Matlab używa konwencjonalną notację dziesiętną, z kropka dziesiętną. W przypadku notacji naukowej
Wykład 14. Elementy algebry macierzy
Wykład 14 Elementy algebry macierzy dr Mariusz Grządziel 26 stycznia 2009 Układ równań z dwoma niewiadomymi Rozważmy układ równań z dwoma niewiadomymi: a 11 x + a 12 y = h 1 a 21 x + a 22 y = h 2 a 11,
Metody numeryczne Laboratorium 2
Metody numeryczne Laboratorium 2 1. Tworzenie i uruchamianie skryptów Środowisko MATLAB/GNU Octave daje nam możliwość tworzenia skryptów czyli zapisywania grup poleceń czy funkcji w osobnym pliku i uruchamiania
Obliczenia iteracyjne
Lekcja Strona z Obliczenia iteracyjne Zmienne iteracyjne (wyliczeniowe) Obliczenia iteracyjne wymagają zdefiniowania specjalnej zmiennej nazywanej iteracyjną lub wyliczeniową. Zmienną iteracyjną od zwykłej
Ćwiczenie 3: Wprowadzenie do programu Matlab
Uniwersytet Zielonogórski Instytut Sterowania i Systemów Informatycznych Laboratorium modelowania i symulacji Ćwiczenie 3: Wprowadzenie do programu Matlab 1. Wyznaczyć wartość sumy 1 1 2 + 1 3 1 4 + 1
WYDZIAŁ ELEKTROTECHNIKI, AUTOMATYKI I INFORMATYKI INSTYTUT AUTOMATYKI I INFORMATYKI KIERUNEK AUTOMATYKA I ROBOTYKA STUDIA STACJONARNE I STOPNIA
WYDZIAŁ ELEKTROTECHNIKI, AUTOMATYKI I INFORMATYKI INSTYTUT AUTOMATYKI I INFORMATYKI KIERUNEK AUTOMATYKA I ROBOTYKA STUDIA STACJONARNE I STOPNIA PRZEDMIOT : : LABORATORIUM PODSTAW AUTOMATYKI 1. WSTĘP DO
Wprowadzenie do Scilab: macierze
Wprowadzenie do Scilab: macierze Narzę dzia Informatyki Magdalena Deckert Izabela Szczę ch Barbara Wołyń ska Bartłomiej Prę dki Politechnika Poznań ska Instytut Informatyki Agenda Definiowanie macierzy
1 Logika. 1. Udowodnij prawa logiczne: 3. (p q) (p q) 2. (p q) ( q p) 2. Sprawdź, czy wyrażenie ((p q) r) (p (q r)) jest tautologią.
Logika. Udowodnij prawa logiczne:. (p q) ( p q). (p q) ( q p) 3. (p q) (p q). Sprawdź czy wyrażenie ((p q) r) (p (q r)) jest tautologią. 3. Zad 3. Sprawdź czy zdanie: Jeżeli liczba a dzieli się przez i
GNU Octave (w skrócie Octave) to rozbudowany program do analizy numerycznej.
1 GNU Octave GNU Octave (w skrócie Octave) to rozbudowany program do analizy numerycznej. Octave zapewnia: sporą bibliotęke użytecznych funkcji i algorytmów; możliwośc tworzenia przeróżnych wykresów; możliwość
Wprowadzenie do środowiska
Wprowadzenie do środowiska www.mathworks.com Piotr Wróbel piotr.wrobel@igf.fuw.edu.pl Pok. B 4.22 Metody numeryczne w optyce 2017 Czym jest Matlab Matlab (matrix laboratory) środowisko obliczeniowe oraz
Aby przygotować się do kolokwiów oraz do egzaminów należy ponownie przeanalizować zadania
Chemia Budowlana - Wydział Chemiczny - 1 Aby przygotować się do kolokwiów oraz do egzaminów należy ponownie przeanalizować zadania rozwiązywane na wykładzie, rozwiązywane na ćwiczeniach, oraz samodzielnie
UKŁADY ALGEBRAICZNYCH RÓWNAŃ LINIOWYCH
Transport, studia I stopnia rok akademicki 2011/2012 Instytut L-5, Wydział Inżynierii Lądowej, Politechnika Krakowska Ewa Pabisek Adam Wosatko Uwagi wstępne Układ liniowych równań algebraicznych można
Obliczenia w programie MATLAB
Obliczenia w programie MATLAB Na zajęciach korzystamy z programu MATLAB, w którym wykonywać będziemy większość obliczeń. Po uruchomieniu programu w zależności od wersji i konfiguracji może pojawić się
Ćwiczenie 3. MatLab: Algebra liniowa. Rozwiązywanie układów liniowych
Ćwiczenie 3. MatLab: Algebra liniowa. Rozwiązywanie układów liniowych Wszystko proszę zapisywać komendą diary do pliku o nazwie: imie_ nazwisko 1. Definiowanie macierzy i odwoływanie się do elementów:
WEKTORY I MACIERZE. Strona 1 z 11. Lekcja 7.
