Modelowanie komputerowe w ochronie środowiska
|
|
- Marek Dąbrowski
- 8 lat temu
- Przeglądów:
Transkrypt
1 Scilab - podstawy Scilab jest środowiskiem numerycznym, programistycznym i numerycznym dostępnym za darmo z INRIA (Institut Nationale de Recherche en Informatique et Automatique). Jest programem podobnym do MATLABa oraz jego darmowego 'klonu' OCTAVE'a. Scilab jest samodzielnym programem zawierającym wiele wbudowanych funkcji numerycznych oraz graficznych. Jest wyposażony w język programowania. Wersje instalacyjne programu Scilab mogą zostać pobrane ze strony Również na tej stronie znajdują się linki do dokumentacji. Wpisując w wyszukiwarkę na przykład słowa "Scilab tutorial" można znaleźć linki do różnego rodzaju podręczników i wykładów wprowadzających do Scilaba. Zmienne: W programie operuje się na zmiennych. Nadawanie im wartości odbywa się poprzez podstawienie: a=2.5 b=6.3 c=a+b a+b a*b a/b a^b Umieszczenie średnika na końcu polecenia sprawia, że wyliczona wartość (lub wartości) nie jest wyświetlana. Stałe specjalne: %i - wartość urojona równa 1 %pi - π %e - podstawa logarytmu naturalnego %eps - największa wartość, dla której 1 + % eps = 1 %inf - nieskończoność (komputerowa) %t, %f - zmienne logiczne o wartościach prawda (true) i fałsz (f) (Co wyświetli się po wypisaniu wyrażenia logicznego 2>5?) Help - uzyskiwanie pomocy help polecenie, np. help sin apropos polecenie wyświetla informacje związane z danym poleceniem Na stronie Zmienne- kontynuacja a=2 b=3 save ( val.dat,a) // zapisanie zmiennej a w pliku val.dat clear a // skasowanie zmiennej a a // widać, że zmienna a została zniszczona b load ( val.dat, a ) // ponowne załadowanie zmiennej a
2 a exp(a)+exp(b) sin(a*%pi/b) Wektory Program Scilab jest programem wektorowym, większość operacji jest wykonywanych w odniesieniu do wektorów. Istotne jest rozróżnienie wektora wierszowego i kolumnowego. Wektor wierszowy - elementy oddzielone spacją lub przecinkiem: v=[ ] albo v=[1, 2, 3, 4] Wektor kolumnowy - elementy oddzielone średnikiem lub pisane od nowego wiersza: r=[1; 2; 3; 4] r=[ ] Uwaga: W przypadku dużych zestawów wartości należy umieszczać średnik na końcu polecenia. Transpozycja - czyli zamiana wektora wierszowego na kolumnowy, i odwrotnie: vt = v' rt = r' vt' y=[1 2 3] Wektor można zdefiniować zadając wartość pierwszego elementu, krok oraz wartość ostatniego elementu, oddzielając je dwukropkiem: x=[-1:.5:1] Zwróćmy uwagę na różnicę: x=[-1:.5:1] Z kolei polecenie: z=linspace (-1, 1, 11); wygeneruje wektor o 11 elementach, przyjmujących wartości z przedziału [-1, 1]. Można zrobić tak: x=[-1:.1: 1] y=sin(x) A następnie naszkicować wykres: plot2d(x,y) Na wektorach o zgodnych wymiarach (co to oznacza?) można wykonywać różne operacje: x+y x-y x*y x*y' x'*y Proszę porównać różnice w trzech ostatnich poleceniach Można odwoływać się do elementów wektorów, np: x(1) x(1)
3 y(2)+x(3) Wektory można konstruować w oparciu o zmienne: a=1 b=2 c=3 x=[a, b, c] Macierze: A=[1,2,3; 4,5,6; 7,8,9] B=[1,2,3 1, 2, 3 1, 2, 3] u=[-1, -2, -3] v=[1, 1, 1] w=[-1,, 1] C=[u; v; w] // należy zwrócić uwagę na te trzy polecenia r=[u v w] // i dzielące je różnice D=[u' v' w'] Operacje na macierzach (Uwaga, bardzo istotna jest zgodność wymiarów macierzy) A+B C-D A*B - mnożenie macierzowe B*A A.*B - mnożenie 'element po elemencie' C*u inv(a) cond(b) det(c) A*inv(A) Operacje 'element po elemencie':.*./.^ Rozwiązywanie układów równań liniowych A=[1, 3, 2; 2,13, 8;, 2 3] b=[1, 2, -4]' x=a\b Jest to najszybszy sposób rozwiązania układu równań. A jak inaczej rozwiązać układ równań? Szybkie tworzenie specjalnych macierzy i wektorów c=ones(5,3) d=zeros(1,1) dd=zeros(1) I=eye(5,5) D=diag( [ ]) L=diag([1,2,3,4], -1) U=rand(3,3) R=rand(3,3,'normal') rv=rand(1,1) rv=rand(1,1)
4 Skrypty Polecenia programu Scilab też można umieścić w pliku (skrypcie) i wielokrotnie wykonywać. W plikach tych oprócz poleceń umieszcza się komentarze; są to linie rozpoczynające się //. Zwyczajowe rozszerzenie takich plików to.sce. Uruchomienie poleceń z pliku następuje po wprowadzeniu polecenia: exec plik.sce Funkcje: sin, cos, log, exp, abs, sqrt sum, max, min gsort (sortowanie) Grafika - rysowanie prostych wykresów x=(-5 :.1 : 5)'; y = x.* abs(x)./ (1 + x.^2); clf(); // wyczyszczenie biezacego okna graficznego plot2d (x,y) UWAGA: Funkcja plot2d wymaga, aby wektory były wektorami kolumnowymi. Jeśli tak nie jest, można wykorzystać operator transpozycji ', np. plot2d(x',z') y2=x.* abs(x)./ (5 + x.^2); plot2d (x,y2,style=-1) Style równe wartości ujemnej oznacza wykreślanie tylko markerów punktów; różnym wartościom odpowiadają różne markery. y3= x.* abs(x)./ (1/5 + x.^2); plot2d (x,y3,style=5) Style dodatnie definiują kolory wykresu. Dodamy tytuł: xtitle ('trzy wykresy') Jeszcze raz; dodatkowo pojawi się legenda oraz opis osi: clf() plot2d (x, [y y2 y3], leg='funkcja 1@funkcja 2@funkcja 3', style=[2 3 4]) xtitle('trzy wykresy', 'opis osi x','opis osi y') // tytuł wykresu oraz opisy osi Operacje na oknach Wykresy umieszczane są w oknach graficznych; można działać w kilku oknach. Jedno z okien ma status bieżącego okna. scf () - utwórz/ ustaw jako bieżace okno scf(1) - utwórz/ ustaw jako bieżace okno 1 xset( window,1) - utwórz/ ustaw jako bieżace okno 1 clf() - wyczyść bieżące okno clf(1) - wyczyść okno 1 xdel() - usuń bieżące okno xdel(1) - usuń okno nr
