Wykład 4. Matlab cz.3 Tablice i operacje na tablicach
|
|
- Wojciech Marcinkowski
- 8 lat temu
- Przeglądów:
Transkrypt
1 Wykład 4 Matlab cz.3 Tablice i operacje na tablicach Dr inż. Zb. Rudnicki Tematyka wykładu 1. Macierze, wektory, tablice - wprowadzenie 2. Rozmiary i typy tablic 3. Zapis - nawiasy i znaki specjalne 4. Przydział pamięci dla tablic - deklarowanie 5. Sposoby wprowadzania i generowania tablic 6. Przechowywanie tablic w plikach 7. Działania na macierzach 2 1
2 1. Tablice jedno i wielowymiarowe Tablica to zbiór elementów jednakowego typu, identyfikowanych przez wspólną nazwę oraz indywidualne numery zwane indeksami W Matlabie indeksy zapisuje się po nazwie tablicy w nawiasach okrągłych, oddzielając przecinkami np.: TAB1(4, 6) Nazwa bez indeksów np.: TAB1 - reprezentuje całą tablicę. Należy rozróżnić pojęcia liczba wymiarów oraz rozmiary tablicy Liczba wymiarów tablicy - to liczba indeksów określających jej pojedynczy element, na przykład: Bt(5), W(j), Sila(j+1) - to elementy tablic jednowymiarowych czyli wektorów; HH(3, 5), Masy(j, k) - to elementy tablic dwuwymiarowych czyli macierzy; ZET(3, 5, 7), Mom(j, k, l), T(j-1,3,1) - to elementy tablic trójwymiarowych. Rozmiary tablicy - określone są maksymalnymi wartościami indeksów i wyznaczają liczbę wszystkich elementów. 3 Tablica jednowymiarowa czyli wektor - domyślnie: kolumnowy, element ma jeden indeks: nr_wiersza Liczba wymiarów tablic Tablica dwuwymiarowa czyli macierz (ciąg wektorów kolumnowych) - element ma dwa indeksy: nr_wiersza, nr_kolumny Tablica trójwymiarowa - element ma trzy indeksy: nr_wiersza, nr_kolumny, nr_strony Można też stosować tablice o większej liczbie wymiarów (kolejne indeksy dopisywane z prawej) 4 2
3 Tablice czy macierze W Matlabie istnieją tablice (ang.: arrays) jedno i wielowymiarowe. Tablice w Matlabie bywają czasem określane jako macierze (ang.: matrix) - chociaż w matematyce macierzami nazywa się tylko tablice dwuwymiarowe a wektorami tablice jednowymiarowe - wynika to stąd, że Matlab opracowywany był głównie dla macierzy (matrix), i od tego pochodzi jego nazwa: Matlab = MATrix LABoratory - a potem dopiero wprowadzono tablice (arrays) o większej liczbie wymiarów. Domyślnie, tablice mają elementy typu double - liczby rzeczywiste podwójnej precyzji. Typ double musi być użyty jeśli stosowane są obliczenia 5 2. Rozmiary i typy tablic 6 3
4 2.1. Rozmiary tablic. Funkcja SIZE Każda tablica ma określoną liczbę wierszy i kolumn co można sprawdzić funkcją size: [liczba_wierszy liczba_kolumn] = size(macierz) Skalar to macierz o rozmiarach (1, 1): >> b=2; >> size(b) 1 1 Wektor wierszowy to tablica o tylko jednym wierszu czyli rozmiarach (1, n): >> c=[8,2,6,3] c = >> size(c) 1 4 a wektor kolumnowy to tablica o jednej kolumnie czyli rozmiarach (n, 1): >> d=[4;7;2;1;6]; >> size(d) Typy tablicowe Oprócz zwykłych tablic o elementach typu double istnieją: tablice numeryczne o elementach będących liczbami całkowitymi: int8, int16, uint8, uint16,... tablice znakowe - typu char, macierze rzadkie - typu sparse - w których zapamiętywane są tylko elementy niezerowe, tablice komórkowe - typu cell - w których każdy element może być innego typu (także tablicowego), tablice strukturalne - typu struct - w których wiersze są rekordami złożonymi z pól różnych typów, identyfikowanych nazwami 8 4
5 Tablica znakowa Elementami tablicy znakowej nie mogą być łańcuchy o różnej długości, na przykład: >> TZ=['wewe','ee','o';'f','kk','sss']??? Error using ==> vertcat CAT arguments dimensions are not consistent. Dla takich łańcuchów można użyć opisanej dalej tablicy komórkowej albo usunąć błąd przez dostawienie spacji, tak aby wszystkie łańcuchy miały jednakową długość (po 4 znaki): >> TZ=['wewe',' ee ',' o';' f',' kk',' sss'] TZ = wewe ee f kk sss o 9 Tablica komórkowa Wartości elementów tablicy komórkowej wpisujemy między klamrami {...} W zwykłych tablicach wszystkie elementy muszą być tego samego typu, w tablicy komórkowej każdy element może być innego typu np.: >> TK={3.51, 'ala', 88; 'pp', 12, [3, 4; 9, 1.2] } TK = [3.5100] 'ala' [ 88] 'pp' [ 12] [2x2 double] >> TK(2,3) [2x2 double] Aby uzyskać wartości elementu trzeba indeksy wpisać między klamrami: >> TK{2,3}
6 3. Zapis - Nawiasy i znaki specjalne Zapis - Nawiasy prostokątne [ ] Używane są do: definiowania wartości wektorów i macierzy np.: V=[2.5, 3, 12], M=[1, 0, 3; 0.5, 2, 4] elementy wiersza można oddzielać przecinkami lub spacjami: V=[ ], M=[1 0 3; ] sklejania (konkatenacji): - wektorów, - macierzy - łańcuchów znakowych (tekstów) np.: disp([ Sila=, num2str(f1), Moment=, num2str(mg)]) 12 6