Strona z WEKTORY I MACIERZE Wektory i macierze ogólnie nazywamy tablicami. Wprowadzamy je:. W sposób jawny: - z menu Insert Matrix, - skrót klawiszowy: {ctrl}+m, - odpowiedni przycisk z menu paska narzędziowego
UKŁADY ALGEBRAICZNYCH RÓWNAŃ LINIOWYCH
Transport, studia niestacjonarne I stopnia, semestr I Instytut L-5, Wydział Inżynierii Lądowej, Politechnika Krakowska Ewa Pabisek Adam Wosatko Postać układu równań liniowych Układ liniowych równań algebraicznych
Analiza matematyczna i algebra liniowa Macierze
Analiza matematyczna i algebra liniowa Macierze Wojciech Kotłowski Instytut Informatyki Politechniki Poznańskiej email: imię.nazwisko@cs.put.poznan.pl pok. 2 (CW) tel. (61)665-2936 konsultacje: poniedziałek
(a 1 2 + b 1 2); : ( b a + b ab 2 + c ). : a2 2ab+b 2. Politechnika Białostocka KATEDRA MATEMATYKI. Zajęcia fakultatywne z matematyki 2008
Zajęcia fakultatywne z matematyki 008 WYRAŻENIA ARYTMETYCZNE I ALGEBRAICZNE. Wylicz b z równania a) ba + a = + b; b) a = b ; b+a c) a b = b ; d) a +ab =. a b. Oblicz a) [ 4 (0, 5) ] + ; b) 5 5 5 5+ 5 5
Układy równań liniowych. Krzysztof Patan
Układy równań liniowych Krzysztof Patan Motywacje Zagadnienie kluczowe dla przetwarzania numerycznego Wiele innych zadań redukuje się do problemu rozwiązania układu równań liniowych, często o bardzo dużych
Wartości x-ów : Wartości x ów można w Scilabie zdefiniować na kilka sposobów, wpisując odpowiednie polecenie na konsoli.
Notatki z sesji Scilaba Istnieje możliwość dokładnego zapisu przebiegu aktualnej sesji pracy ze Scilabem: polecenie diary('nazwa_pliku.txt') powoduje zapis do podanego pliku tekstowego wszystkich wpisywanych
Modelowanie komputerowe w ochronie środowiska
Scilab - podstawy Scilab jest środowiskiem numerycznym, programistycznym i numerycznym dostępnym za darmo z INRIA (Institut Nationale de Recherche en Informatique et Automatique). Jest programem podobnym
Mathcad c.d. - Macierze, wykresy 3D, rozwiązywanie równań, pochodne i całki, animacje
Mathcad c.d. - Macierze, wykresy 3D, rozwiązywanie równań, pochodne i całki, animacje Opracował: Zbigniew Rudnicki Powtórka z poprzedniego wykładu 2 1 Dokument, regiony, klawisze: Dokument Mathcada realizuje
ROZKŁAD MATERIAŁU DO II KLASY LICEUM (ZAKRES ROZSZERZONY) A WYMAGANIA PODSTAWY PROGRAMOWEJ.