5 trzy wykresy opis osi y funkcja 1 funkcja 2 funkcja 3 opis osi x Przykład: x=linspace(, 2*%pi, 4)'; // 4 wartości równomiernie rozłożonych w // przedziale [, 2*pi]. Uwaga na transpozycję. y=sin(x); yp=sin(x) +.1* rand(x,'normal'); // zaburzenie gaussowskie clf() plot2d (x, [yp, y], style=[-2, 2], leg='y=sin(x) + zaburzenie@y=sin(x)') Zadanie: Wykorzystać funkcję plot2d do pokazania, że sin( x) lim = 1 x x Funkcje pisane przez użytkowników - odrobina programowania function [y]=f(x) y=x*abs(x)/(1+x^2); endfunction /// scf(1); clf(); x=(-5:.1:5)'; fplot2d (x,f) Wykresy w 3D x=linspace (, 2*%pi, 11); // wektor wierszowy y=x; z=cos(x) * cos(x); // wynikiem takiego mnożenia jest macierz! plot3d(x,y,z); albo: plot3d1(x,y,z);
6 Z Modelowanie komputerowe w ochronie środowiska Y X 7 7 Większy przykład: Rozwiązywanie równań różniczkowych zwyczajnych Wykorzystamy funkcję ode (Ordinary Differential Equation). Należy podać cztery parametry funkcji: warunek początkowy chwilę początkową t wektor kolejnych punktów czasowych, w których jest wyznaczane rozwiązanie nazwa funkcji, w której zapisana jest prawa strona równania. Funkcja ta w ogólnym przypadku służy do rozwiązywania układów równań różniczkowych cząstkowych. Na początek rozwiążemy równanie logistyczne: dn( N = r N( (1 ), dt K gdzie: N( - zagęszczenie osobników w chwili t; r > współczynnik rozrodczości gatunku; K> pojemność środowiska, dla: K=15; r=1; // TU: zapisana jest prawa strona równania function [pochodne]=prawa_strona(t,n) pochodne(1)=r*n*(1-n/k); endfunction N=1; t=; t=:.1:1; y=ode(n,t,t,prawa_strona); scf(); plot2d(t,y); Dla układu równań sprawa wygląda podobnie, aczkolwiek bardziej skomplikowanie: Model Lotki-Volterry Niech: H( zagęszczenie ofiar w chwili t, P( zagęszczenie drapieżników w chwili t
7 Wtedy populacja dwóch gatunków jest opisana układem równań różniczkowych zwyczajnych: dh ( = r H ( a H ( P( dt dp( = b H ( P( m P( dt gdzie: r współczynnik rozrodczości gatunku ofiar a współczynnik skuteczności polowań b współczynnik rozrodczości drapieżników (na jednostkę upolowanej ofiary) m współczynnik śmiertelności drapieżników Wyznaczmy populacje gatunków dla... (wartości są zapisane w skrypcie, plik lotka_volterra.sce): // oznaczenia: y(1) <--> H // y(2) <--> P // pochodne(1) - prawa strona 1 rownania // pochodne(2) - prawa strona 2 rownania function [pochodne]=prawa_strona(t,y) pochodne(1) = r*y(1)-a*y(1)*y(2) pochodne(2) = b*y(1)*y(2)-m*y(2) endfunction t=; t=:1:3; H=5; P=2; r=.1; a=.1; b=.1; m=.5; HiP=ode([H; P],t,t,prawa_strona); // rozwiazanie H znajduje sie w pierwszym wierszu macierzy HiP (Hi(1,:)) xset ('window',1); clf(); plot2d(t,[hip(1,:)' HiP(2,:)'],style=[1,2]); xset ('window',2); clf(); plot2d4(hip(1,:)', HiP(2,:)',style=[5]);
8 Co trzeba zmienić w powyższym kodzie, aby rozwiązać układ równań opisujących następujący model? Mutualizm (symbioza) Model uwzględniający ograniczenia zysków wynikających z mutualizmu, w którym w wyniku pozytywnego oddziaływania drugiego gatunku zwiększa się pojemność środowiska gatunku pierwszego, można opisać w postaci następującego układu równań (May, 1981): dh H = r1 H (1 ) dt K1 + αp dp P = r2 P(1 ) dt K 2 + βh gdzie: r 1, r 2 współczynniki rozrodczości gatunków K 1, K 2 pojemności środowiska dla obu gatunków α, β intensywność mutualistycznych oddziaływań między gatunkami. W obliczeniach przyjąć parametry z rysunku poniżej. Mutualizm - zwiększenie pojemności środowiska Mutualizm - portret fazow y H P zagęszczenie gatunku P zagęszczenie gatunku H Wyniki uzyskano dla następujących wartości parametrów: r 1 =,1 r 2 =,1, K 1 =1, K 2 =2, α =,5, β =,4, H =3, P =5. Generowanie ciągów liczb (pesudo) losowych przykład Przykłady wywołania funkcji rand. rand(1, 2) wektor wierszowy o 2 elementach o rozkładzie jednostajnym (,1) rand(1,2) wektor kolumnowy (bo zrobiono transpozycję) rand(2,1) wektor kolumnowy (= macierzy o 2 wierszach i jednej kolumnie) rand(2, 1, normal ) wektor kolumnowy o 2 elementach o rozkładzie normalnym (,1). rand(3, 4) rand(3, 5, normal ) Wektory i macierze losowe można konstruować w oparciu o istniejące wektory lub macierze. Powstały wektor/macierz będzie miał taką samą liczbę wierszy i kolumn. Operacja rand(x) nie wpływa na zawartość wektora x. x=linspace(-1,1,51); y=rand(x); z=rand(x, normal );