7 3.2. Zapis - Indeksy elementów tablic Indeksy (wskaźniki) należy umieszczać w nawiasach okrągłych np.: V(1), b(16), M(i,j), MACIERZ_A(3, 2) Indeksy mogą być wyrażeniami: sila(2*j+1) MACIERZ_A(w+1, k-2) Indeksy mogą również być ciągami: sila(2:2:8) MACIERZ_A(w:w+5, kp:kk) Dwukropek zamiast indeksu oznacza wszystkie wartości indeksu np.: >> X=[3 7 2; 8 2 5]; >> X(2,:) Zapis - Rola dwukropka w wybieraniu elementów Dla danej macierzy: >>A= [ ; ] A = a) wybieramy wszystkie wiersze z drugiej kolumny: >>A(:, 2) 2 8 b) wybieramy kolumnę 2 oraz 3: >>A(:, 2:3) c) wybieramy kolumny od 1 co 2 do 4: A(:, 1:2:4) d) drugi wiersz i wszystkie kolumny : A(2, :) e) zamiana macierzy na wektor (kolumnami): A(:)
8 4. Przydział pamięci dla tablic - deklarowanie W większości języków niezbędne jest deklarowanie typu i wymiarów tablic dla przydzielenia odpowiedniego miejsca w pamięci operacyjnej. W Matlabie przydział pamięci dla tablic odbywa się automatycznie - przez rozpoznanie rodzaju wpisanych wartości oraz maksymalnych wskaźników oraz dynamicznie - to znaczy w trakcie wykonywania programu Tablicę można zadeklarować - wstępnie ustalając wymiary - przez podanie wartości początkowej ostatniego elementu: >> B(2,4)=0 B = Dynamiczne zwiększanie rozmiaru tablicy Jeśli potem w programie wystąpią większe wartości wskaźników to macierz zostanie powiększona. Na przykład instrukcja B(3,5)=2 spowoduje następującą zmianę macierzy: >>B(3,5)= 2 B =
9 5. Sposoby wprowadzania i generowania tablic Tablice mogą powstawać na różne sposoby np.: 5.1. wpisanie wszystkich elementów w nawiasach prostokątnych, przy czym elementy wiersza oddzielamy przecinkami lub spacjami a średnik oddziela wiersze: >>A = [ 3.4, 2.7, 1.4; 8.5, 3.5, 6.7] A= generowanie na podstawie indeksów - zmienianych w pętlach, 5.3. generowanie na podstawie ciągów indeksów - bez pętli, 5.4. generowanie tablic funkcjami macierzowymi, 5.5. wczytywanie tablic z pliku (i zapis do pliku). 17 Wprowadzanie - w pętli czy bez pętli? W większości języków programowania (jak Basic, Fortran, Pascal, C,...) generowanie wektorów wymaga użycia pętli a generowanie macierzy - użycia podwójnej pętli. Z tego powodu warto poznać metody stosujące pętle. W Matlabie jednak, istnieją metody operowania na macierzach bez zastosowania pętli - co jest szybsze. W Matlabie zalecane jest zastępowanie pętli operacjami macierzowymi, szczególnie dla dużych tablic, gdyż Matlab został zoptymalizowany dla operacji macierzowych wykonywanych bez pętli. 18 9
10 5.2. Generowanie elementów tablic w pętli (1) Deklarowanie typu i wymiarów tablic odbywa się automatycznie - przez rozpoznanie rodzaju wpisanych wartości oraz maksymalnych wskaźników. Jeśli elementy tablicy generujemy w pętli to może niepotrzebnie wielokrotnie wystąpić operacja deklarowania coraz większych rozmiarów tablicy np.: >> for i=1:4; X(i)=2*i; X, end; X = 2 X = 2 4 X = X = Generowanie elementów tablic w pętli (c.d.) Aby nie marnować na to czasu komputera wskazane jest przed generowaniem elementów tablicy zarezerwować dla niej miejsce w pamięci przez wstawienie zera do elementu o maksymalnych wartościach wskaźników np.: >> clear >> B(4)=0, for i=1:4; B(i)=2*i; B, end; B = B = B = B = B =
11 5.2. Generowanie wektorów w pętli Przykład: Tabela i wykres funkcji sinus W pętli FOR wyznaczamy i wstawiamy do wektora X ciąg wartości kąta (w radianach) od zera do 2*pi z przyrostem 0.2, a do wektora Y ciąg odpowiadających im wartości funkcji sinus. k=0; % zerujemy licznik elementów tabeli fprinf('\n x sin(x)'); % nagłówek tabeli for x=0:0.2:2*pi k=k+1; X(k)=x; Y(k)=sin(x); fprinf('\n %7.4f %7.4f',X(k),Y(k)); end plot(x,y); grid on; % to wykres i siatka title('funkcja sinus'); % tytuł wykresu xlabel('x'); ylabel( y'); % etykiety osi Generowanie macierzy - w podwójnej pętli (1) Przykład 1a. Wygenerować macierz: % Program 1 clear; for w=1:4 el=2*w-1; for k=1:4 a(w,k)=el; el=el+4; end end a, % wyświetli macierz W pętlach otrzymujemy kolejne numery wierszy w oraz kolumn k. Na podstawie w ustalany jest pierwszy element wiersza el a następnie zwiększany z przyrostem 4. Umieszczenie samej nazwy macierzy a spowoduje wyświetlenie jej wszystkich elementów
12 5.2. Generowanie macierzy - w podwójnej pętli (2) Przykład 1b. Wygenerować macierz: Ta sama macierz jest tutaj generowana inaczej. W pętli zewnętrznej otrzymujemy ciąg pierwszych elementów każdego wiersza i a w pętli wewnętrznej kolejne elementy wiersza j Numery wierszy w oraz kolumn k są otrzymywane osobno. % Program 2 clear; w=0; for i=1:2:7 w=w+1; k=0; for j=i:4:i+3*4 k=k+1; a(w,k)=j; end end a Generowanie macierzy - w podwójnej pętli (3) Przykład 2. Wygenerować macierz trójkątną: clear; % rezerwujemy pamięć i zerujemy macierz: a(4,6) = 0; for w = 1:5 e = 11-2*w; k = 0; while e<10 k = k+1; a(w,k) = e; e = e+2; end end a 24 12