ROZKŁAD MATERIAŁU DO II KLASY LICEUM (ZAKRES ROZSZERZONY) A WYMAGANIA PODSTAWY PROGRAMOWEJ. LICZBA TEMAT GODZIN LEKCYJNYCH Potęgi, pierwiastki i logarytmy (8 h) Potęgi 3 Pierwiastki 3 Potęgi o wykładnikach
PODSTAWY INFORMATYKI 1 MATLAB CZ. 3
PODSTAWY INFORMATYKI 1 MATLAB CZ. 3 TEMAT: Program Matlab: Instrukcje sterujące, grafika. Wyrażenia logiczne Wyrażenia logiczne służą do porównania wartości zmiennych o tych samych rozmiarach. W wyrażeniach
Met Me ody numer yczne Wykład ykład Dr inż. Mic hał ha Łanc Łan zon Instyt Ins ut Elektr Elektr echn iki echn i Elektrot Elektr echn olo echn
Metody numeryczne Wykład 3 Dr inż. Michał Łanczont Instytut Elektrotechniki i Elektrotechnologii E419, tel. 4293, m.lanczont@pollub.pl, http://m.lanczont.pollub.pl Zakres wykładu Pojęcia podstawowe Algebra
Kurs Start plus - matematyka poziom podstawowy, materiały dla prowadzących, Marcin Kościelecki. Zajęcia 1.
Projekt Fizyka Plus nr POKL.04.0.0-00-034/ współfinansowany przez Unię Europejską ze środków Europejskiego Funduszu Społecznego w ramach Programu Operacyjnego Kapitał Ludzki Kurs Start plus - matematyka
1 Programowanie w matlabie - skrypty i funkcje
1 Programowanie w matlabie - skrypty i funkcje 1.1 Skrypty Skrypt jest plikiem tekstowym z rozszerzeniem *.m zawierającym listę poleceń do wykonania. Aby utworzyć skrypt w matlabie wybierz File New Script,
Wykład 5. Metoda eliminacji Gaussa
1 Wykład 5 Metoda eliminacji Gaussa Rozwiązywanie układów równań liniowych Układ równań liniowych może mieć dokładnie jedno rozwiązanie, nieskończenie wiele rozwiązań lub nie mieć rozwiązania. Metody dokładne
3 1 + i 1 i i 1 2i 2. Wyznaczyć macierze spełniające własność komutacji: [A, X] = B
1. Dla macierzy a) A = b) A = c) A = d) A = 3 1 + i 1 i i i 0 i i 0 1 + i 1 i 0 0 0 0 1 0 1 0 1 + i 1 i Wyznaczyć macierze spełniające własność komutacji: A, X = B. Obliczyć pierwiaski z macierzy: A =
Interpolacja i aproksymacja, pojęcie modelu regresji
27 styczeń 2009 SciLab w obliczeniach numerycznych - część 3 Slajd 1 Interpolacja i aproksymacja, pojęcie modelu regresji 27 styczeń 2009 SciLab w obliczeniach numerycznych - część 3 Slajd 2 Plan zajęć
, to liczby γ +δi oraz γ δi opisują pierwiastki z a+bi.
Zestaw 1 Liczby zespolone 1 Zadania do przeliczenia Nie będziemy robić na ćwiczeniach S 1 Policz wartość 1 + i + (2 + i)(i 3) 1 i Zadania domowe x y(1 + i) 1 Znajdź liczby rzeczywiste x, y takie, że +
PętlaforwOctave. Roman Putanowicz 13 kwietnia 2008
PętlaforwOctave Roman Putanowicz kwietnia 008 Zakresyioperator : Zakresy(ang. ranges) są wygodnym sposobem definiowania wektorów reprezentujących ciągi arytmetyczne, czyli ciągi w których różnica pomiędzy
Mathematica III Równania różniczkowe, układy równań różniczkowych, wykresy, badanie funkcji, importowanie danych, instrukcje warunkowe, pętle
Mathematica III Równania różniczkowe, układy równań różniczkowych, wykresy, badanie funkcji, importowanie danych, instrukcje warunkowe, pętle na podstawie materiałów wolfram.com Równania różniczkowe: Równanie
Całkowanie numeryczne
