Wersje instalacyjne programu Scilab mogą zostać pobrane ze strony
|
|
- Maja Przybylska
- 8 lat temu
- Przeglądów:
Transkrypt
1 Scilab - podstawy Scilab jest środowiskiem numerycznym, programistycznym i numerycznym dostępnym za darmo z INRIA (Institut Nationale de Recherche en Informatique et Automatique). Jest programem podobnym do MATLABa oraz jego darmowego 'klonu' OCTAVE'a. Wersje instalacyjne programu Scilab mogą zostać pobrane ze strony Wprowadzenie do Scilaba: Help - uzyskiwanie pomocy help polecenie, np. help sin apropos polecenie wyświetla informacje związane z danym poleceniem Na stronie Okna Konsola Scilab Edytor Scilab (wywołanie: Applications/SciNotes)? - Help Na dobry początek wykresy funkcji Elementy procedury tworzenia wykresu: utworzenie ciągu wartości x-ów utworzenie ciągu wartości y-ków rysowanie zapisanie rysunku do pliku graficznego Wartości x-ów : x=[0,1,2,3,4,5,5.5,10,20] ; - ciąg wartości x=(-10:0.1:10) ; (wartość początkowa : krok : wartość końcowa) x=linspace(0, , 20); (wartość początkowa, wartość końcowa, ile wartości) Uwagi: ; - wartości nie są wypisywane na konsoli; - transpozycja; jako wartość π można wpisać %pi, czyli: x=linspace(0,%pi,20). Wartości y-ków przykłady: Uwaga: określenie y-ki jest symboliczne; tworzony obiekt może mieć dowolną nazwę. y=x; y1=2*x; z=2*x-1; fun=sin(x)+cos(2*x); y2=x^3 g=tan(x)^2; Znak ^ oznacza potęgowanie. Uwaga: Wszystkie podane wyżej wyrażenia działają na wektorach Scilab wprowadzenie, UKSW -1- Anna Trykozko, ICM, Uniwersytet Warszawski
2 Uwaga: działanie (przykładowe) z=x*x spowoduje pojawienie sie komunikatu o błędzie. Na razie zastąpmy to wyrażenie wyrażeniem: z=x^2. Rysowanie funkcja plot plot(x,y) Pierwszy przykład: x=linspace (0, %pi, 50); y=sin(x); plot (x,y); y1=cos(2*x); plot(x,y1); xgrid(); Zapisanie rysunku do pliku: W oknie graficznym (interakcyjnie): Plik / eksportuj do /... wybrać typ pliku (PNG, GIF, JPG,...), podać nazwę pliku Poprzez wpisanie w oknie konsoli odpowiedniego polecenia, np: xs2png (numer_okna_graficznego, nazwa_pliku.png ) Uwagi: numer_okna_graficznego jest wyświetlony w pasku tytułowym okna. Standardowo pierwsze utworzone okno ma numer 0. Scilab wyróżnia katalog bieżący (Plik/ Wyświetl katalog bieżący). O ile nazwa pliku nie zostanie poprzedzona ścieżką dostępu, plik zostanie zapisany w katalogu bieżącym. Zmiana katalogu bieżącego: Plik/ Zmiana bieżącego katalogu...) Zmienne: W programie operuje się na zmiennych. Nadawanie im wartości odbywa się poprzez podstawienie: a=2.5; b=6.3 c=a+b Umieszczenie średnika na końcu polecenia sprawia, że wyliczona wartość (lub wartości) nie jest wyświetlana. Stałe specjalne: %i - wartość urojona równa 1 %pi - π %e - podstawa logarytmu naturalnego Scilab wprowadzenie, UKSW -2- Anna Trykozko, ICM, Uniwersytet Warszawski
3 %eps - największa wartość, dla której 1 + % eps = 1 %inf - nieskończoność (komputerowa) %t, %f - zmienne logiczne o wartościach prawda (true) i fałsz (f) Wektory Program Scilab jest programem wektorowym, większość operacji jest wykonywanych w odniesieniu do wektorów. Istotne jest rozróżnienie wektora wierszowego i kolumnowego. Wektor wierszowy - elementy oddzielone spacją lub przecinkiem: v=[ ] albo v=[1, 2, 3, 4] Wektor kolumnowy - elementy oddzielone średnikiem lub pisane od nowego wiersza: r=[1; 2; 3; 4] r=[ ] Uwaga: W przypadku dużych zestawów wartości należy umieszczać średnik na końcu polecenia. Transpozycja - zamiana wektora wierszowego na kolumnowy, i odwrotnie: vt = v' rt = r' vt' y=[1 2 3] Wektor można zdefiniować zadając wartość pierwszego elementu, krok oraz wartość ostatniego elementu, oddzielając je dwukropkiem: x=[-10:0.5:10] Zwróćmy uwagę na różnicę: x=[-10:0.5:10] Z kolei polecenie: z=linspace (-10, 10, 101); wygeneruje wektor o 101 elementach, przyjmujących wartości z przedziału [-10, 10]. Na wektorach o zgodnych wymiarach można wykonywać różne operacje: x+y x-y x*y x*y' x'*y Odwołania do elementów wektorów, np: x(1) x(10) y(2)+x(3) Wektory można konstruować w oparciu o zmienne: a=1 b=2 c=3 Scilab wprowadzenie, UKSW -3- Anna Trykozko, ICM, Uniwersytet Warszawski