9 Przykładowy większy skrypt: x=linspace(-1,1,51); y=rand(x); // rozklad jednostajny z=rand(x,'normal'); // rozklad normalny xset ('window',); clf() histplot(2,z); // HISTOGRAM dla rozkladu normalnego, wartości podzielono na 2 grup. xtitle ('rozklad normalny'); xset ('window',1); clf() histplot(2,y); // HISTOGRAM dla rozkladu jednostajnego xtitle ('rozklad jednostajny'); xset ('window',2); plot2d(x,z); plot2d(x,y,style=5); Na wykresie znajdują się wartości o rozkładzie normalnym (czarne) i jednostajnym (czerwone). Powiększenie rysunku obok. Histogram dla rozkładu jednostajnego Histogram dla rozkładu normalnego
Wersje instalacyjne programu Scilab mogą zostać pobrane ze strony
Scilab - podstawy Scilab jest środowiskiem numerycznym, programistycznym i numerycznym dostępnym za darmo z INRIA (Institut Nationale de Recherche en Informatique et Automatique). Jest programem podobnym
Scilab - podstawy. Wersje instalacyjne programu Scilab mogą zostać pobrane ze strony
Scilab - podstawy Scilab jest środowiskiem numerycznym, programistycznym i numerycznym dostępnym za darmo z INRIA (Institut Nationale de Recherche en Informatique et Automatique). Jest programem podobnym
SCILAB. Wprowadzenie do Scilaba: http://www.scilab.org/content/download/1754/19024/file/introscilab.pdf
SCILAB Wprowadzenie Scilab jest środowiskiem programistycznym i numerycznym dostępnym za darmo z INRIA (Institut Nationale de Recherche en Informatique et Automatique). Jest programem podobnym do MATLABa
Wartości x-ów : Wartości x ów można w Scilabie zdefiniować na kilka sposobów, wpisując odpowiednie polecenie na konsoli.
Notatki z sesji Scilaba Istnieje możliwość dokładnego zapisu przebiegu aktualnej sesji pracy ze Scilabem: polecenie diary('nazwa_pliku.txt') powoduje zapis do podanego pliku tekstowego wszystkich wpisywanych
Przykład 1 -->s="hello World!" s = Hello World! -->disp(s) Hello World!
Scilab jest środowiskiem programistycznym i numerycznym dostępnym za darmo z INRIA (Institut Nationale de Recherche en Informatique et Automatique). Jest programem podobnym do MATLABa oraz jego darmowego
Metody optymalizacji - wprowadzenie do SciLab a
Metody optymalizacji - wprowadzenie do SciLab a 1 Zmienne Nazwy: dozwolone nazwy zawierają znaki: od a do z, od A do Z, od 0 do 9 oraz _, #,!, $,? Operator przypisania wartości zmiennej = Przykład x=2
WPROWADZENIE DO ŚRODOWISKA SCILAB
Politechnika Gdańska Wydział Elektrotechniki i Automatyki WPROWADZENIE DO ŚRODOWISKA SCILAB Materiały pomocnicze do ćwiczeń laboratoryjnych Opracowanie: Paweł Lieder Gdańsk, 007 Podstawy pracy z Scilab.
WYDZIAŁ ELEKTROTECHNIKI, AUTOMATYKI I INFORMATYKI INSTYTUT AUTOMATYKI I INFORMATYKI KIERUNEK AUTOMATYKA I ROBOTYKA STUDIA STACJONARNE I STOPNIA
WYDZIAŁ ELEKTROTECHNIKI, AUTOMATYKI I INFORMATYKI INSTYTUT AUTOMATYKI I INFORMATYKI KIERUNEK AUTOMATYKA I ROBOTYKA STUDIA STACJONARNE I STOPNIA PRZEDMIOT : : LABORATORIUM PODSTAW AUTOMATYKI 1. WSTĘP DO
Wprowadzenie do środowiska
Wprowadzenie do środowiska www.mathworks.com Piotr Wróbel piotr.wrobel@igf.fuw.edu.pl Pok. B 4.22 Metody numeryczne w optyce 2017 Czym jest Matlab Matlab (matrix laboratory) środowisko obliczeniowe oraz
Ćwiczenie 3: Wprowadzenie do programu Matlab
Uniwersytet Zielonogórski Instytut Sterowania i Systemów Informatycznych Laboratorium modelowania i symulacji Ćwiczenie 3: Wprowadzenie do programu Matlab 1. Wyznaczyć wartość sumy 1 1 2 + 1 3 1 4 + 1
Metody i analiza danych
2015/2016 Metody i analiza danych Macierze Laboratorium komputerowe 2 Anna Kiełbus Zakres tematyczny 1. Funkcje wspomagające konstruowanie macierzy 2. Dostęp do elementów macierzy. 3. Działania na macierzach
Ćwiczenie 3. MatLab: Algebra liniowa. Rozwiązywanie układów liniowych
Ćwiczenie 3. MatLab: Algebra liniowa. Rozwiązywanie układów liniowych Wszystko proszę zapisywać komendą diary do pliku o nazwie: imie_ nazwisko 1. Definiowanie macierzy i odwoływanie się do elementów:
Elementy metod numerycznych - zajęcia 9
Poniższy dokument zawiera informacje na temat zadań rozwiązanych w trakcie laboratoriów. Elementy metod numerycznych - zajęcia 9 Tematyka - Scilab 1. Labolatoria Zajęcia za 34 punktów. Proszę wysłać krótkie
MATLAB ŚRODOWISKO MATLABA OPIS, PODSTAWY
MATLAB ŚRODOWISKO MATLABA OPIS, PODSTAWY Poszukiwanie znaczeń funkcji i skryptów funkcja help >> help % wypisuje linki do wszystkich plików pomocy >> help plot % wypisuje pomoc dotyczą funkcji plot Znaczenie
Mathcad c.d. - Macierze, wykresy 3D, rozwiązywanie równań, pochodne i całki, animacje
Mathcad c.d. - Macierze, wykresy 3D, rozwiązywanie równań, pochodne i całki, animacje Opracował: Zbigniew Rudnicki Powtórka z poprzedniego wykładu 2 1 Dokument, regiony, klawisze: Dokument Mathcada realizuje
Scilab - wprowadzenie
Strona 1 Scilab jest darmowym programem (freeware) przeznaczonym do badań matematycznych. Może pomóc w statystycznym opracowaniu wyników badań (pomiarów). Można przy jego pomocy rysować grafy, wykresy
Podstawowe operacje na macierzach
Podstawowe operacje na macierzach w pakiecie GNU octave. (wspomaganie obliczeń inżynierskich) Cel ćwiczenia Celem ćwiczenia jest zapoznanie się z tworzeniem macierzy i wektorów w programie GNU octave.