16 kwiecień 2009 SciLab w obliczeniach numerycznych - część 4 Slajd 1 Całkowanie numeryczne 16 kwiecień 2009 SciLab w obliczeniach numerycznych - część 4 Slajd 2 Plan zajęć 1. Całkowanie przybliżone funkcji
Macierze Lekcja I: Wprowadzenie
Macierze Lekcja I: Wprowadzenie Wydział Matematyki Politechniki Wrocławskiej Definicja Niech dane będą dwie liczby naturalne dodatnie m i n. Układ m n liczb ułożonych w prostokątną tablicę złożoną z m
MATLAB tworzenie własnych funkcji
MATLAB tworzenie własnych funkcji Definiowanie funkcji anonimowych Własne definicje funkcji możemy tworzyć bezpośrednio w Command Window, są to tzw. funkcje anonimowe; dla funkcji jednej zmiennej składnia
= i Ponieważ pierwiastkami stopnia 3 z 1 są (jak łatwo wyliczyć) liczby 1, 1+i 3
ZESTAW I 1. Rozwiązać równanie. Pierwiastki zaznaczyć w płaszczyźnie zespolonej. z 3 8(1 + i) 3 0, Sposób 1. Korzystamy ze wzoru a 3 b 3 (a b)(a 2 + ab + b 2 ), co daje: (z 2 2i)(z 2 + 2(1 + i)z + (1 +
Metody numeryczne Wykład 4
Metody numeryczne Wykład 4 Dr inż. Michał Łanczont Instytut Elektrotechniki i Elektrotechnologii E419, tel. 4293, m.lanczont@pollub.pl, http://m.lanczont.pollub.pl Zakres wykładu Metody skończone rozwiązywania
Modelowanie rynków finansowych z wykorzystaniem pakietu R
Modelowanie rynków finansowych z wykorzystaniem pakietu R Metody numeryczne i symulacje stochastyczne Mateusz Topolewski woland@mat.umk.pl Wydział Matematyki i Informatyki UMK Plan działania 1 Całkowanie
Funkcje Andrzej Musielak 1. Funkcje
Funkcje Andrzej Musielak 1 Funkcje Funkcja liniowa Funkcja liniowa jest postaci f(x) = a x + b, gdzie a, b R Wartość a to tangens nachylenia wykresu do osi Ox, natomiast b to wartość funkcji w punkcie
MATLAB ŚRODOWISKO MATLABA OPIS, PODSTAWY
MATLAB ŚRODOWISKO MATLABA OPIS, PODSTAWY Poszukiwanie znaczeń funkcji i skryptów funkcja help >> help % wypisuje linki do wszystkich plików pomocy >> help plot % wypisuje pomoc dotyczą funkcji plot Znaczenie
Prawdopodobieństwo geometryczne
Prawdopodobieństwo geometryczne Krzysztof Jasiński Wydział Matematyki i Informatyki UMK, Toruń V Lieceum Ogólnokształące im. Jana Pawała II w Toruniu 13.03.2014 Krzysztof Jasiński (WMiI UMK) Prawdopodobieństwo
5. Rozwiązywanie układów równań liniowych
5. Rozwiązywanie układów równań liniowych Wprowadzenie (5.1) Układ n równań z n niewiadomymi: a 11 +a 12 x 2 +...+a 1n x n =a 10, a 21 +a 22 x 2 +...+a 2n x n =a 20,..., a n1 +a n2 x 2 +...+a nn x n =a
Laboratorium Komputerowego Wspomagania Analizy i Projektowania
Laboratorium Komputerowego Wspomagania Analizy i Projektowania Ćwiczenie 2. Podstawowe operacje macierzowe. Opracował: dr inż. Sebastian Dudzik 1. Cel ćwiczenia Celem ćwiczenia jest zapoznanie się z tworzeniem
Scilab skrypty (programowanie)
Strona 1 Skrypt (program interpretowany) możemy napisać w dowolnym edytorze. Warto posługiwać się edytorem wbudowanym w program Scilab. Wykonać skrypt możemy na dwa sposoby: wpisując polecenie exec('nazwaskryptu')
Wykład Matematyka A, I rok, egzamin ustny w sem. letnim r. ak. 2002/2003. Każdy zdający losuje jedno pytanie teoretyczne i jedno praktyczne.