13 5.3. Generowanie tablic bez pętli a) Wektory, których elementy stanowią postęp arytmetyczny można generować bez pętli podając trzy parametry oddzielone dwukropkami: pierwszy_element : przyrost : ostatni element np.: >> x = -2 : 0.5 : 2 x= b) Po wygenerowaniu wektora-indeksu jako ciągu, można wykorzystać go do definiowania innych wektorów np.: >> i=1:9; x=(i-5)/2 x= >> y=(i-5).^2 y = Generowanie tablic funkcjami macierzowymi Funkcja: zeros(w,k) - generuje macierz wypełnioną zerami np.: >>A = zeros(2,3) A = ones(w,k) - generuje macierz wypełnioną jedynkami np.: >>A = ones(2,4) A =
14 5.4. Generowanie tablic bez pętli c.d. ciągi w roli indeksów zeros(w,k) - generuje macierz wypełnioną zerami, a potem do wybieranych cyklicznie elementów wstawiamy np. 11: >>A = zeros(4,5); A(1:2:3, 2:2:5)=11 A = Generowanie tablic funkcjami macierzowymi c.d. rand(w,k) - generuje macierz liczb pseudolosowych o rozkładzie równomiernym np.: >>A = rand(2,5) A = eye(n) - generuje macierz jednostkową (kwadratowa N x N z jedynkami na przekątnej głównej i zerami w pozostałych miejscach) np.: >>A = eye(3) A =
15 5.5. Wczytywanie tablic z pliku Jeśli w pliku tekstowym o nazwie DANE1.TXT są dwie linie i w każdej po 4 liczby oddzielane odstępami: to aby wczytać te liczby do macierzy można napisać następujące instrukcje: [plik1 info] = fopen('dane1.txt'); A = fscanf(plik1, '%f %f %f %f', [4, 2]) close(plik1) Ale UWAGA: dane czytane są z pliku wierszami ale umieszczane w macierzy kolumnami, dlatego po wczytaniu uzyskamy macierz: A = Aby uzyskać to samo co w pliku trzeba macierz transponować: A=A Działania na macierzach 30 15
16 Dodawanie i odejmowanie macierzy - można wykonywać tylko na macierzach typu double o identycznych rozmiarach >> A=[-2, 1, 3; 5, 6, 2], B=[0.5, 1, 1.5; 3, 2, 1] A = B = >> A+B >> A-B Dzielenie, mnożenie, potęgowanie macierzy Są dwie kategorie operacji mnożenia, dzielenia i potęgowania macierzy: Tablicowe - operatory z kropką:.*./.^ = działania na parach elementów macierzy o jednakowych rozmiarach Macierzowe (operatory bez kropki) - zgodne z definicjami działań na macierzach 32 16
17 Operatory działań Tablicowe - na elementach:.* mnożenie (par elementów).^ potęgowanie (każdego elementu)./ dzielenie (par elementów) Macierzowe - na macierzach: * mnożenie macierzowe ^ potęgowanie macierzowe (a^2 = a*a mnożenie macierzowe) / dzielenie prawostronne (x=a / b jest rozwiązaniem równania: x*b=a) \ dzielenie macierzowe (x=a\b jest rozwiązaniem równania a*x=b) 33 >> A=[1, -1, 2; 1, 2, 3], B=[2, 0, 1; 1, 0, 2] A = B = >> C=A.* B C = >> D=A*B; % Mnożenie macierzowe - niewykonalne??? Error using ==> * Inner matrix dimensions must agree. Przykład mnożenia tablicowego -macierze muszą mieć takie same rozmiary. Przy mnożeniu macierzowym liczba kolumn w pierwszej musi być taka jak liczba wierszy w drugiej 34 17
18 Mnożenie macierzowe 35 >> M1=[2,0,1;3,2,1], M2=[2;3;4] M1 = M2 = >> W=M1*M2 W = 2*2 + 0*3 + 1*4 = 8 3*2 + 2*3 + 1*4 =16 Przykład mnożenia macierzowego - liczba kolumn w pierwszej macierzy musi być równa liczbie wierszy w drugiej 36 18
19 Transpozycja macierzy [. ] - czyli zamiana wierszy na kolumny: >> A=[1,3,4,5; 2,3,6,7] A = >> B=A.' B = Układ równań liniowych (1) 38 19
20 Układ równań liniowych (2) 39 Układ równań liniowych (3) 40 20
21 Układ równań liniowych (4)
22 Funkcje dla wielomianu roots(a) - pierwiastki wielomianu dla danego wektora współczynników a. Kolejność: począwszy od najwyższej potęgi polyval(a, xp) - wartość wielomianu dla danego wektora współczynników a oraz danej wartości zmiennej xp 43 22
Wykład 4. Matlab cz.3 Tablice i operacje na tablicach
Wykład 4 Matlab cz.3 Tablice i operacje na tablicach Dr inż. Zb. Rudnicki Tematyka wykładu 1. Macierze, wektory, tablice - wprowadzenie 2. Rozmiary i typy tablic 3. Zapis - nawiasy i znaki specjalne 4.
LABORATORIUM 3 ALGORYTMY OBLICZENIOWE W ELEKTRONICE I TELEKOMUNIKACJI. Wprowadzenie do środowiska Matlab
LABORATORIUM 3 ALGORYTMY OBLICZENIOWE W ELEKTRONICE I TELEKOMUNIKACJI Wprowadzenie do środowiska Matlab 1. Podstawowe informacje Przedstawione poniżej informacje maja wprowadzić i zapoznać ze środowiskiem
Wprowadzenie do Scilab: macierze
Wprowadzenie do Scilab: macierze Narzędzia Informatyki Magdalena Deckert Izabela Szczęch Barbara Wołyńska Bartłomiej Prędki Politechnika Poznańska Instytut Informatyki Agenda Definiowanie macierzy Funkcje
Akademia Górniczo-Hutnicza Wydział Elektrotechniki, Automatyki, Informatyki i Elektroniki
Akademia Górniczo-Hutnicza Wydział Elektrotechniki, Automatyki, Informatyki i Elektroniki Przetwarzanie Sygnałów Studia Podyplomowe, Automatyka i Robotyka Podstawy MATLABA MATLAB jest zintegrowanym środowiskiem
Niezwykłe tablice Poznane typy danych pozwalają przechowywać pojedyncze liczby. Dzięki tablicom zgromadzimy wiele wartości w jednym miejscu.