Wprowadzenie do programowania w SciLab: typy danych, wyrażenia, operatory, funkcje własne, skrypty.
13 listopad 2012 Podstawowe obliczenia w programie SciLab slajd 1 Wprowadzenie do programowania w SciLab: typy danych, wyrażenia, operatory, funkcje własne, skrypty. 13 listopad 2012 Podstawowe obliczenia
GNU Octave (w skrócie Octave) to rozbudowany program do analizy numerycznej.
1 GNU Octave GNU Octave (w skrócie Octave) to rozbudowany program do analizy numerycznej. Octave zapewnia: sporą bibliotęke użytecznych funkcji i algorytmów; możliwośc tworzenia przeróżnych wykresów; możliwość
Matlab Składnia + podstawy programowania
Matlab Składnia + podstawy programowania Matlab Matrix Laboratory środowisko stworzone z myślą o osobach rozwiązujących problemy matematyczne, w których operuje się na danych stanowiących wielowymiarowe
Diary przydatne polecenie. Korzystanie z funkcji wbudowanych i systemu pomocy on-line. Najczęstsze typy plików. diary nazwa_pliku
Diary przydatne polecenie diary nazwa_pliku Polecenie to powoduje, że od tego momentu sesja MATLAB-a, tj. polecenia i teksty wysyłane na ekran (nie dotyczy grafiki) będą zapisywane w pliku o podanej nazwie.
Wprowadzenie. SciLab Zmienne. Operatory. Macierze. Macierze. Tomasz Łukaszewski. Politechnika Poznańska Instytut Informatyki
SciLab 2016 Tomasz Łukaszewski Wprowadzenie Politechnika Poznańska Instytut Informatyki 2 Zmienne Operatory Nazwy: dozwolone nazwy zawierają znaki: od a do z, od A do Z, od 0 do 9 oraz _, #,!, $,? Przypisanie
Instalacja
Wprowadzenie Scilab pojawił się w Internecie po raz pierwszy, jako program darmowy, w roku 1994 Od 1990 roku pracowało nad nim 5 naukowców z instytutu INRIA (Francuski Narodowy Instytut Badań w Dziedzinie
Wprowadzenie do Scilab: macierze
Wprowadzenie do Scilab: macierze Narzędzia Informatyki Magdalena Deckert Izabela Szczęch Barbara Wołyńska Bartłomiej Prędki Politechnika Poznańska Instytut Informatyki Agenda Definiowanie macierzy Funkcje
Wprowadzenie do Mathcada 1
Wprowadzenie do Mathcada Ćwiczenie. - Badanie zmienności funkcji kwadratowej Ćwiczenie. pokazuje krok po kroku tworzenie prostego dokumentu w Mathcadzie. Dokument ten składa się z następujących elementów:.
Matlab Składnia + podstawy programowania
Matlab Składnia + podstawy programowania Matlab Matrix Laboratory środowisko stworzone z myślą o osobach rozwiązujących problemy matematyczne, w których operuje się na danych stanowiących wielowymiarowe
Akademia Górniczo-Hutnicza Wydział Elektrotechniki, Automatyki, Informatyki i Elektroniki
Akademia Górniczo-Hutnicza Wydział Elektrotechniki, Automatyki, Informatyki i Elektroniki Przetwarzanie Sygnałów Studia Podyplomowe, Automatyka i Robotyka Podstawy MATLABA MATLAB jest zintegrowanym środowiskiem
Obliczenia iteracyjne
Lekcja Strona z Obliczenia iteracyjne Zmienne iteracyjne (wyliczeniowe) Obliczenia iteracyjne wymagają zdefiniowania specjalnej zmiennej nazywanej iteracyjną lub wyliczeniową. Zmienną iteracyjną od zwykłej
Podstawy Automatyki ćwiczenia Cz.1. Środowisko Matlab
Podstawy Automatyki ćwiczenia Cz.1 Środowisko Matlab Podstawową jednostką obliczeniową w programie Matlab jest macierz. Wektory i skalary mogą być tutaj rozpatrywane jako specjalne typy macierzy. Elementy
ANALIZA DANYCH I PROCESÓW. Mgr inż. Paweł Wojciech Herbin
ANALIZA DANYCH I PROCESÓW Mgr inż. Paweł Wojciech Herbin SZCZECIN 29 LUTEGO 2016 Spis treści 1. Wprowadzenie... 4 2. MATLAB wprowadzenie do interfejsu... 5 3. Praca w trybie bezpośrednim... 6 3.1. Wprowadzanie
LABORATORIUM 3 ALGORYTMY OBLICZENIOWE W ELEKTRONICE I TELEKOMUNIKACJI. Wprowadzenie do środowiska Matlab
LABORATORIUM 3 ALGORYTMY OBLICZENIOWE W ELEKTRONICE I TELEKOMUNIKACJI Wprowadzenie do środowiska Matlab 1. Podstawowe informacje Przedstawione poniżej informacje maja wprowadzić i zapoznać ze środowiskiem
Rozwiązywanie równań różniczkowych z niezerowymi warunkami początkowymi
. Cele ćwiczenia Laboratorium nr Rozwiązywanie równań różniczkowych z niezerowymi warunkami początkowymi zapoznanie się z metodami symbolicznego i numerycznego rozwiązywania równań różniczkowych w Matlabie,
Wprowadzenie do Scilab: funkcje i wykresy
Wprowadzenie do Scilab: funkcje i wykresy Magdalena Deckert, Izabela Szczęch, Barbara Wołyńska, Bartłomiej Prędki Politechnika Poznańska, Instytut Informatyki Narzędzia Informatyki Narzędzia Informatyki
Pętla for. Matematyka dla ciekawych świata -19- Scilab. for i=1:10... end. for k=4:-1:1... end. k=3 k=4. k=1. k=2
Pętle wielokrotne wykonywanie ciągu instrukcji. Bardzo często w programowaniu wykorzystuje się wielokrotne powtarzanie określonego ciągu czynności (instrukcji). Rozróżniamy sytuacje, gdy liczba powtórzeń
PRZYKŁADOWE SKRYPTY (PROGRAMY W MATLABIE Z ROZSZERZENIEM.m): 1) OBLICZANIE WYRAŻEŃ 1:
PRZYKŁADOWE SKRYPTY (PROGRAMY W MATLABIE Z ROZSZERZENIEM.m): 1) OBLICZANIE WYRAŻEŃ 1: clear % usunięcie zmiennych z pamięci roboczej MATLABa % wyczyszczenie okna kom % nadanie wartości zmiennym x1 i x2
JAVAScript w dokumentach HTML (1) JavaScript jest to interpretowany, zorientowany obiektowo, skryptowy język programowania.