Wykład Matematyka A, I rok, egzamin ustny w sem. letnim r. ak. 2002/2003. Każdy zdający losuje jedno pytanie teoretyczne i jedno praktyczne. pytania teoretyczne:. Co to znaczy, że wektory v, v 2 i v 3
1 Macierze i wyznaczniki
1 Macierze i wyznaczniki 11 Definicje, twierdzenia, wzory 1 Macierzą rzeczywistą (zespoloną) wymiaru m n, gdzie m N oraz n N, nazywamy prostokątną tablicę złożoną z mn liczb rzeczywistych (zespolonych)
; B = Wykonaj poniższe obliczenia: Mnożenia, transpozycje etc wykonuję programem i przepisuję wyniki. Mam nadzieję, że umiesz mnożyć macierze...
Tekst na niebiesko jest komentarzem lub treścią zadania. Zadanie. Dane są macierze: A D 0 ; E 0 0 0 ; B 0 5 ; C Wykonaj poniższe obliczenia: 0 4 5 Mnożenia, transpozycje etc wykonuję programem i przepisuję
KRYTERIA OCENIANIA Z MATEMATYKI W OPARCIU O PODSTAWĘ PROGRAMOWĄ I PROGRAM NAUCZANIA MATEMATYKA 2001 DLA KLASY DRUGIEJ
KRYTERIA OCENIANIA Z MATEMATYKI W OPARCIU O PODSTAWĘ PROGRAMOWĄ I PROGRAM NAUCZANIA MATEMATYKA 2001 DLA KLASY DRUGIEJ TREŚCI KSZTAŁCENIA WYMAGANIA PODSTAWOWE WYMAGANIA PONADPODSTAWOWE Liczby wymierne i
Zakłócenia w układach elektroenergetycznych LABORATORIUM
Zakłócenia w układach elektroenergetycznych LABORATORIUM Obliczenia w programie MATLAB Na zajęciach korzystamy z programu MATLAB, w którym wykonywać będziemy większość obliczeń. Po uruchomieniu programu
Podstawy analizy matematycznej II
Podstawy analizy matematycznej II Andrzej Marciniak Zajęcia finansowane z projektu "Rozwój i doskonalenie kształcenia na Politechnice Poznańskiej w zakresie technologii informatycznych i ich zastosowań
Pętle iteracyjne i decyzyjne
Pętle iteracyjne i decyzyjne. Pętla iteracyjna for Pętlę iteracyjną for stosuje się do wykonywania wyrażeń lub ich grup określoną liczbę razy. Licznik pętli w pakiecie MatLab może być zwiększany bądź zmniejszany
Macierze. Rozdział Działania na macierzach
Rozdział 5 Macierze Funkcję, która każdej parze liczb naturalnych (i, j) (i 1,..., n; j 1,..., m) przyporządkowuje dokładnie jedną liczbę a ij F, gdzie F R lub F C, nazywamy macierzą (rzeczywistą, gdy
KURS WSPOMAGAJĄCY PRZYGOTOWANIA DO MATURY Z MATEMATYKI ZDAJ MATMĘ NA MAKSA. przyjmuje wartości większe od funkcji dokładnie w przedziale
Zestaw nr 1 Poziom Rozszerzony Zad.1. (1p) Liczby oraz, są jednocześnie ujemne wtedy i tylko wtedy, gdy A. B. C. D. Zad.2. (1p) Funkcja przyjmuje wartości większe od funkcji dokładnie w przedziale. Wtedy
O MACIERZACH I UKŁADACH RÓWNAŃ
O MACIERZACH I UKŁADACH RÓWNAŃ Problem Jak rozwiązać podany układ równań? 2x + 5y 8z = 8 4x + 3y z = 2x + 3y 5z = 7 x + 8y 7z = Definicja Równanie postaci a x + a 2 x 2 + + a n x n = b gdzie a, a 2, a
, A T = A + B = [a ij + b ij ].
1 Macierze Jeżeli każdej uporządkowanej parze liczb naturalnych (i, j), 1 i m, 1 j n jest przyporządkowana dokładnie jedna liczba a ij, to mówimy, że jest określona macierz prostokątna A = a ij typu m
Wykład 4. Matlab cz.3 Tablice i operacje na tablicach
Wykład 4 Matlab cz.3 Tablice i operacje na tablicach Dr inż. Zb. Rudnicki Tematyka wykładu 1. Macierze, wektory, tablice - wprowadzenie 2. Rozmiary i typy tablic 3. Zapis - nawiasy i znaki specjalne 4.