4 x=[a, b, c] Macierze: A=[1,2,3; 4,5,6; 7,8,9] B=[1,2,3 1, 2, 3 1, 2, 3] u=[-1, -2, -3] v=[1, 1, 1] w=[-1, 0, 1] C=[u; v; w] // należy zwrócić uwagę na te trzy polecenia r=[u v w] // i dzielące je różnice D=[u' v' w'] Operacje na macierzach (Uwaga na zgodność wymiarów macierzy) A+B C-D A*B - mnożenie macierzowe B*A A.*B - mnożenie 'element po elemencie' C*u inv(a) cond(b) det(c) A*inv(A) Operacje 'element po elemencie':.*./.^ Rozwiązywanie układów równań liniowych A=[1, 3, 2; 2,13, 8; 0, 2 3] b=[1, 2, -4]' x=a\b Jest to najszybszy sposób rozwiązania układu równań. Szybkie tworzenie specjalnych macierzy i wektorów c=ones(5,3) d=zeros(10,1) dd=zeros(10) I=eye(5,5) D=diag( [ ]) L=diag([1,2,3,4], -1) U=rand(3,3) R=rand(3,3,'normal') rv=rand(10,1) rv=rand(1,10) Skrypty Polecenia programu Scilab też można umieścić w pliku (skrypcie) i wielokrotnie wykonywać. W plikach tych oprócz poleceń umieszcza się komentarze; są to linie rozpoczynające się //. Zwyczajowe rozszerzenie takich plików to.sci. Uruchomienie poleceń z pliku następuje po wprowadzeniu polecenia (albo poprzez wybór z menu poleceń): exec plik.sci Funkcje: sin, cos, log, exp, abs, sqrt, sum, max, min, sort Scilab wprowadzenie, UKSW -4- Anna Trykozko, ICM, Uniwersytet Warszawski
5 Pętla for for i=1: Pętla while h=0; while h<7 h=h+1; disp (h) ; Instrukcja warunkowa if warunek then...instrukcje elseif warunek1 then...instrukcje1 elseif warunek2 then...instrukcje2 else... Więcej informacji o tworzeniu wykresów: Następujące po sobie polecenia plot powodują dodanie ( dorysowanie ) kolejnego wykresu do bieżącego okna. Operacje na oknach: clf() wyczyszczenie bieżącego okna. clf(1) wyczyszczenie okna nr 1. scf(1) utworzenie okna o numerze 1. xdel() usunięcie bieżącego okna. xdel(1) usunięcie okna o numerze 1. Kilka wykresów na raz : plot (x,y,x,y1); Uwaga: w związku z tym można na jednym rysunku umieszczać wykresy zdefiniowane dla różnych zakresów lub gęstości x-ów. x=linspace (0, %pi, 20); y=sin(x); x1=linspace(-%pi, %pi, 50); y1=cos(x1); x2=linspace(-2*%pi, -%pi, 20); y2=sin(2*x2); plot(x,y,x1,y1,x2,y2); xgrid(); Kolory są ustalane automatycznie. Poprzez odpowiednie zdefiniowanie parametrów można sterować zarówno kolorami, jak i rodzajem linii oraz markerów; porównajmy z poprzednim wykresem: Scilab wprowadzenie, UKSW -5- Anna Trykozko, ICM, Uniwersytet Warszawski
6 plot(x,y,'r',x1,y1,'g:o',x2,y2,'b*'); Każda para x-ów i y-ków została uzupełniona o ciąg symboli definiujących sposób wykreślania. Kolory: symbol kolor plot(x,y,'r',x1,y1,'r',x2,y2); r czerwony g zielony b niebieski c cyjan m magenta y żółty k czarny w biały Style wykreślania linii: plot(x,y, - ); linia ciągła (domyślnie) plot(x,y, - - ); linia przerywana plot(x,y, : ); linia kropkowana plot(x,y, -. ); linia kreskowo-kropkowa Znaczniki: Symbol znacznik Symbol znacznik + plus ^ o kółko v * gwiazdka >. kropka < krzyżyk gwiazda x 'pentagram' pięcioramienna 'square' lub 's' kwadracik 'none' brak znacznika - 'diamond' lub 'd' domyślnie Uwaga: Domyślnie znaczniki nie są rysowane. Jeśli wskaże się tylko znacznik, to trzeba jawnie podać symbol stylu wykreślania linii. W przeciwnym przypadku wykres nie będzie zawierał linii. Opisywanie wykresów: tytuł, opisy osi, lega title ( Tytul wykresu ); xtitle( Tytul wykresu, opis osi x-ow, opis osi pionowej ); leg ( opis 1. funkcji, opis 2. funkcji, opis 3. funkcji ); Wszystkie opisy odnoszą się do bieżącego okna. Scilab wprowadzenie, UKSW -6- Anna Trykozko, ICM, Uniwersytet Warszawski
7 leg ( opis 1. funkcji, opis 2. funkcji, opis 3. funkcji,4); położenie legy zdefiniowanie za pomocą myszy: leg ( opis 1. funkcji, opis 2. funkcji, opis 3. funkcji,5); Uwaga: Legę można uzupełnić o informację o jej położeniu na rysunku poprzez podanie na końcu opcjonalnego parametru. Domyślnym położeniem legy jest prawy górny róg. Polecenie: leg ( opis 1. funkcji, opis 2. funkcji, opis 3. funkcji,4); spowoduje umieszczenie legy w lewym dolnym rogu. Przykładowe inne możliwości można podawać albo opis liczbowy, albo opis słowny (w apostrofach): 1 lub "in_upper_right" prawy górny róg, przyjmowane domyślnie 2 lub "in_upper_left" lewy górny róg 3 lub "in_lower_left" lewy dolny róg 4 lub "in_lower_right" prawy dolny róg 5 lub "by_coordinates" położenie legy zdefiniowanie za pomocą myszki w oknie graficznym. Kilka rozłącznych wykresów w jednym oknie subplot Przykład 4 wykresów rozmieszczonych w 2 kolumnach i 2 wierszach. -->clf() -->subplot(2,2,1); -->plot(x,y) -->subplot(2,2,2); -->plot(x,y,'ro-.') -->subplot(2,2,2); -->subplot(2,2,3); -->plot(x,y,'mo-.') -->xgrid() -->subplot(2,2,4); -->plot(x,2*y,x,y); -->xgrid() Scilab wprowadzenie, UKSW -7- Anna Trykozko, ICM, Uniwersytet Warszawski