Część XIX C++ w Każda poznana do tej pory zmienna może przechowywać jedną liczbę. Jeśli zaczniemy pisać bardziej rozbudowane programy, okaże się to niewystarczające. Warto więc poznać zmienne, które mogą
Ćwiczenie 3. MatLab: Algebra liniowa. Rozwiązywanie układów liniowych
Ćwiczenie 3. MatLab: Algebra liniowa. Rozwiązywanie układów liniowych Wszystko proszę zapisywać komendą diary do pliku o nazwie: imie_ nazwisko 1. Definiowanie macierzy i odwoływanie się do elementów:
Matlab Składnia + podstawy programowania
Matlab Składnia + podstawy programowania Matlab Matrix Laboratory środowisko stworzone z myślą o osobach rozwiązujących problemy matematyczne, w których operuje się na danych stanowiących wielowymiarowe
Mathcad c.d. - Macierze, wykresy 3D, rozwiązywanie równań, pochodne i całki, animacje
Mathcad c.d. - Macierze, wykresy 3D, rozwiązywanie równań, pochodne i całki, animacje Opracował: Zbigniew Rudnicki Powtórka z poprzedniego wykładu 2 1 Dokument, regiony, klawisze: Dokument Mathcada realizuje
Wprowadzenie do Scilab: macierze
Wprowadzenie do Scilab: macierze Narzędzia Informatyki Magdalena Deckert Izabela Szczęch Barbara Wołyńska Bartłomiej Prędki Politechnika Poznańska Instytut Informatyki Agenda Definiowanie macierzy Funkcje
MATLAB wprowadzenie śycie jest zbyt krótkie, aby tracić czas na pisanie pętli!
Modele układów dynamicznych - laboratorium MATLAB wprowadzenie śycie jest zbyt krótkie, aby tracić czas na pisanie pętli! 1 2 MATLAB MATLAB (ang. matrix laboratory) to pakiet przeznaczony do wykonywania
Obliczenia w programie MATLAB
Obliczenia w programie MATLAB Na zajęciach korzystamy z programu MATLAB, w którym wykonywać będziemy większość obliczeń. Po uruchomieniu programu w zależności od wersji i konfiguracji może pojawić się
Algebra macierzy
Algebra macierzy Definicja macierzy Macierze Macierze Macierze Działania na macierzach Działania na macierzach A + B = B + A (prawo przemienności dodawania) (A + B) + C = A + (B + C) (prawo łączności dodawania)
Podstawowe operacje na macierzach
Podstawowe operacje na macierzach w pakiecie GNU octave. (wspomaganie obliczeń inżynierskich) Cel ćwiczenia Celem ćwiczenia jest zapoznanie się z tworzeniem macierzy i wektorów w programie GNU octave.
MATLAB - laboratorium nr 1 wektory i macierze
MATLAB - laboratorium nr 1 wektory i macierze 1. a. Małe i wielkie litery nie są równoważne (MATLAB rozróżnia wielkość liter). b. Wpisanie nazwy zmiennej spowoduje wyświetlenie jej aktualnej wartości na
Metody i analiza danych
2015/2016 Metody i analiza danych Macierze Laboratorium komputerowe 2 Anna Kiełbus Zakres tematyczny 1. Funkcje wspomagające konstruowanie macierzy 2. Dostęp do elementów macierzy. 3. Działania na macierzach
Wprowadzenie do środowiska
Wprowadzenie do środowiska www.mathworks.com Piotr Wróbel piotr.wrobel@igf.fuw.edu.pl Pok. B 4.22 Metody numeryczne w optyce 2017 Czym jest Matlab Matlab (matrix laboratory) środowisko obliczeniowe oraz
Matlab Składnia + podstawy programowania
Matlab Składnia + podstawy programowania Matlab Matrix Laboratory środowisko stworzone z myślą o osobach rozwiązujących problemy matematyczne, w których operuje się na danych stanowiących wielowymiarowe
Elementy metod numerycznych - zajęcia 9
Poniższy dokument zawiera informacje na temat zadań rozwiązanych w trakcie laboratoriów. Elementy metod numerycznych - zajęcia 9 Tematyka - Scilab 1. Labolatoria Zajęcia za 34 punktów. Proszę wysłać krótkie
Programowanie w języku Matlab
Programowanie w języku Matlab D. Caban, P. Skurowski Wykład. Składnia języka, podstawowe struktury i operacje Matlab Nazwa pochodzi od MATrix LAboratory Środowisko obliczeń numerycznych i symbolicznych
Podstawy Programowania C++
Wykład 3 - podstawowe konstrukcje Instytut Automatyki i Robotyki Warszawa, 2014 Wstęp Plan wykładu Struktura programu, instrukcja przypisania, podstawowe typy danych, zapis i odczyt danych, wyrażenia:
Modelowanie Systemów Dynamicznych Studia zaoczne, Automatyka i Robotyka, rok II. Podstawy MATLABA
Akademia Górniczo-Hutnicza Wydział Elektrotechniki, Automatyki, Informatyki i Elektroniki Modelowanie Systemów Dynamicznych Studia zaoczne, Automatyka i Robotyka, rok II Podstawy MATLABA MATLAB jest zintegrowanym
Zakłócenia w układach elektroenergetycznych LABORATORIUM
Zakłócenia w układach elektroenergetycznych LABORATORIUM Obliczenia w programie MATLAB Na zajęciach korzystamy z programu MATLAB, w którym wykonywać będziemy większość obliczeń. Po uruchomieniu programu
PRZYKŁADOWE SKRYPTY (PROGRAMY W MATLABIE Z ROZSZERZENIEM.m): 1) OBLICZANIE WYRAŻEŃ 1:
PRZYKŁADOWE SKRYPTY (PROGRAMY W MATLABIE Z ROZSZERZENIEM.m): 1) OBLICZANIE WYRAŻEŃ 1: clear % usunięcie zmiennych z pamięci roboczej MATLABa % wyczyszczenie okna kom % nadanie wartości zmiennym x1 i x2
Wprowadzenie do Scilab: macierze
Wprowadzenie do Scilab: macierze Narzę dzia Informatyki Magdalena Deckert Izabela Szczę ch Barbara Wołyń ska Bartłomiej Prę dki Politechnika Poznań ska Instytut Informatyki Agenda Definiowanie macierzy
PODSTAWY AUTOMATYKI. MATLAB - komputerowe środowisko obliczeń naukowoinżynierskich - podstawowe operacje na liczbach i macierzach.