IŚ ćw.8 JAVAScript w dokumentach HTML (1) JavaScript jest to interpretowany, zorientowany obiektowo, skryptowy język programowania. Skrypty JavaScript są zagnieżdżane w dokumentach HTML. Skrypt JavaScript
Różniczkowanie numeryczne
Różniczkowanie numeryczne Przyjmijmy, że funkcja ciągła y = f(x) = 4sin(3x)e -x/2, gdzie x 0,2π, dana jest w postaci dyskretnej jako ciąg wartości y odpowiadających zmiennej niezależnej x, również danej
Drugi sposób definiowania funkcji polega na wykorzystaniu polecenia:
ĆWICZENIE 6. Scilab: Obliczenia symboliczne i numeryczne Uwaga: Podczas operacji kopiowania i wklejania potrzeba skasować wklejone pojedyńcze cudzysłowy i wpisać je ręcznie dla każdego ich wystąpienia
Wprowadzenie do systemu Scilab
Wprowadzenie do systemu Scilab Instrukcja 0 Wersja robocza 1 System Scilab Scilab jest wysokopoziomowym obiektowym językiem programowania, którego celem jest numeryczne wsparcie badań naukowych i inżynierskich.
Laboratorium 1b Operacje na macierzach oraz obliczenia symboliczne
Uniwersytet Zielonogórski Instytut Sterowania i Systemów Informatycznych Laboratorium Metod Numerycznych Laboratorium 1b Operacje na macierzach oraz obliczenia symboliczne 1 Zadania 1. Obliczyć numerycznie
Całkowanie numeryczne
16 kwiecień 2009 SciLab w obliczeniach numerycznych - część 4 Slajd 1 Całkowanie numeryczne 16 kwiecień 2009 SciLab w obliczeniach numerycznych - część 4 Slajd 2 Plan zajęć 1. Całkowanie przybliżone funkcji
Wykorzystanie programów komputerowych do obliczeń matematycznych
Temat wykładu: Wykorzystanie programów komputerowych do obliczeń matematycznych Kody kolorów: żółty nowe pojęcie pomarańczowy uwaga kursywa komentarz * materiał nadobowiązkowy Przykłady: Programy wykorzystywane
Równania nieliniowe, nieliniowe układy równań, optymalizacja
4 maj 2009 Nieliniowe równania i układy rówań Slajd 1 Równania nieliniowe, nieliniowe układy równań, optymalizacja 4 maj 2009 Nieliniowe równania i układy rówań Slajd 2 Plan zajęć Rozwiązywanie równań
MATLAB wprowadzenie śycie jest zbyt krótkie, aby tracić czas na pisanie pętli!
Modele układów dynamicznych - laboratorium MATLAB wprowadzenie śycie jest zbyt krótkie, aby tracić czas na pisanie pętli! 1 2 MATLAB MATLAB (ang. matrix laboratory) to pakiet przeznaczony do wykonywania
Równania nieliniowe, nieliniowe układy równań, optymalizacja
Nieliniowe równania i układy rówań Slajd 1 Równania nieliniowe, nieliniowe układy równań, optymalizacja Nieliniowe równania i układy rówań Slajd 2 Plan zajęć Rozwiązywanie równań nieliniowych -metoda bisekcji
1 Programowanie w matlabie - skrypty i funkcje
1 Programowanie w matlabie - skrypty i funkcje 1.1 Skrypty Skrypt jest plikiem tekstowym z rozszerzeniem *.m zawierającym listę poleceń do wykonania. Aby utworzyć skrypt w matlabie wybierz File New Script,
dr Mariusz Grządziel 15,29 kwietnia 2014 Przestrzeń R k R k = R R... R k razy Elementy R k wektory;
Wykłady 8 i 9 Pojęcia przestrzeni wektorowej i macierzy Układy równań liniowych Elementy algebry macierzy dodawanie, odejmowanie, mnożenie macierzy; macierz odwrotna dr Mariusz Grządziel 15,29 kwietnia
Matematyka. rok akademicki 2008/2009, semestr zimowy. Konwersatorium 1. Własności funkcji
. Własności funkcji () Wyznaczyć dziedzinę funkcji danej wzorem: y = 2 2 + 5 y = +4 y = 2 + (2) Podać zbiór wartości funkcji: y = 2 3, [2, 5) y = 2 +, [, 4] y =, [3, 6] (3) Stwierdzić, czy dana funkcja
Metody numeryczne Laboratorium 2
Metody numeryczne Laboratorium 2 1. Tworzenie i uruchamianie skryptów Środowisko MATLAB/GNU Octave daje nam możliwość tworzenia skryptów czyli zapisywania grup poleceń czy funkcji w osobnym pliku i uruchamiania
Obliczenia w programie MATLAB
Obliczenia w programie MATLAB Na zajęciach korzystamy z programu MATLAB, w którym wykonywać będziemy większość obliczeń. Po uruchomieniu programu w zależności od wersji i konfiguracji może pojawić się
ALGEBRA z GEOMETRIA, ANALITYCZNA,
ALGEBRA z GEOMETRIA, ANALITYCZNA, MAT00405 PRZEKSZTAL CANIE WYRAZ EN ALGEBRAICZNYCH, WZO R DWUMIANOWY NEWTONA Uprościć podane wyrażenia 7; (b) ( 6)( + ); (c) a 5 6 8a ; (d) ( 5 )( 5 + ); (e) ( 45x 4 y
//warunki początkowe m=500; T=30; c=0.4; t=linspace(0,t,m); y0=[-2.5;2.5];
4.3. Przykłady wykorzystania funkcji bibliotecznych 73 MATLAB % definiowanie funkcji function [dx]=vderpol(t,y) global c; dx=[y(2); c*(1-y(1)^2)*y(2)-y(1)]; SCILAB // definiowanie układu function [f]=vderpol(t,y,c)
Wstęp do Programowania Lista 1
Wstęp do Programowania Lista 1 1 Wprowadzenie do środowiska MATLAB Zad. 1 Zapoznaj się z podstawowymi oknami dostępnymi w środowisku MATLAB: Command Window, Current Folder, Workspace i Command History.