8 Rozwiązanie równania ( D u( x)) = f ( x) w przedziale [0, 10]. W x=0 warunek Dirichleta f(0)=10. x=10: warunek Dirichleta f(10)=0 clear; // przedzial: a=0; b=10; // liczba wezlow n=10; h=(b-a)/(n-1); // wspolczynnik dyfuzji D=0.5; // polozenie wezlow for i=1:n x(i)=a+(i-1)*h; /// macierz dyfuzji A=zeros(n-2,n-2); for i=1:n-2 A(i,i)=D*2/(h*h); for i=1:n-3 A(i,i+1)=-D/(h*h); for i=2:n-2 A(i,i-1)=-D/(h*h); /// /// /// prawa strona f=zeros(n-2,1); f(1)=d*10/(h*h); // zrodlo (np. ciepla) w punkcie 5 f(5)=2; scf(0); clf(0); ///Backslash denotes left matrix division. ///x=a\b is a solution to A*x=b u1=a\f; u1_full=[10;u1;0]; plot(x,u1_full); x=10: warunek Neumanna df/dx=0 clear; // przedzial: a=0; b=10; // liczba wezlow n=10; h=(b-a)/(n-1); // wspolczynnik dyfuzji D=0.5; // polozenie wezlow for i=1:n x(i)=a+(i-1)*h; /// macierz dyfuzji A=zeros(n-1,n-1); for i=1:n-1 A(i,i)=D*2/(h*h); for i=1:n-2 A(i,i+1)=-D/(h*h); for i=2:n-1 A(i,i-1)=-D/(h*h); /// modyfikacja macierzy A A(n-1,n-2)=-2*D/(h*h); /// prawa strona f=zeros(n-1,1); f(1)=d*10/(h*h); // zrodlo (np. ciepla) w punkcie 5 f(5)=2; scf(0); clf(0); ///Backslash denotes left matrix division. ///x=a\b is a solution to A*x=b u1=a\f; u1_full=[10;u1]; plot(x,u1_full); Scilab wprowadzenie, UKSW -8- Anna Trykozko, ICM, Uniwersytet Warszawski
Scilab - podstawy. Wersje instalacyjne programu Scilab mogą zostać pobrane ze strony
Scilab - podstawy Scilab jest środowiskiem numerycznym, programistycznym i numerycznym dostępnym za darmo z INRIA (Institut Nationale de Recherche en Informatique et Automatique). Jest programem podobnym
SCILAB. Wprowadzenie do Scilaba: http://www.scilab.org/content/download/1754/19024/file/introscilab.pdf
SCILAB Wprowadzenie Scilab jest środowiskiem programistycznym i numerycznym dostępnym za darmo z INRIA (Institut Nationale de Recherche en Informatique et Automatique). Jest programem podobnym do MATLABa
Wartości x-ów : Wartości x ów można w Scilabie zdefiniować na kilka sposobów, wpisując odpowiednie polecenie na konsoli.
Notatki z sesji Scilaba Istnieje możliwość dokładnego zapisu przebiegu aktualnej sesji pracy ze Scilabem: polecenie diary('nazwa_pliku.txt') powoduje zapis do podanego pliku tekstowego wszystkich wpisywanych
Modelowanie komputerowe w ochronie środowiska
Scilab - podstawy Scilab jest środowiskiem numerycznym, programistycznym i numerycznym dostępnym za darmo z INRIA (Institut Nationale de Recherche en Informatique et Automatique). Jest programem podobnym
Przykład 1 -->s="hello World!" s = Hello World! -->disp(s) Hello World!
Scilab jest środowiskiem programistycznym i numerycznym dostępnym za darmo z INRIA (Institut Nationale de Recherche en Informatique et Automatique). Jest programem podobnym do MATLABa oraz jego darmowego
PODSTAWY INFORMATYKI 1 MATLAB CZ. 3
PODSTAWY INFORMATYKI 1 MATLAB CZ. 3 TEMAT: Program Matlab: Instrukcje sterujące, grafika. Wyrażenia logiczne Wyrażenia logiczne służą do porównania wartości zmiennych o tych samych rozmiarach. W wyrażeniach
MATLAB ŚRODOWISKO MATLABA OPIS, PODSTAWY
MATLAB ŚRODOWISKO MATLABA OPIS, PODSTAWY Poszukiwanie znaczeń funkcji i skryptów funkcja help >> help % wypisuje linki do wszystkich plików pomocy >> help plot % wypisuje pomoc dotyczą funkcji plot Znaczenie
WYDZIAŁ ELEKTROTECHNIKI, AUTOMATYKI I INFORMATYKI INSTYTUT AUTOMATYKI I INFORMATYKI KIERUNEK AUTOMATYKA I ROBOTYKA STUDIA STACJONARNE I STOPNIA
WYDZIAŁ ELEKTROTECHNIKI, AUTOMATYKI I INFORMATYKI INSTYTUT AUTOMATYKI I INFORMATYKI KIERUNEK AUTOMATYKA I ROBOTYKA STUDIA STACJONARNE I STOPNIA PRZEDMIOT : : LABORATORIUM PODSTAW AUTOMATYKI 1. WSTĘP DO
Matlab Składnia + podstawy programowania
Matlab Składnia + podstawy programowania Matlab Matrix Laboratory środowisko stworzone z myślą o osobach rozwiązujących problemy matematyczne, w których operuje się na danych stanowiących wielowymiarowe
Wprowadzenie do środowiska
Wprowadzenie do środowiska www.mathworks.com Piotr Wróbel piotr.wrobel@igf.fuw.edu.pl Pok. B 4.22 Metody numeryczne w optyce 2017 Czym jest Matlab Matlab (matrix laboratory) środowisko obliczeniowe oraz
Matlab Składnia + podstawy programowania
Matlab Składnia + podstawy programowania Matlab Matrix Laboratory środowisko stworzone z myślą o osobach rozwiązujących problemy matematyczne, w których operuje się na danych stanowiących wielowymiarowe
Metody optymalizacji - wprowadzenie do SciLab a
Metody optymalizacji - wprowadzenie do SciLab a 1 Zmienne Nazwy: dozwolone nazwy zawierają znaki: od a do z, od A do Z, od 0 do 9 oraz _, #,!, $,? Operator przypisania wartości zmiennej = Przykład x=2
MATLAB wprowadzenie śycie jest zbyt krótkie, aby tracić czas na pisanie pętli!