WYDZIAŁ ELEKTROTECHNIKI I AUTOMATYKI Katedra Inżynierii Systemów Sterowania PODSTAWY AUTOMATYKI MATLAB - komputerowe środowisko obliczeń naukowoinżynierskich - podstawowe operacje na liczbach i macierzach.
WYDZIAŁ ELEKTROTECHNIKI, AUTOMATYKI I INFORMATYKI INSTYTUT AUTOMATYKI I INFORMATYKI KIERUNEK AUTOMATYKA I ROBOTYKA STUDIA STACJONARNE I STOPNIA
WYDZIAŁ ELEKTROTECHNIKI, AUTOMATYKI I INFORMATYKI INSTYTUT AUTOMATYKI I INFORMATYKI KIERUNEK AUTOMATYKA I ROBOTYKA STUDIA STACJONARNE I STOPNIA PRZEDMIOT : : LABORATORIUM PODSTAW AUTOMATYKI 1. WSTĘP DO
Wprowadzenie do Mathcada 1
Wprowadzenie do Mathcada Ćwiczenie. - Badanie zmienności funkcji kwadratowej Ćwiczenie. pokazuje krok po kroku tworzenie prostego dokumentu w Mathcadzie. Dokument ten składa się z następujących elementów:.
MACIERZE. Sobiesiak Łukasz Wilczyńska Małgorzata
MACIERZE Sobiesiak Łukasz Wilczyńska Małgorzata Podstawowe pojęcia dotyczące macierzy Nie bez przyczyny zaczynamy od pojęcia macierzy, które jest niezwykle przydatne we wszystkich zastosowaniach, obliczeniach
Podstawy Automatyki ćwiczenia Cz.1. Środowisko Matlab
Podstawy Automatyki ćwiczenia Cz.1 Środowisko Matlab Podstawową jednostką obliczeniową w programie Matlab jest macierz. Wektory i skalary mogą być tutaj rozpatrywane jako specjalne typy macierzy. Elementy
WPROWADZENIE DO ŚRODOWISKA SCILAB
Politechnika Gdańska Wydział Elektrotechniki i Automatyki WPROWADZENIE DO ŚRODOWISKA SCILAB Materiały pomocnicze do ćwiczeń laboratoryjnych Opracowanie: Paweł Lieder Gdańsk, 007 Podstawy pracy z Scilab.
SKRYPTY. Zadanie: Wyznaczyć wartość wyrażenia arytmetycznego
1 SKRYPTY Zadanie: Wyznaczyć wartość wyrażenia arytmetycznego z = 1 y + 1+ ( x + 2) 3 x 2 + x sin y y + 1 2 dla danych wartości x = 12.5 i y = 9.87. Zadanie to można rozwiązać: wpisując dane i wzór wyrażenia
Ćwiczenie 1. Wprowadzenie do programu Octave
Politechnika Wrocławska Wydział Elektroniki Mikrosystemów i Fotoniki Przetwarzanie sygnałów laboratorium ETD5067L Ćwiczenie 1. Wprowadzenie do programu Octave Mimo że program Octave został stworzony do
Podstawowe operacje na macierzach, operacje we/wy
26 listopad 2012 Podstawowe operacje na macierzach, operacje we/wy Slajd 1 Podstawowe operacje na macierzach, operacje we/wy Zakład Komputerowego Wspomagania Projektowania Semestr 1. 26 listopad 2012 Podstawowe
1) Podstawowe obliczenia. PODSTAWY AUTOMATYKI I ROBOTYKI Laboratorium. Wykonał: Łukasz Konopacki Sala 125. Grupa: poniedziałek/p,
PODSTAWY AUTOMATYKI I ROBOTYKI Laboratorium Wykonał: Sala 125 Łukasz Konopacki 155796 Grupa: poniedziałek/p, 16.10 18.10 Prowadzący: Dr.inż.Ewa Szlachcic Termin oddania sprawozdania: Ocena: Matlab - firmy
Dodatkowo klasa powinna mieć destruktor zwalniający pamięć.
Zadanie 1. Utworzyć klasę reprezentującą liczby wymierne. Obiekty klasy powinny przechowywać licznik i mianownik rozłożone na czynniki pierwsze. Klasa powinna mieć zdefiniowane operatory czterech podstawowych
Laboratorium Komputerowego Wspomagania Analizy i Projektowania
Laboratorium Komputerowego Wspomagania Analizy i Projektowania Ćwiczenie 2. Podstawowe operacje macierzowe. Opracował: dr inż. Sebastian Dudzik 1. Cel ćwiczenia Celem ćwiczenia jest zapoznanie się z tworzeniem
Metody optymalizacji - wprowadzenie do SciLab a
Metody optymalizacji - wprowadzenie do SciLab a 1 Zmienne Nazwy: dozwolone nazwy zawierają znaki: od a do z, od A do Z, od 0 do 9 oraz _, #,!, $,? Operator przypisania wartości zmiennej = Przykład x=2
WEKTORY I MACIERZE. Strona 1 z 11. Lekcja 7.
Strona z WEKTORY I MACIERZE Wektory i macierze ogólnie nazywamy tablicami. Wprowadzamy je:. W sposób jawny: - z menu Insert Matrix, - skrót klawiszowy: {ctrl}+m, - odpowiedni przycisk z menu paska narzędziowego
1 Podstawy c++ w pigułce.
1 Podstawy c++ w pigułce. 1.1 Struktura dokumentu. Kod programu c++ jest zwykłym tekstem napisanym w dowolnym edytorze. Plikowi takiemu nadaje się zwykle rozszerzenie.cpp i kompiluje za pomocą kompilatora,
MATLAB ŚRODOWISKO MATLABA OPIS, PODSTAWY
MATLAB ŚRODOWISKO MATLABA OPIS, PODSTAWY Poszukiwanie znaczeń funkcji i skryptów funkcja help >> help % wypisuje linki do wszystkich plików pomocy >> help plot % wypisuje pomoc dotyczą funkcji plot Znaczenie
Obliczenia inżynierskie arkusz kalkulacyjny. Technologie informacyjne
Obliczenia inżynierskie arkusz kalkulacyjny Technologie informacyjne Wprowadzanie i modyfikacja danych Program Excel rozróżnia trzy typy danych: Etykiety tak określa sie wpisywany tekst: tytuł tabeli,
MATLAB Z3. Rafał Woźniak. Warsaw, Faculty of Economic Sciences, University of Warsaw
Faculty of Economic Sciences, University of Warsaw Warsaw, 09-03-2017 Generowanie liczb losowych rand(1) rand(1) generuje liczbę losową z przedziału (0,1) Jak można uzyskać liczby losowe z przedziału 1
ZASADY PROGRAMOWANIA KOMPUTERÓW
POLITECHNIKA WARSZAWSKA Instytut Automatyki i i Robotyki ZASADY PROGRAMOWANIA KOMPUTERÓW Język Język programowania: C/C++ Środowisko programistyczne: C++Builder 6 Wykład 9.. Wskaźniki i i zmienne dynamiczne.