Programowanie: grafika w SciLab Slajd 1. Programowanie: grafika w SciLab
Programowanie: grafika w SciLab Slajd 1 Programowanie: grafika w SciLab Programowanie: grafika w SciLab Slajd 2 Plan zajęć 1. Wprowadzenie 2. Wykresy 2-D 3. Wykresy 3-D 4. Rysowanie figur geometrycznych
c - częstość narodzin drapieżników lub współczynnik przyrostu drapieżników,
SIMULINK 3 Zawartość Równanie Lotki-Volterry dwa słowa wstępu... 1 Potrzebne elementy... 2 Kosmetyka 1... 3 Łączenie elementów... 3 Kosmetyka 2... 6 Symulacja... 8 Do pobrania... 10 Równanie Lotki-Volterry
, h(x) = sin(2x) w przedziale [ 2π, 2π].
Informatyczne podstawy projektowania, IŚ, / Maima, część II. Rysowanie wykresów w dwu i trzech wymiarach (zob. 5). a. Otwórz panel okna Wykres D i zapoznaj się z nim. Wyrażenie(a) - tutaj wpisujemy funkcję
OBLICZANIE POCHODNYCH FUNKCJI.
OBLICZANIE POCHODNYCH FUNKCJI. ROZWIĄZYWANIE RÓWNAŃ RÓŻNICZKOWYCH. ROZWIĄZYWANIE UKŁADÓW RÓWNAŃ LINIOWYCH. Obliczanie pochodnych funkcji. Niech będzie dana funkcja y(x określona i różniczkowalna na przedziale
Wprowadzenie do Scilab: macierze
Wprowadzenie do Scilab: macierze Narzę dzia Informatyki Magdalena Deckert Izabela Szczę ch Barbara Wołyń ska Bartłomiej Prę dki Politechnika Poznań ska Instytut Informatyki Agenda Definiowanie macierzy
WEKTORY I MACIERZE. Strona 1 z 11. Lekcja 7.
Strona z WEKTORY I MACIERZE Wektory i macierze ogólnie nazywamy tablicami. Wprowadzamy je:. W sposób jawny: - z menu Insert Matrix, - skrót klawiszowy: {ctrl}+m, - odpowiedni przycisk z menu paska narzędziowego
Modelowanie rynków finansowych z wykorzystaniem pakietu R
Modelowanie rynków finansowych z wykorzystaniem pakietu R Metody numeryczne i symulacje stochastyczne Mateusz Topolewski woland@mat.umk.pl Wydział Matematyki i Informatyki UMK Plan działania 1 Całkowanie
Laboratorium metod numerycznych - SCILAB Laboratorium 2
Laboratorium metod numerycznych - SCILAB Laboratorium 2 W najprostszym przypadku, Scilab jest wykorzystywany jako kalkulator zdolny wykonywać obliczenia na wektorach i macierzach. W prostych zadaniach
Interpolacja i aproksymacja, pojęcie modelu regresji
27 styczeń 2009 SciLab w obliczeniach numerycznych - część 3 Slajd 1 Interpolacja i aproksymacja, pojęcie modelu regresji 27 styczeń 2009 SciLab w obliczeniach numerycznych - część 3 Slajd 2 Plan zajęć
a 11 a a 1n a 21 a a 2n... a m1 a m2... a mn x 1 x 2... x m ...
Wykład 15 Układy równań liniowych Niech K będzie ciałem i niech α 1, α 2,, α n, β K. Równanie: α 1 x 1 + α 2 x 2 + + α n x n = β z niewiadomymi x 1, x 2,, x n nazywamy równaniem liniowym. Układ: a 21 x
Matlab MATrix LABoratory Mathworks Inc.