Modele układów dynamicznych - laboratorium MATLAB wprowadzenie śycie jest zbyt krótkie, aby tracić czas na pisanie pętli! 1 2 MATLAB MATLAB (ang. matrix laboratory) to pakiet przeznaczony do wykonywania
GNU Octave (w skrócie Octave) to rozbudowany program do analizy numerycznej.
1 GNU Octave GNU Octave (w skrócie Octave) to rozbudowany program do analizy numerycznej. Octave zapewnia: sporą bibliotęke użytecznych funkcji i algorytmów; możliwośc tworzenia przeróżnych wykresów; możliwość
LABORATORIUM 3 ALGORYTMY OBLICZENIOWE W ELEKTRONICE I TELEKOMUNIKACJI. Wprowadzenie do środowiska Matlab
LABORATORIUM 3 ALGORYTMY OBLICZENIOWE W ELEKTRONICE I TELEKOMUNIKACJI Wprowadzenie do środowiska Matlab 1. Podstawowe informacje Przedstawione poniżej informacje maja wprowadzić i zapoznać ze środowiskiem
TWORZENIE WYKRESÓW (1)
TWORZENIE WYKRESÓW (1) Pewne wykresy można wygenerować za pomocą jednego polecenia, np.: graf2d, graf2d2, peaks, membrane, penny, earthmap, xfourier, xpklein, Lorenz, graf3d. Okno graficzne można wyczyścić
zajęcia 2 Definiowanie wektorów:
zajęcia 2 Plan zajęć: definiowanie wektorów instrukcja warunkowa if wykresy Definiowanie wektorów: Co do definicji wektora: Koń jaki jest, każdy widzi Definiowanie wektora w Octave v1=[3,2,4] lub: v1=[3
Podstawy Automatyki ćwiczenia Cz.1. Środowisko Matlab
Podstawy Automatyki ćwiczenia Cz.1 Środowisko Matlab Podstawową jednostką obliczeniową w programie Matlab jest macierz. Wektory i skalary mogą być tutaj rozpatrywane jako specjalne typy macierzy. Elementy
Matlab MATrix LABoratory Mathworks Inc.
Małgorzata Jakubowska Matlab MATrix LABoratory Mathworks Inc. MATLAB pakiet oprogramowania matematycznego firmy MathWorks Inc. (www.mathworks.com) rozwijany od roku 1984 język programowania i środowisko
Wprowadzenie do Mathcada 1
Wprowadzenie do Mathcada Ćwiczenie. - Badanie zmienności funkcji kwadratowej Ćwiczenie. pokazuje krok po kroku tworzenie prostego dokumentu w Mathcadzie. Dokument ten składa się z następujących elementów:.
Elementy metod numerycznych - zajęcia 9
Poniższy dokument zawiera informacje na temat zadań rozwiązanych w trakcie laboratoriów. Elementy metod numerycznych - zajęcia 9 Tematyka - Scilab 1. Labolatoria Zajęcia za 34 punktów. Proszę wysłać krótkie
1 Programowanie w matlabie - skrypty i funkcje
1 Programowanie w matlabie - skrypty i funkcje 1.1 Skrypty Skrypt jest plikiem tekstowym z rozszerzeniem *.m zawierającym listę poleceń do wykonania. Aby utworzyć skrypt w matlabie wybierz File New Script,
Grafika w Matlabie. Wykresy 2D
Grafika w Matlabie Obiekty graficzne wyświetlane są w specjalnym oknie, które otwiera się poleceniem figure. Jednocześnie może być otwartych wiele okien, a każde z nich ma przypisany numer. Jedno z otwartych
Mathcad c.d. - Macierze, wykresy 3D, rozwiązywanie równań, pochodne i całki, animacje
Mathcad c.d. - Macierze, wykresy 3D, rozwiązywanie równań, pochodne i całki, animacje Opracował: Zbigniew Rudnicki Powtórka z poprzedniego wykładu 2 1 Dokument, regiony, klawisze: Dokument Mathcada realizuje
Metody i analiza danych
2015/2016 Metody i analiza danych Macierze Laboratorium komputerowe 2 Anna Kiełbus Zakres tematyczny 1. Funkcje wspomagające konstruowanie macierzy 2. Dostęp do elementów macierzy. 3. Działania na macierzach
Laboratorium Algorytmy Obliczeniowe. Lab. 9 Prezentacja wyników w Matlabie
Laboratorium Algorytmy Obliczeniowe Lab. 9 Prezentacja wyników w Matlabie 1. Wyświetlanie wyników na ekranie: W Matlabie możliwe są następujące sposoby wyświetlania wartości zmiennych: a. wpisując w programie
Instalacja
Wprowadzenie Scilab pojawił się w Internecie po raz pierwszy, jako program darmowy, w roku 1994 Od 1990 roku pracowało nad nim 5 naukowców z instytutu INRIA (Francuski Narodowy Instytut Badań w Dziedzinie
Pętla for. Matematyka dla ciekawych świata -19- Scilab. for i=1:10... end. for k=4:-1:1... end. k=3 k=4. k=1. k=2
Pętle wielokrotne wykonywanie ciągu instrukcji. Bardzo często w programowaniu wykorzystuje się wielokrotne powtarzanie określonego ciągu czynności (instrukcji). Rozróżniamy sytuacje, gdy liczba powtórzeń
Scilab - wprowadzenie
Strona 1 Scilab jest darmowym programem (freeware) przeznaczonym do badań matematycznych. Może pomóc w statystycznym opracowaniu wyników badań (pomiarów). Można przy jego pomocy rysować grafy, wykresy
Programowanie: grafika w SciLab Slajd 1. Programowanie: grafika w SciLab
Programowanie: grafika w SciLab Slajd 1 Programowanie: grafika w SciLab Programowanie: grafika w SciLab Slajd 2 Plan zajęć 1. Wprowadzenie 2. Wykresy 2-D 3. Wykresy 3-D 4. Rysowanie figur geometrycznych
Wprowadzenie do Scilab: podstawy języka Scilab
Wprowadzenie do Scilab: podstawy języka Scilab Magdalena Deckert, Izabela Szczęch, Barbara Wołyńska, Bartłomiej Prędki Politechnika Poznańska, Instytut Informatyki Narzędzia Informatyki Narzędzia Informatyki
Wprowadzenie do Scilab: macierze
Wprowadzenie do Scilab: macierze Narzędzia Informatyki Magdalena Deckert Izabela Szczęch Barbara Wołyńska Bartłomiej Prędki Politechnika Poznańska Instytut Informatyki Agenda Definiowanie macierzy Funkcje
Metody i analiza danych
2015/2016 Metody i analiza danych Funkcje, pętle i grafika Laboratorium komputerowe 3 Anna Kiełbus Zakres tematyczny 1. Funkcje i skrypty Pętle i instrukcje sterujące 2. Grafika dwuwymiarowa 3. Grafika
Wprowadzenie do systemu Scilab
Wprowadzenie do systemu Scilab Instrukcja 0 Wersja robocza 1 System Scilab Scilab jest wysokopoziomowym obiektowym językiem programowania, którego celem jest numeryczne wsparcie badań naukowych i inżynierskich.