Zagadnienia do małej matury z matematyki klasa II Poziom podstawowy i rozszerzony
Zagadnienia do małej matury z matematyki klasa II Poziom podstawowy i rozszerzony Uczeń realizujący zakres rozszerzony powinien również spełniać wszystkie wymagania w zakresie poziomu podstawowego. Zakres
ALGEBRA z GEOMETRIA, ANALITYCZNA,
ALGEBRA z GEOMETRIA, ANALITYCZNA, MAT00405 PRZEKSZTAL CANIE WYRAZ EN ALGEBRAICZNYCH, WZO R DWUMIANOWY NEWTONA Uprościć podane wyrażenia 7; (b) ( 6)( + ); (c) a 5 6 8a ; (d) ( 5 )( 5 + ); (e) ( 45x 4 y
Krótkie wprowadzenie do macierzy i wyznaczników
Radosław Marczuk Krótkie wprowadzenie do macierzy i wyznaczników 12 listopada 2005 1. Macierze Macierzą nazywamy układ liczb(rzeczywistych, bądź zespolonych), funkcji, innych macierzy w postaci: A a 11
Definicja macierzy Typy i właściwości macierzy Działania na macierzach Wyznacznik macierzy Macierz odwrotna Normy macierzy RACHUNEK MACIERZOWY
Transport, studia niestacjonarne I stopnia, semestr I Instytut L-5, Wydział Inżynierii Lądowej, Politechnika Krakowska Adam Wosatko Ewa Pabisek Czym jest macierz? Definicja Macierzą A nazywamy funkcję
Laboratorium 1b Operacje na macierzach oraz obliczenia symboliczne
Uniwersytet Zielonogórski Instytut Sterowania i Systemów Informatycznych Laboratorium Metod Numerycznych Laboratorium 1b Operacje na macierzach oraz obliczenia symboliczne 1 Zadania 1. Obliczyć numerycznie
MATEMATYKA I SEMESTR ALK (PwZ) 1. Sumy i sumy podwójne : Σ i ΣΣ
MATEMATYKA I SEMESTR ALK (PwZ). Sumy i sumy podwójne : Σ i ΣΣ.. OKREŚLENIE Ciąg liczbowy = Dowolna funkcja przypisująca liczby rzeczywiste pierwszym n (ciąg skończony), albo wszystkim (ciąg nieskończony)
Podstawy OpenCL część 2
Podstawy OpenCL część 2 1. Napisz program dokonujący mnożenia dwóch macierzy w wersji sekwencyjnej oraz OpenCL. Porównaj czasy działania obu wersji dla różnych wielkości macierzy, np. 16 16, 128 128, 1024
Technologie informacyjne lab. 3
Technologie informacyjne lab. 3 Cel ćwiczenia: Poznanie podstaw środowiska MATLAB/Octave: obliczenia macierzowe, rozwiązywanie równań i układów równań, wykresy funkcji 1 i 2 zmiennych. Aktualnie Uczelnia
Wprowadzenie do programu Mathcad 15 cz. 1
Wpisywanie tekstu Wprowadzenie do programu Mathcad 15 cz. 1 Domyślnie, Mathcad traktuje wpisywany tekst jako wyrażenia matematyczne. Do trybu tekstowego można przejść na dwa sposoby: Zaczynając wpisywanie
SIMR 2016/2017, Analiza 2, wykład 1, Przestrzeń wektorowa
SIMR 06/07, Analiza, wykład, 07-0- Przestrzeń wektorowa Przestrzeń wektorowa (liniowa) - przestrzeń (zbiór) w której określone są działania (funkcje) dodawania elementów i mnożenia elementów przez liczbę
Tablice mgr Tomasz Xięski, Instytut Informatyki, Uniwersytet Śląski Katowice, 2011
Tablice mgr Tomasz Xięski, Instytut Informatyki, Uniwersytet Śląski Katowice, 2011 Załóżmy, że uprawiamy jogging i chcemy monitorować swoje postępy. W tym celu napiszemy program, który zlicza, ile czasu
Matura 2011 maj. Zadanie 1. (1 pkt) Wskaż nierówność, którą spełnia liczba π A. x + 1 > 5 B. x 1 < 2 C. x D. x 1 3 3
Matura 2011 maj Zadanie 1. (1 pkt) Wskaż nierówność, którą spełnia liczba π A. x + 1 > 5 B. x 1 < 2 C. x + 2 3 4 D. x 1 3 3 Zadanie 2. (1 pkt) Pierwsza rata, która stanowi 9% ceny roweru, jest równa 189
a 11 a a 1n a 21 a a 2n... a m1 a m2... a mn x 1 x 2... x m ...