Małgorzata Jakubowska Matlab MATrix LABoratory Mathworks Inc. MATLAB pakiet oprogramowania matematycznego firmy MathWorks Inc. (www.mathworks.com) rozwijany od roku 1984 język programowania i środowisko
Wprowadzenie do pakietów MATLAB/GNU Octave
Wprowadzenie do pakietów MATLAB/GNU Octave Ireneusz Czajka wersja poprawiona z 2017 Chociaż dla ścisłości należałoby używać zapisu MATLAB/GNU Octave, w niniejszym opracowaniu używana jest nazwa Matlab,
Układy równań liniowych
Układy równań liniowych Niech K będzie ciałem. Niech n, m N. Równanie liniowe nad ciałem K z niewiadomymi (lub zmiennymi) x 1, x 2,..., x n K definiujemy jako formę zdaniową zmiennej (x 1,..., x n ) K
Obliczenia inżynierskie. oprogramowanie matematyczne
Obliczenia inżynierskie oprogramowanie matematyczne Mathcad środowisko pracy Mathcad 15.0, Mathcad Prime 1.0 Parametric Technology Corporation's 2 PTC Mathcad Prime 1.0 Środowisko obliczeń Document-centric
MATLAB - laboratorium nr 1 wektory i macierze
MATLAB - laboratorium nr 1 wektory i macierze 1. a. Małe i wielkie litery nie są równoważne (MATLAB rozróżnia wielkość liter). b. Wpisanie nazwy zmiennej spowoduje wyświetlenie jej aktualnej wartości na
Wykorzystanie programów komputerowych do obliczeń matematycznych, cz. 2/2
Temat wykładu: Wykorzystanie programów komputerowych do obliczeń matematycznych, cz. 2/2 Kody kolorów: żółty nowe pojęcie pomarańczowy uwaga kursywa komentarz * materiał nadobowiązkowy 1 Przykłady: Programy
Tydzień nr 9-10 (16 maja - 29 maja), Równania różniczkowe, wartości własne, funkcja wykładnicza od operatora - Matematyka II 2010/2011L
Tydzień nr 9-10 (16 maja - 29 maja) Równania różniczkowe wartości własne funkcja wykładnicza od operatora - Matematyka II 2010/2011L Wszelkie pytania oraz uwagi o błędach proszę kierować na przemek.majewski@gmail.com
Wprowadzenie do Scilab: macierze
Wprowadzenie do Scilab: macierze Narzędzia Informatyki Magdalena Deckert Izabela Szczęch Barbara Wołyńska Bartłomiej Prędki Politechnika Poznańska Instytut Informatyki Agenda Definiowanie macierzy Funkcje
PODSTAWY INFORMATYKI 1 MATLAB CZ. 3
PODSTAWY INFORMATYKI 1 MATLAB CZ. 3 TEMAT: Program Matlab: Instrukcje sterujące, grafika. Wyrażenia logiczne Wyrażenia logiczne służą do porównania wartości zmiennych o tych samych rozmiarach. W wyrażeniach
Ćwiczenie 6. Transformacje skali szarości obrazów
Politechnika Wrocławska Wydział Elektroniki Mikrosystemów i Fotoniki Przetwarzanie sygnałów laboratorium ETD5067L Ćwiczenie 6. Transformacje skali szarości obrazów 1. Obraz cyfrowy Obraz w postaci cyfrowej
1.3. Proste przykłady wykorzystania Scicosa
8 Rozdział 1. Trudne początki - podstawy Scicosa 1.3. Proste przykłady wykorzystania Scicosa 1.3.1. Generacja sinusoidy Spotkanie z Scicosem rozpoczniemy od bardzo prostego przykładu generowania funkcji
Laboratorium Algorytmy Obliczeniowe. Lab. 9 Prezentacja wyników w Matlabie
Laboratorium Algorytmy Obliczeniowe Lab. 9 Prezentacja wyników w Matlabie 1. Wyświetlanie wyników na ekranie: W Matlabie możliwe są następujące sposoby wyświetlania wartości zmiennych: a. wpisując w programie
Podstawy MATLABA, cd.
Akademia Górniczo-Hutnicza Wydział Elektrotechniki, Automatyki, Informatyki i Elektroniki Przetwarzanie Sygnałów Studia Podyplomowe, Automatyka i Robotyka Podstawy MATLABA, cd. 1. Wielomiany 1.1. Definiowanie
Laboratorium Komputerowego Wspomagania Analizy i Projektowania
Laboratorium Komputerowego Wspomagania Analizy i Projektowania Ćwiczenie 2. Podstawowe operacje macierzowe. Opracował: dr inż. Sebastian Dudzik 1. Cel ćwiczenia Celem ćwiczenia jest zapoznanie się z tworzeniem
Pomimo rozwoju programów klikologicznych w ekonometrii, istnieje wiele osób, które wciąż cenią sobie programy typu Matlab, czy Gauss. W programach klikologicznych typu EViews użytkownik ma małą kontrolę
Scilab skrypty (programowanie)
Strona 1 Skrypt (program interpretowany) możemy napisać w dowolnym edytorze. Warto posługiwać się edytorem wbudowanym w program Scilab. Wykonać skrypt możemy na dwa sposoby: wpisując polecenie exec('nazwaskryptu')
Rozwiązywanie równań różniczkowych cząstkowych metodą elementów skończonych - wprowadzenie
Rozwiązywanie równań różniczkowych cząstkowych metodą elementów skończonych - wprowadzenie Wprowadzenie Metoda Elementów Skończonych (MES) należy do numerycznych metod otrzymywania przybliżonych rozwiązań
Ćwiczenie 1. Matlab podstawy (1) Matlab firmy MathWorks to uniwersalny pakiet do obliczeń naukowych i inżynierskich, analiz układów statycznych
1. Matlab podstawy (1) Matlab firmy MathWorks to uniwersalny pakiet do obliczeń naukowych i inżynierskich, analiz układów statycznych i dynamicznych, symulacji procesów, przekształceń i obliczeń symbolicznych
Spis rysunków Widok okien głównych Matlaba i Scilaba Edytory skryptów w Matlabie i Scilabie... 7
Spis rysunków 1.1. Widok okien głównych Matlaba i Scilaba... 6 1.2. Edytory skryptów w Matlabie i Scilabie... 7 4.1. Przebieg funkcji y =2x 3 30x 2 3x + 200 w przedziale .. 64 4.2. Powierzchnie
Modelowanie Systemów Dynamicznych Studia zaoczne, Automatyka i Robotyka, rok II. Podstawy MATLABA, cz2.