Wprowadzenie do Scilab: funkcje i wykresy
Wprowadzenie do Scilab: funkcje i wykresy Magdalena Deckert, Izabela Szczęch, Barbara Wołyńska, Bartłomiej Prędki Politechnika Poznańska, Instytut Informatyki Narzędzia Informatyki Narzędzia Informatyki
WEKTORY I MACIERZE. Strona 1 z 11. Lekcja 7.
Strona z WEKTORY I MACIERZE Wektory i macierze ogólnie nazywamy tablicami. Wprowadzamy je:. W sposób jawny: - z menu Insert Matrix, - skrót klawiszowy: {ctrl}+m, - odpowiedni przycisk z menu paska narzędziowego
ANALIZA DANYCH I PROCESÓW. Mgr inż. Paweł Wojciech Herbin
ANALIZA DANYCH I PROCESÓW Mgr inż. Paweł Wojciech Herbin SZCZECIN 29 LUTEGO 2016 Spis treści 1. Wprowadzenie... 4 2. MATLAB wprowadzenie do interfejsu... 5 3. Praca w trybie bezpośrednim... 6 3.1. Wprowadzanie
Ćwiczenie 3. MatLab: Algebra liniowa. Rozwiązywanie układów liniowych
Ćwiczenie 3. MatLab: Algebra liniowa. Rozwiązywanie układów liniowych Wszystko proszę zapisywać komendą diary do pliku o nazwie: imie_ nazwisko 1. Definiowanie macierzy i odwoływanie się do elementów:
Zadanie: Napisać program, który odgadnie liczbę naturalną z przedziału [1, 50] wylosowaną przez komputer. Można zastosować różne algorytmy.
Instrukcja input W zaprogramowaniu kolejnych zadań przyda się umiejętność wprowadzania wartości z zewnątrz do programu (wczytywanie danych). Na przykład: liczba = input("podaj liczbe:") Działanie instrukcji
Operatory arytmetyczne
Operatory arytmetyczne Działanie Znak Dodawanie + Odejmowanie - Mnożenie macierzowe * Mnożenie tablicowe.* Dzielenie macierzowe / Dzielenie tablicowe./ Potęgowanie macierzowe ^ Potęgowanie tablicowe.^
Wprowadzenie do pakietów MATLAB/GNU Octave
Wprowadzenie do pakietów MATLAB/GNU Octave Ireneusz Czajka wersja poprawiona z 2017 Chociaż dla ścisłości należałoby używać zapisu MATLAB/GNU Octave, w niniejszym opracowaniu używana jest nazwa Matlab,
Podstawy MATLABA, cd.
Akademia Górniczo-Hutnicza Wydział Elektrotechniki, Automatyki, Informatyki i Elektroniki Przetwarzanie Sygnałów Studia Podyplomowe, Automatyka i Robotyka Podstawy MATLABA, cd. 1. Wielomiany 1.1. Definiowanie
Ćwiczenie 3: Wprowadzenie do programu Matlab
Uniwersytet Zielonogórski Instytut Sterowania i Systemów Informatycznych Laboratorium modelowania i symulacji Ćwiczenie 3: Wprowadzenie do programu Matlab 1. Wyznaczyć wartość sumy 1 1 2 + 1 3 1 4 + 1
PRZYKŁADOWE SKRYPTY (PROGRAMY W MATLABIE Z ROZSZERZENIEM.m): 1) OBLICZANIE WYRAŻEŃ 1:
PRZYKŁADOWE SKRYPTY (PROGRAMY W MATLABIE Z ROZSZERZENIEM.m): 1) OBLICZANIE WYRAŻEŃ 1: clear % usunięcie zmiennych z pamięci roboczej MATLABa % wyczyszczenie okna kom % nadanie wartości zmiennym x1 i x2
Wykorzystanie programów komputerowych do obliczeń matematycznych
Temat wykładu: Wykorzystanie programów komputerowych do obliczeń matematycznych Kody kolorów: żółty nowe pojęcie pomarańczowy uwaga kursywa komentarz * materiał nadobowiązkowy Przykłady: Programy wykorzystywane
Podstawowe operacje na macierzach
Podstawowe operacje na macierzach w pakiecie GNU octave. (wspomaganie obliczeń inżynierskich) Cel ćwiczenia Celem ćwiczenia jest zapoznanie się z tworzeniem macierzy i wektorów w programie GNU octave.
Cw.12 JAVAScript w dokumentach HTML
Cw.12 JAVAScript w dokumentach HTML Wstawienie skryptu do dokumentu HTML JavaScript jest to interpretowany, zorientowany obiektowo, skryptowy język programowania.skrypty Java- Script mogą być zagnieżdżane
Akademia Górniczo-Hutnicza Wydział Elektrotechniki, Automatyki, Informatyki i Elektroniki
Akademia Górniczo-Hutnicza Wydział Elektrotechniki, Automatyki, Informatyki i Elektroniki Przetwarzanie Sygnałów Studia Podyplomowe, Automatyka i Robotyka Podstawy MATLABA MATLAB jest zintegrowanym środowiskiem
Wprowadzenie do programowania w SciLab: typy danych, wyrażenia, operatory, funkcje własne, skrypty.