Pisząc okienkowy program w Matlabie wykorzystujemy gotowe obiekty graficzne, lub możemy tworzyć własne obiekty dziedzicząc już zdefiniowane.
MATLAB Co to jest? program komputerowy będący interaktywnym środowiskiem do wykonywania obliczeń naukowych i inżynierskich oraz do tworzenia symulacji komputerowych. Nazwa Nazwa programu pochodzi od angielskich
Przetwarzanie sygnałów
Spis treści Przetwarzanie sygnałów Ćwiczenie 1 Wprowadzenie do programu Octave 1 Operatory 1 1.1 Operatory arytmetyczne...................... 1 1.2 Operatory relacji.......................... 1 1.3 Operatory
Wprowadzenie do programu Mathcad 15 cz. 1
Wpisywanie tekstu Wprowadzenie do programu Mathcad 15 cz. 1 Domyślnie, Mathcad traktuje wpisywany tekst jako wyrażenia matematyczne. Do trybu tekstowego można przejść na dwa sposoby: Zaczynając wpisywanie
MATLAB - podstawy użytkowania
MATLAB - podstawy użytkowania Zbigniew Rudnicki (dr inż) MATLAB (MATrix LABoratory) - pakiet oprogramowania matematycznego firmy MathWorks Inc. (od roku 1984) to język i środowisko programowania do obliczeń
Macierze. Rozdział Działania na macierzach
Rozdział 5 Macierze Funkcję, która każdej parze liczb naturalnych (i, j) (i 1,..., n; j 1,..., m) przyporządkowuje dokładnie jedną liczbę a ij F, gdzie F R lub F C, nazywamy macierzą (rzeczywistą, gdy
Metody numeryczne Laboratorium 2
Metody numeryczne Laboratorium 2 1. Tworzenie i uruchamianie skryptów Środowisko MATLAB/GNU Octave daje nam możliwość tworzenia skryptów czyli zapisywania grup poleceń czy funkcji w osobnym pliku i uruchamiania
Baltie 3. Podręcznik do nauki programowania dla klas I III gimnazjum. Tadeusz Sołtys, Bohumír Soukup
Baltie 3 Podręcznik do nauki programowania dla klas I III gimnazjum Tadeusz Sołtys, Bohumír Soukup Czytanie klawisza lub przycisku myszy Czytaj klawisz lub przycisk myszy - czekaj na naciśnięcie Polecenie
Elementy projektowania inzynierskiego Przypomnienie systemu Mathcad
Elementy projektowania inzynierskiego Definicja zmiennych skalarnych a : [S] - SPACE a [T] - TAB - CTRL b - SHIFT h h. : / Wyświetlenie wartości zmiennych a a = b h. h. = Przykładowe wyrażenia
METODY I JĘZYKI PROGRAMOWANIA PROGRAMOWANIE STRUKTURALNE. Wykład 02
METODY I JĘZYKI PROGRAMOWANIA PROGRAMOWANIE STRUKTURALNE Wykład 02 NAJPROSTSZY PROGRAM /* (Prawie) najprostszy przykład programu w C */ /*==================*/ /* Między tymi znaczkami można pisać, co się
ANALIZA DANYCH I PROCESÓW. Mgr inż. Paweł Wojciech Herbin
ANALIZA DANYCH I PROCESÓW Mgr inż. Paweł Wojciech Herbin SZCZECIN 29 LUTEGO 2016 Spis treści 1. Wprowadzenie... 4 2. MATLAB wprowadzenie do interfejsu... 5 3. Praca w trybie bezpośrednim... 6 3.1. Wprowadzanie
Dynamiczny przydział pamięci w języku C. Dynamiczne struktury danych. dr inż. Jarosław Forenc. Metoda 1 (wektor N M-elementowy)
Rok akademicki 2012/2013, Wykład nr 2 2/25 Plan wykładu nr 2 Informatyka 2 Politechnika Białostocka - Wydział Elektryczny Elektrotechnika, semestr III, studia niestacjonarne I stopnia Rok akademicki 2012/2013
III TUTORIAL Z METOD OBLICZENIOWYCH
III TUTORIAL Z METOD OBLICZENIOWYCH ALGORYTMY ROZWIĄZYWANIA UKŁADÓW RÓWNAŃ LINIOWYCH Opracowanie: Agata Smokowska Marcin Zmuda Trzebiatowski Koło Naukowe Mechaniki Budowli KOMBO Spis treści: 1. Wstęp do
Informatyka I. Typy danych. Operacje arytmetyczne. Konwersje typów. Zmienne. Wczytywanie danych z klawiatury. dr hab. inż. Andrzej Czerepicki
Informatyka I Typy danych. Operacje arytmetyczne. Konwersje typów. Zmienne. Wczytywanie danych z klawiatury. dr hab. inż. Andrzej Czerepicki Politechnika Warszawska Wydział Transportu 2019 1 Plan wykładu
Tablice. Jones Stygar na tropie zmiennych
Tablice Jones Stygar na tropie zmiennych Czym jest tablica? Obecnie praktycznie wszystkie języki programowania obsługują tablice. W matematyce odpowiednikiem tablicy jednowymiarowej jest ciąg (lub wektor),
Pakiety matematyczne. Matematyka Stosowana. dr inż. Krzysztof Burnecki
Pakiety matematyczne Matematyka Stosowana dr inż. Krzysztof Burnecki 20.02.2013 Podstawowe informacje Krzysztof Burnecki C-11, pok. 5.14 Krzysztof.Burnecki@pwr.wroc.pl Konsultacje: poniedziałek 11-13,
Ćwiczenie 1. Wprowadzenie do programu Octave
Politechnika Wrocławska Wydział Elektroniki Mikrosystemów i Fotoniki Przetwarzanie sygnałów laboratorium ETD5067L Ćwiczenie 1. Wprowadzenie do programu Octave Mimo że program Octave został stworzony do
Tablice mgr Tomasz Xięski, Instytut Informatyki, Uniwersytet Śląski Katowice, 2011
Tablice mgr Tomasz Xięski, Instytut Informatyki, Uniwersytet Śląski Katowice, 2011 Załóżmy, że uprawiamy jogging i chcemy monitorować swoje postępy. W tym celu napiszemy program, który zlicza, ile czasu
2. Tablice. Tablice jednowymiarowe - wektory. Algorytmy i Struktury Danych
2. Tablice Tablica to struktura danych przechowująca elementy jednego typu (jednorodna). Dostęp do poszczególnych elementów składowych jest możliwy za pomocą indeksów. Rozróżniamy następujące typy tablic:
GNU Octave (w skrócie Octave) to rozbudowany program do analizy numerycznej.