Akademia Górniczo-Hutnicza Wydział Elektrotechniki, Automatyki, Informatyki i Elektroniki Modelowanie Systemów Dynamicznych Studia zaoczne, Automatyka i Robotyka, rok II Podstawy MATLABA, cz2. 1. Wielomiany
Wprowadzenie do programu Mathcad 15 cz. 1
Wpisywanie tekstu Wprowadzenie do programu Mathcad 15 cz. 1 Domyślnie, Mathcad traktuje wpisywany tekst jako wyrażenia matematyczne. Do trybu tekstowego można przejść na dwa sposoby: Zaczynając wpisywanie
PROGRAMOWANIE KWADRATOWE
PROGRAMOWANIE KWADRATOWE Programowanie kwadratowe Zadanie programowania kwadratowego: Funkcja celu lub/i co najmniej jedno z ograniczeń jest funkcją kwadratową. 2 Programowanie kwadratowe Nie ma uniwersalnej
Podstawowe operacje graficzne.
Podstawowe operacje graficzne. Cel ćwiczenia Celem ćwiczenia jest zapoznanie się z możliwościami graficznymi środowiska GNU octave, w tym celu: narzędziami graficznymi, sposobami konstruowania wykresów
Podstawowe operacje na macierzach, operacje we/wy
26 listopad 2012 Podstawowe operacje na macierzach, operacje we/wy Slajd 1 Podstawowe operacje na macierzach, operacje we/wy Zakład Komputerowego Wspomagania Projektowania Semestr 1. 26 listopad 2012 Podstawowe
METODY KOMPUTEROWE W OBLICZENIACH INŻYNIERSKICH
METODY KOMPUTEROWE W OBLICZENIACH INŻYNIERSKICH ĆWICZENIE NR 9 WYRAŻENIA LOGICZNE, INSTRUKCJE WARUNKOWE I INSTRUKCJE ITERACYJNE W PROGRAMIE KOMPUTEROWYM MATLAB Dr inż. Sergiusz Sienkowski ĆWICZENIE NR
Podstawy Informatyki Computer basics
Załącznik nr 7 do Zarządzenia Rektora nr 10/12 z dnia 21 lutego 2012r. KARTA MODUŁU / KARTA PRZEDMIOTU Kod modułu Nazwa modułu Nazwa modułu w języku angielskim Obowiązuje od roku akademickiego 2013/2014
Wprowadzenie do Octave
Wprowadzenie do Octave Poruszanie się po strukturze katalogów w Octave: Wyświetlenie ścieżki aktualnego katalogu roboczego poleceniem pwd Zmiana katalogu poleceniem cd np. cd d:\pliki_octave
Klasyfikator liniowy Wstęp Klasyfikator liniowy jest najprostszym możliwym klasyfikatorem. Zakłada on liniową separację liniowy podział dwóch klas między sobą. Przedstawia to poniższy rysunek: 5 4 3 2
Wspomaganie obliczeń matematycznych. dr inż. Michał Michna
Wspomaganie obliczeń matematycznych dr inż. Michał Michna Wspomaganie obliczeń matematycznych Potrzeby Projektowanie Modelowanie Symulacja Analiza wyników Narzędzia Obliczenia algebraiczne, optymalizacja
Pochodna funkcji c.d.-wykład 5 ( ) Funkcja logistyczna
Pochodna funkcji c.d.-wykład 5 (5.11.07) Funkcja logistyczna Rozważmy funkcję logistyczną y = f 0 (t) = 40 1+5e 0,5t Funkcja f może być wykorzystana np. do modelowania wzrostu masy ziaren kukurydzy (zmienna
ZADANIA ZAMKNIETE W zadaniach 1-25 wybierz i zaznacz na karcie odpowiedzi poprawna
Arkusz A04 2 Poziom podstawowy ZADANIA ZAMKNIETE W zadaniach 1-25 wybierz i zaznacz na karcie odpowiedzi poprawna odpowiedź Zadanie 1. (0-1) Liczba π spełnia nierówność: A. + 1 > 5 B. 1 < 2 C. + 2 3 4
III TUTORIAL Z METOD OBLICZENIOWYCH
III TUTORIAL Z METOD OBLICZENIOWYCH ALGORYTMY ROZWIĄZYWANIA UKŁADÓW RÓWNAŃ LINIOWYCH Opracowanie: Agata Smokowska Marcin Zmuda Trzebiatowski Koło Naukowe Mechaniki Budowli KOMBO Spis treści: 1. Wstęp do
Pracownia Informatyczna Instytut Technologii Mechanicznej Wydział Inżynierii Mechanicznej i Mechatroniki. Podstawy Informatyki i algorytmizacji
Pracownia Informatyczna Instytut Technologii Mechanicznej Wydział Inżynierii Mechanicznej i Mechatroniki Podstawy Informatyki i algorytmizacji wykład 1 dr inż. Maria Lachowicz Wprowadzenie Dlaczego arkusz
EGZAMIN MATURALNY Z MATEMATYKI
Miejsce na naklejkę z kodem szkoły dysleksja MMA-R1_1P-07 EGZAMIN MATURALNY Z MATEMATYKI POZIOM ROZSZERZONY Czas pracy 180 minut Instrukcja dla zdającego 1 Sprawdź, czy arkusz egzaminacyjny zawiera 15
Cw.12 JAVAScript w dokumentach HTML
Cw.12 JAVAScript w dokumentach HTML Wstawienie skryptu do dokumentu HTML JavaScript jest to interpretowany, zorientowany obiektowo, skryptowy język programowania.skrypty Java- Script mogą być zagnieżdżane
Zaawansowane metody numeryczne Komputerowa analiza zagadnień różniczkowych 4. Równania różniczkowe zwyczajne podstawy teoretyczne
Zaawansowane metody numeryczne Komputerowa analiza zagadnień różniczkowych 4. Równania różniczkowe zwyczajne podstawy teoretyczne P. F. Góra http://th-www.if.uj.edu.pl/zfs/gora/ semestr letni 2005/06 Wstęp
Aby przygotować się do kolokwiów oraz do egzaminów należy ponownie przeanalizować zadania
Chemia Budowlana - Wydział Chemiczny - 1 Aby przygotować się do kolokwiów oraz do egzaminów należy ponownie przeanalizować zadania rozwiązywane na wykładzie, rozwiązywane na ćwiczeniach, oraz samodzielnie