13 listopad 2012 Podstawowe obliczenia w programie SciLab slajd 1 Wprowadzenie do programowania w SciLab: typy danych, wyrażenia, operatory, funkcje własne, skrypty. 13 listopad 2012 Podstawowe obliczenia
Podstawy programowania w języku Visual Basic dla Aplikacji (VBA)
Podstawy programowania w języku Visual Basic dla Aplikacji (VBA) Instrukcje Język Basic został stworzony w 1964 roku przez J.G. Kemeny ego i T.F. Kurtza z Uniwersytetu w Darthmouth (USA). Nazwa Basic jest
Programowanie w języku Matlab
Programowanie w języku Matlab D. Caban, P. Skurowski Wykład. Składnia języka, podstawowe struktury i operacje Matlab Nazwa pochodzi od MATrix LAboratory Środowisko obliczeń numerycznych i symbolicznych
MATLAB - podstawy użytkowania
MATLAB - podstawy użytkowania Zbigniew Rudnicki (dr inż) MATLAB (MATrix LABoratory) - pakiet oprogramowania matematycznego firmy MathWorks Inc. (od roku 1984) to język i środowisko programowania do obliczeń
Metody Numeryczne. Laboratorium 1. Wstęp do programu Matlab
Metody Numeryczne Laboratorium 1 Wstęp do programu Matlab 1. Wiadomości wstępne liczby, format Program Matlab używa konwencjonalną notację dziesiętną, z kropka dziesiętną. W przypadku notacji naukowej
Przykładowo, jeśli współrzędna x zmienia się od 0 do 8 co 1, a współrzędna y od 12 co 2 do 25, to punkty powinny wyglądać następująco:
Informatyka I Przypomnienie wiadomości z poprzednich zajęć: Kolokwium!!! II Nowe wiadomości: 1 Funkcje trójwymiarowe Wykresy trójwymiarowe tworzone są na podstawie funkcji dwóch zmiennych Wejściem takich
Elementy projektowania inzynierskiego Przypomnienie systemu Mathcad
Elementy projektowania inzynierskiego Definicja zmiennych skalarnych a : [S] - SPACE a [T] - TAB - CTRL b - SHIFT h h. : / Wyświetlenie wartości zmiennych a a = b h. h. = Przykładowe wyrażenia
Wprowadzenie do Octave
Wprowadzenie do Octave Poruszanie się po strukturze katalogów w Octave: Wyświetlenie ścieżki aktualnego katalogu roboczego poleceniem pwd Zmiana katalogu poleceniem cd np. cd d:\pliki_octave
AKADEMIA GÓRNICZO-HUTNICZA im. Stanisława Staszica w Krakowie
AKADEMIA GÓRNICZO-HUTNICZA im. Stanisława Staszica w Krakowie Wydział Inżynierii Mechanicznej i Robotyki Katedra Systemów Energetycznych i Urządzeń Ochrony Środowiska Metody Numeryczne Laboratorium 1 Wprowadzenie
Ćwiczenie 1. Matlab podstawy (1) Matlab firmy MathWorks to uniwersalny pakiet do obliczeń naukowych i inżynierskich, analiz układów statycznych
1. Matlab podstawy (1) Matlab firmy MathWorks to uniwersalny pakiet do obliczeń naukowych i inżynierskich, analiz układów statycznych i dynamicznych, symulacji procesów, przekształceń i obliczeń symbolicznych
Scilab. chdir( D:\Mój katalog\scilab ) Katalog roboczy można również zmienić w oknie Przeglądarka plików. Przejście do nowej linii:
Scilab 1 Wiadomości wstępne Wykonaj poniższe przykłady, aby zapisać swoją pracę wywołaj polecenie diary on i diary imię nazwisko. Na koniec zajęć wydaj polecenie save nazwa pliku. Polecenie diary off wyłącza
Ćwiczenia nr 2. Edycja tekstu (Microsoft Word)
Dostosowywanie paska zadań Ćwiczenia nr 2 Edycja tekstu (Microsoft Word) Domyślnie program Word proponuje paski narzędzi Standardowy oraz Formatowanie z zestawem opcji widocznym poniżej: Można jednak zmodyfikować
Drugi sposób definiowania funkcji polega na wykorzystaniu polecenia:
ĆWICZENIE 6. Scilab: Obliczenia symboliczne i numeryczne Uwaga: Podczas operacji kopiowania i wklejania potrzeba skasować wklejone pojedyńcze cudzysłowy i wpisać je ręcznie dla każdego ich wystąpienia
Technologie informacyjne lab. 3
Technologie informacyjne lab. 3 Cel ćwiczenia: Poznanie podstaw środowiska MATLAB/Octave: obliczenia macierzowe, rozwiązywanie równań i układów równań, wykresy funkcji 1 i 2 zmiennych. Aktualnie Uczelnia
Przetwarzanie sygnałów
Spis treści Przetwarzanie sygnałów Ćwiczenie 1 Wprowadzenie do programu Octave 1 Operatory 1 1.1 Operatory arytmetyczne...................... 1 1.2 Operatory relacji.......................... 1 1.3 Operatory
3.4. Opis konfiguracji layoutów.
Definicja layout-ów dla tablicy odczytywana jest z tabeli w bazie danych: [UnitId_System] Gdańsk = 42, Gdynia = 43 [UnitId_Subsytem] 6 = TZT, 7 = ZZT [UnitId_Unit] identyfikator obiektu [Update_TimeStamp]
MATLAB - laboratorium nr 1 wektory i macierze
MATLAB - laboratorium nr 1 wektory i macierze 1. a. Małe i wielkie litery nie są równoważne (MATLAB rozróżnia wielkość liter). b. Wpisanie nazwy zmiennej spowoduje wyświetlenie jej aktualnej wartości na
Laboratorium metod numerycznych - SCILAB Laboratorium 2
Laboratorium metod numerycznych - SCILAB Laboratorium 2 W najprostszym przypadku, Scilab jest wykorzystywany jako kalkulator zdolny wykonywać obliczenia na wektorach i macierzach. W prostych zadaniach
Modelowanie Systemów Dynamicznych Studia zaoczne, Automatyka i Robotyka, rok II. Podstawy MATLABA, cz2.