1 GNU Octave GNU Octave (w skrócie Octave) to rozbudowany program do analizy numerycznej. Octave zapewnia: sporą bibliotęke użytecznych funkcji i algorytmów; możliwośc tworzenia przeróżnych wykresów; możliwość
; B = Wykonaj poniższe obliczenia: Mnożenia, transpozycje etc wykonuję programem i przepisuję wyniki. Mam nadzieję, że umiesz mnożyć macierze...
Tekst na niebiesko jest komentarzem lub treścią zadania. Zadanie. Dane są macierze: A D 0 ; E 0 0 0 ; B 0 5 ; C Wykonaj poniższe obliczenia: 0 4 5 Mnożenia, transpozycje etc wykonuję programem i przepisuję
Uniwersytet Kazimierza Wielkiego w Bydgoszczy Zespół Szkół nr 5 Mistrzostwa Sportowego XV Liceum Ogólnokształcące w Bydgoszczy
Uniwersytet Kazimierza Wielkiego w Bydgoszczy Zespół Szkół nr 5 Mistrzostwa Sportowego XV Liceum Ogólnokształcące w Bydgoszczy Matematyka, królowa nauk Edycja X - etap 2 Bydgoszcz, 16 kwietnia 2011 Fordoński
Wstęp do Programowania Lista 1
Wstęp do Programowania Lista 1 1 Wprowadzenie do środowiska MATLAB Zad. 1 Zapoznaj się z podstawowymi oknami dostępnymi w środowisku MATLAB: Command Window, Current Folder, Workspace i Command History.
Laboratorium 3: Tablice, tablice znaków i funkcje operujące na ciągach znaków. dr inż. Arkadiusz Chrobot dr inż. Grzegorz Łukawski
Laboratorium 3: Tablice, tablice znaków i funkcje operujące na ciągach znaków dr inż. Arkadiusz Chrobot dr inż. Grzegorz Łukawski 7 kwietnia 2014 1. Wprowadzenie Pierwsza część instrukcji zawiera informacje
Macierze - obliczanie wyznacznika macierzy z użyciem permutacji
Macierze - obliczanie wyznacznika macierzy z użyciem permutacji I LO im. F. Ceynowy w Świeciu Radosław Rudnicki joix@mat.uni.torun.pl 17.03.2009 r. Typeset by FoilTEX Streszczenie Celem wykładu jest wprowadzenie
Zadeklarowanie tablicy przypomina analogiczną operację dla zwykłych (skalarnych) zmiennych. Może zatem wyglądać na przykład tak:
Tablice Tablice jednowymiarowe Jeżeli nasz zestaw danych składa się z wielu drobnych elementów tego samego rodzaju, jego najbardziej naturalnym ekwiwalentem w programowaniu będzie tablica. Tablica (ang.
MATLAB Podstawowe polecenia
MATLAB Podstawowe polecenia W MATLABie możliwe jest wykonywanie prostych obliczeń matematycznych. Działania (np. +) należy wpisać w okienku poleceń na końcu naciskając klawisz enter. Program MATLAB wydrukuje
Metody Numeryczne. Laboratorium 1. Wstęp do programu Matlab
Metody Numeryczne Laboratorium 1 Wstęp do programu Matlab 1. Wiadomości wstępne liczby, format Program Matlab używa konwencjonalną notację dziesiętną, z kropka dziesiętną. W przypadku notacji naukowej
Tablice. Monika Wrzosek (IM UG) Podstawy Programowania 96 / 119
Tablice Tablica to struktura danych, która może przechowywać wiele wartości tego samego typu. Na przykład tablica może zawierać: 10 wartości typu int opisujących liczbę studentów przyjętych na kierunek
3. Macierze i Układy Równań Liniowych
3. Macierze i Układy Równań Liniowych Rozważamy równanie macierzowe z końcówki ostatniego wykładu ( ) 3 1 X = 4 1 ( ) 2 5 Podstawiając X = ( ) x y i wymnażając, otrzymujemy układ 2 równań liniowych 3x
Matlab MATrix LABoratory Mathworks Inc.
Małgorzata Jakubowska Matlab MATrix LABoratory Mathworks Inc. MATLAB pakiet oprogramowania matematycznego firmy MathWorks Inc. (www.mathworks.com) rozwijany od roku 1984 język programowania i środowisko
Zadania. Rozdział Wektory i macierze. 1.Podajpolecenie 1,któreutworzywektor: v = [100, 95, 90,..., 95, 100].
Rozdział 1 Zadania 11 Wektory i macierze 1Podajpolecenie 1,któreutworzywektor: v = [100, 95, 90,, 95, 100] 2 Podaj polecenie, które utworzy wektor: v = [cos(pi), cos(2 pi), cos(3 pi),,cos(100 pi)] 3 Podaj
Przykład 1 -->s="hello World!" s = Hello World! -->disp(s) Hello World!