Wykład 15 Układy równań liniowych Niech K będzie ciałem i niech α 1, α 2,, α n, β K. Równanie: α 1 x 1 + α 2 x 2 + + α n x n = β z niewiadomymi x 1, x 2,, x n nazywamy równaniem liniowym. Układ: a 21 x
ZAGADNIENIA PROGRAMOWE I WYMAGANIA EDUKACYJNE DO TESTU PRZYROSTU KOMPETENCJI Z MATEMATYKI DLA UCZNIA KLASY II
ZAGADNIENIA PROGRAMOWE I WYMAGANIA EDUKACYJNE DO TESTU PRZYROSTU KOMPETENCJI Z MATEMATYKI DLA UCZNIA KLASY II POZIOM ROZSZERZONY Równania i nierówności z wartością bezwzględną. rozwiązuje równania i nierówności
wymagania programowe z matematyki kl. II gimnazjum
wymagania programowe z matematyki kl. II gimnazjum Umie obliczyć potęgę liczby wymiernej o wykładniku naturalnym. 1. Arytmetyka występują potęgi o wykładniku naturalnym. Umie zapisać i porównać duże liczby
DB Algebra liniowa semestr zimowy 2018
DB Algebra liniowa semestr zimowy 2018 SPIS TREŚCI Teoria oraz większość zadań w niniejszym skrypcie zostały opracowane na podstawie książek: 1 G Banaszak, W Gajda, Elementy algebry liniowej cz I, Wydawnictwo
Analiza numeryczna Kurs INP002009W. Wykłady 6 i 7 Rozwiązywanie układów równań liniowych. Karol Tarnowski A-1 p.
Analiza numeryczna Kurs INP002009W Wykłady 6 i 7 Rozwiązywanie układów równań liniowych Karol Tarnowski karol.tarnowski@pwr.wroc.pl A-1 p.223 Plan wykładu Podstawowe pojęcia Własności macierzy Działania
Matematyka licea ogólnokształcące, technika
Matematyka licea ogólnokształcące, technika Opracowano m.in. na podstawie podręcznika MATEMATYKA w otaczającym nas świecie zakres podstawowy i rozszerzony Funkcja liniowa Funkcję f: R R określoną wzorem
Ćwiczenia 11 (12) (4 godziny). Wizualizacja i manipulacja w Matlabie
Ćwiczenia 11 (12) (4 godziny). Wizualizacja i manipulacja w Matlabie 1. Tworzenie animacji Wykres funkcji znajduje się poniżej: W środowisku Matlab, możemy tworzyć różnego rodzaju wykresy przy wykorzystaniu
Przetwarzanie sygnałów
Spis treści Przetwarzanie sygnałów Ćwiczenie 1 Wprowadzenie do programu Octave 1 Operatory 1 1.1 Operatory arytmetyczne...................... 1 1.2 Operatory relacji.......................... 1 1.3 Operatory
Analiza matematyczna dla informatyków 3 Zajęcia 14
Analiza matematyczna dla informatyków 3 Zajęcia 14 Metoda rozwiązywania (Jednorodne równanie różniczkowe liniowe rzędu n o stałych współczynnikach). gdzie a 0,..., a n 1 C. Wielomian charakterystyczny:
3. Macierze i Układy Równań Liniowych
3. Macierze i Układy Równań Liniowych Rozważamy równanie macierzowe z końcówki ostatniego wykładu ( ) 3 1 X = 4 1 ( ) 2 5 Podstawiając X = ( ) x y i wymnażając, otrzymujemy układ 2 równań liniowych 3x