Akademia Górniczo-Hutnicza Wydział Elektrotechniki, Automatyki, Informatyki i Elektroniki Modelowanie Systemów Dynamicznych Studia zaoczne, Automatyka i Robotyka, rok II Podstawy MATLABA, cz2. 1. Wielomiany
Obliczenia iteracyjne
Lekcja Strona z Obliczenia iteracyjne Zmienne iteracyjne (wyliczeniowe) Obliczenia iteracyjne wymagają zdefiniowania specjalnej zmiennej nazywanej iteracyjną lub wyliczeniową. Zmienną iteracyjną od zwykłej
Wprowadzenie do Scilab: macierze
Wprowadzenie do Scilab: macierze Narzędzia Informatyki Magdalena Deckert Izabela Szczęch Barbara Wołyńska Bartłomiej Prędki Politechnika Poznańska Instytut Informatyki Agenda Definiowanie macierzy Funkcje
Podstawowe operacje graficzne.
Podstawowe operacje graficzne. Cel ćwiczenia Celem ćwiczenia jest zapoznanie się z możliwościami graficznymi środowiska GNU octave, w tym celu: narzędziami graficznymi, sposobami konstruowania wykresów
WPROWADZENIE DO ŚRODOWISKA SCILAB
Politechnika Gdańska Wydział Elektrotechniki i Automatyki WPROWADZENIE DO ŚRODOWISKA SCILAB Materiały pomocnicze do ćwiczeń laboratoryjnych Opracowanie: Paweł Lieder Gdańsk, 007 Podstawy pracy z Scilab.
Elementy okna MatLab-a
MatLab część IV 1 Elementy okna MatLab-a 2 Elementy okna MatLab-a 3 Wykresy i przydatne polecenia Wywołanie funkcji graficznej powoduje automatyczne otwarcie okna graficznego Kolejne instrukcje graficzne
Scilab skrypty (programowanie)
Strona 1 Skrypt (program interpretowany) możemy napisać w dowolnym edytorze. Warto posługiwać się edytorem wbudowanym w program Scilab. Wykonać skrypt możemy na dwa sposoby: wpisując polecenie exec('nazwaskryptu')
1. Przypisy, indeks i spisy.
1. Przypisy, indeks i spisy. (Wstaw Odwołanie Przypis dolny - ) (Wstaw Odwołanie Indeks i spisy - ) Przypisy dolne i końcowe w drukowanych dokumentach umożliwiają umieszczanie w dokumencie objaśnień, komentarzy
Algebra macierzy
Algebra macierzy Definicja macierzy Macierze Macierze Macierze Działania na macierzach Działania na macierzach A + B = B + A (prawo przemienności dodawania) (A + B) + C = A + (B + C) (prawo łączności dodawania)
Obliczenia w programie MATLAB
Obliczenia w programie MATLAB Na zajęciach korzystamy z programu MATLAB, w którym wykonywać będziemy większość obliczeń. Po uruchomieniu programu w zależności od wersji i konfiguracji może pojawić się
Wprowadzenie do Scilab: macierze
Wprowadzenie do Scilab: macierze Narzę dzia Informatyki Magdalena Deckert Izabela Szczę ch Barbara Wołyń ska Bartłomiej Prę dki Politechnika Poznań ska Instytut Informatyki Agenda Definiowanie macierzy
Rozwiązywanie równań różniczkowych z niezerowymi warunkami początkowymi
. Cele ćwiczenia Laboratorium nr Rozwiązywanie równań różniczkowych z niezerowymi warunkami początkowymi zapoznanie się z metodami symbolicznego i numerycznego rozwiązywania równań różniczkowych w Matlabie,
do MATLABa programowanie WYKŁAD Piotr Ciskowski
Wprowadzenie do MATLABa programowanie WYKŁAD Piotr Ciskowski instrukcje sterujące instrukcja warunkowa: if instrukcja wyboru: switch instrukcje iteracyjne: for, while instrukcje przerwania: continue, break,
Metody numeryczne Laboratorium 2
Metody numeryczne Laboratorium 2 1. Tworzenie i uruchamianie skryptów Środowisko MATLAB/GNU Octave daje nam możliwość tworzenia skryptów czyli zapisywania grup poleceń czy funkcji w osobnym pliku i uruchamiania
Zanim zaczniemy GNU Octave
MatLab część I 1 Zanim zaczniemy GNU Octave 2 Zanim zaczniemy GNU Octave 3 Zanim zaczniemy GNU Octave 4 Środowisko MatLab-a MatLab ang. MATrix LABoratory Obliczenia numeryczne i symboliczne operacje na
1) Podstawowe obliczenia. PODSTAWY AUTOMATYKI I ROBOTYKI Laboratorium. Wykonał: Łukasz Konopacki Sala 125. Grupa: poniedziałek/p,
PODSTAWY AUTOMATYKI I ROBOTYKI Laboratorium Wykonał: Sala 125 Łukasz Konopacki 155796 Grupa: poniedziałek/p, 16.10 18.10 Prowadzący: Dr.inż.Ewa Szlachcic Termin oddania sprawozdania: Ocena: Matlab - firmy
Pokaz slajdów na stronie internetowej
Pokaz slajdów na stronie internetowej... 1 Podpisy pod zdjęciami... 3 Publikacja pokazu slajdów w Internecie... 4 Generator strony Uczelni... 4 Funkcje dla zaawansowanych użytkowników... 5 Zmiana kolorów
ŚRODOWISKO MATLAB WPROWADZENIE. dr inż. Dariusz Borkowski. Podstawy informatyki. (drobne) modyfikacje: dr inż. Andrzej Wetula
ŚRODOWISKO MATLAB WPROWADZENIE dr inż. Dariusz Borkowski (drobne) modyfikacje: dr inż. Andrzej Wetula Przebieg III części przedmiotu - 10 zajęć = 6 laboratoriów Matlab + 2 laboratoria Simulink + 2 kolokwia.
Spis rysunków Widok okien głównych Matlaba i Scilaba Edytory skryptów w Matlabie i Scilabie... 7
Spis rysunków 1.1. Widok okien głównych Matlaba i Scilaba... 6 1.2. Edytory skryptów w Matlabie i Scilabie... 7 4.1. Przebieg funkcji y =2x 3 30x 2 3x + 200 w przedziale .. 64 4.2. Powierzchnie
Usługi Informatyczne "SZANSA" - Gabriela Ciszyńska-Matuszek ul. Świerkowa 25, Bielsko-Biała
Usługi Informatyczne "SZANSA" - Gabriela Ciszyńska-Matuszek ul. Świerkowa 25, 43-305 Bielsko-Biała NIP 937-22-97-52 tel. +48 33 488 89 39 zwcad@zwcad.pl www.zwcad.pl Aplikacja do rysowania wykresów i oznaczania
Obliczenia inżynierskie arkusz kalkulacyjny. Technologie informacyjne
Obliczenia inżynierskie arkusz kalkulacyjny Technologie informacyjne Wprowadzanie i modyfikacja danych Program Excel rozróżnia trzy typy danych: Etykiety tak określa sie wpisywany tekst: tytuł tabeli,
Wykresy. Lekcja 10. Strona 1 z 11
Lekcja Strona z Wykresy Wykresy tworzymy:. Z menu Insert Graph i następnie wybieramy rodzaj wykresu jaki chcemy utworzyć;. Z menu paska narzędziowego "Graph Toolbar" wybierając przycisk z odpowiednim wykresem;
Wstęp do Programowania Lista 1
Wstęp do Programowania Lista 1 1 Wprowadzenie do środowiska MATLAB Zad. 1 Zapoznaj się z podstawowymi oknami dostępnymi w środowisku MATLAB: Command Window, Current Folder, Workspace i Command History.
POMIARY WIDEO W PROGRAMIE COACH 5
POMIARY WIDEO W PROGRAMIE COACH 5 Otrzymywanie informacji o położeniu zarejestrowanych na cyfrowym filmie wideo drobin odbywa się z wykorzystaniem oprogramowania do pomiarów wideo będącego częścią oprogramowania
Skrypty i funkcje Zapisywane są w m-plikach Wywoływane są przez nazwę m-pliku, w którym są zapisane (bez rozszerzenia) M-pliki mogą zawierać
MatLab część III 1 Skrypty i funkcje Zapisywane są w m-plikach Wywoływane są przez nazwę m-pliku, w którym są zapisane (bez rozszerzenia) M-pliki mogą zawierać komentarze poprzedzone znakiem % Skrypty
SKRYPTY. Zadanie: Wyznaczyć wartość wyrażenia arytmetycznego
1 SKRYPTY Zadanie: Wyznaczyć wartość wyrażenia arytmetycznego z = 1 y + 1+ ( x + 2) 3 x 2 + x sin y y + 1 2 dla danych wartości x = 12.5 i y = 9.87. Zadanie to można rozwiązać: wpisując dane i wzór wyrażenia
Wstęp 7 Rozdział 1. OpenOffice.ux.pl Writer środowisko pracy 9
Wstęp 7 Rozdział 1. OpenOffice.ux.pl Writer środowisko pracy 9 Uruchamianie edytora OpenOffice.ux.pl Writer 9 Dostosowywanie środowiska pracy 11 Menu Widok 14 Ustawienia dokumentu 16 Rozdział 2. OpenOffice
Wizualizacja funkcji w programie MATLAB
Instytut Informatyki Uniwersytetu Śląskiego 15 listopada 2008 Funckja plot Funkcja plot3 Wizualizacja funkcji jednej zmiennej Do wizualizacji funkcji jednej zmiennej w programie MATLAB wykorzystywana jest
AKADEMIA MORSKA W SZCZECINIE WI-ET / IIT / ZTT. Instrukcja do zajęc laboratoryjnych nr 1 AUTOMATYZACJA I ROBOTYZACJA PROCESÓW PRODUKCYJNYCH
AKADEMIA MORSKA W SZCZECINIE WI-ET / IIT / ZTT Instrukcja do zajęc laboratoryjnych nr 1 AUTOMATYZACJA I ROBOTYZACJA PROCESÓW PRODUKCYJNYCH II rok Kierunek Logistyka Temat: Zajęcia wprowadzające. BHP stanowisk
METODY KOMPUTEROWE W OBLICZENIACH INŻYNIERSKICH
METODY KOMPUTEROWE W OBLICZENIACH INŻYNIERSKICH ĆWICZENIE NR 9 WYRAŻENIA LOGICZNE, INSTRUKCJE WARUNKOWE I INSTRUKCJE ITERACYJNE W PROGRAMIE KOMPUTEROWYM MATLAB Dr inż. Sergiusz Sienkowski ĆWICZENIE NR
Politechnika Gdańska Wydział Elektrotechniki i Automatyki Katedra Inżynierii Systemów Sterowania
Politechnika Gdańska Wydział Elektrotechniki i Automatyki Katedra Inżynierii Systemów Sterowania Teoria sterowania MATLAB funkcje zewnętrzne (m-pliki, funkcje) Materiały pomocnicze do ćwiczeń laboratoryjnych
1 Podstawy c++ w pigułce.
1 Podstawy c++ w pigułce. 1.1 Struktura dokumentu. Kod programu c++ jest zwykłym tekstem napisanym w dowolnym edytorze. Plikowi takiemu nadaje się zwykle rozszerzenie.cpp i kompiluje za pomocą kompilatora,
Uruchom polecenie z menu Wstaw Wykres lub ikonę Kreator wykresów na Standardowym pasku narzędzi.
Tworzenie wykresów w Excelu. Część pierwsza. Kreator wykresów Wpisz do arkusza poniższą tabelę. Podczas tworzenia wykresów nie ma znaczenia czy tabela posiada obramowanie lub inne elementy formatowania
, h(x) = sin(2x) w przedziale [ 2π, 2π].
Informatyczne podstawy projektowania, IŚ, / Maima, część II. Rysowanie wykresów w dwu i trzech wymiarach (zob. 5). a. Otwórz panel okna Wykres D i zapoznaj się z nim. Wyrażenie(a) - tutaj wpisujemy funkcję