Scilab jest środowiskiem programistycznym i numerycznym dostępnym za darmo z INRIA (Institut Nationale de Recherche en Informatique et Automatique). Jest programem podobnym do MATLABa oraz jego darmowego
Rozdział 5. Macierze. a 11 a a 1m a 21 a a 2m... a n1 a n2... a nm
Rozdział 5 Macierze Funkcję, która każdej parze liczb naturalnych (i,j) (i = 1,,n;j = 1,,m) przyporządkowuje dokładnie jedną liczbę a ij F, gdzie F = R lub F = C, nazywamy macierzą (rzeczywistą, gdy F
MATrix LABoratory. A C21 delta tvx444 omega_zero. hxx J23 aaa g4534 Fx_38
MATLAB wprowadzenie MATrix LABoratory MATLAB operuje tylko na jednym typie zmiennych na macierzach. Liczby (skalary) są szczególnymi przypadkami macierzy o wymiarze 1 1, (zawierającymi jeden wiersz i jedną
MathCAD cz.1. Spis treści wykładu:
Narzędzia obliczeniowe inżyniera MathCAD cz.1 Opracował: Zbigniew Rudnicki 1 Spis treści wykładu: 1)Narzędzia obliczeniowe inżyniera 2) Mathcad - cechy, struktura dokumentu, kursory,.. 3) Tworzenie regionów
ZASADY PROGRAMOWANIA KOMPUTERÓW ZAP zima 2015
POLITECHNIKA WARSZAWSKA Instytut Automatyki i Robotyki ZASADY PROGRAMOWANIA KOMPUTERÓW ZAP zima 2015 Język programowania: Środowisko programistyczne: C/C++ Qt Wykład 4 : Napisy. Tablice dwuwymiarowe. Formaty
Algebra WYKŁAD 3 ALGEBRA 1
Algebra WYKŁAD 3 ALGEBRA 1 Liczby zespolone Postać wykładnicza liczby zespolonej Niech e oznacza stałą Eulera Definicja Równość e i cos isin nazywamy wzorem Eulera. ALGEBRA 2 Liczby zespolone Każdą liczbę
do MATLABa programowanie WYKŁAD Piotr Ciskowski
Wprowadzenie do MATLABa programowanie WYKŁAD Piotr Ciskowski instrukcje sterujące instrukcja warunkowa: if instrukcja wyboru: switch instrukcje iteracyjne: for, while instrukcje przerwania: continue, break,
dr Mariusz Grządziel 15,29 kwietnia 2014 Przestrzeń R k R k = R R... R k razy Elementy R k wektory;
Wykłady 8 i 9 Pojęcia przestrzeni wektorowej i macierzy Układy równań liniowych Elementy algebry macierzy dodawanie, odejmowanie, mnożenie macierzy; macierz odwrotna dr Mariusz Grządziel 15,29 kwietnia
ŚRODOWISKO MATLAB WPROWADZENIE. dr inż. Dariusz Borkowski. Podstawy informatyki. (drobne) modyfikacje: dr inż. Andrzej Wetula
ŚRODOWISKO MATLAB WPROWADZENIE dr inż. Dariusz Borkowski (drobne) modyfikacje: dr inż. Andrzej Wetula Przebieg III części przedmiotu - 10 zajęć = 6 laboratoriów Matlab + 2 laboratoria Simulink + 2 kolokwia.
Wymiar musi być wyrażeniem stałym typu całkowitego, tzn. takim, które może obliczyć kompilator. Przykłady:
5 Tablice Tablica jest zestawem obiektów (zmiennych) tego samego typu, do których można się odwołać za pomocą wspólnej nazwy. Obiekty składowe tablicy noszą nazwę elementów tablicy. Dostęp do nich jest
O MACIERZACH I UKŁADACH RÓWNAŃ
O MACIERZACH I UKŁADACH RÓWNAŃ Problem Jak rozwiązać podany układ równań? 2x + 5y 8z = 8 4x + 3y z = 2x + 3y 5z = 7 x + 8y 7z = Definicja Równanie postaci a x + a 2 x 2 + + a n x n = b gdzie a, a 2, a
TABLICA (ang. array) pojedyncza zmienna z wieloma komórkami, w których można zapamiętać wiele wartości tego samego typu danych.
Złożone typy danych - TABLICE TABLICA (ang. array) pojedyncza zmienna z wieloma komórkami, w których można zapamiętać wiele wartości tego samego typu danych. * Może przechowywać dowolny typ danych, typ
utworz tworzącą w pamięci dynamicznej tablicę dwuwymiarową liczb rzeczywistych, a następnie zerującą jej wszystkie elementy,
Lista 3 Zestaw I Zadanie 1. Zaprojektować i zaimplementować funkcje: utworz tworzącą w pamięci dynamicznej tablicę dwuwymiarową liczb rzeczywistych, a następnie zerującą jej wszystkie elementy, zapisz
INFORMATYKA Studia Niestacjonarne Elektrotechnika
INFORMATYKA Studia Niestacjonarne Elektrotechnika Wydział Elektrotechniki i Informatyki dr inż. Michał Łanczont Wydział Elektrotechniki i Informatyki p. E419 tel. 81-538-42-93 m.lanczont@pollub.pl http://lanczont.pollub.pl
Informacje wstępne #include <nazwa> - derektywa procesora umożliwiająca włączenie do programu pliku o podanej nazwie. Typy danych: char, signed char
Programowanie C++ Informacje wstępne #include - derektywa procesora umożliwiająca włączenie do programu pliku o podanej nazwie. Typy danych: char, signed char = -128 do 127, unsigned char = od
Spis treści WSTĘP CZĘŚĆ I. PASCAL WPROWADZENIE DO PROGRAMOWANIA STRUKTURALNEGO. Rozdział 1. Wybór i instalacja kompilatora języka Pascal
Spis treści WSTĘP CZĘŚĆ I. PASCAL WPROWADZENIE DO PROGRAMOWANIA STRUKTURALNEGO Rozdział 1. Wybór i instalacja kompilatora języka Pascal 1.1. Współczesne wersje kompilatorów Pascala 1.2. Jak zainstalować
METODY KOMPUTEROWE W OBLICZENIACH INŻYNIERSKICH
METODY KOMPUTEROWE W OBLICZENIACH INŻYNIERSKICH ĆWICZENIE NR 9 WYRAŻENIA LOGICZNE, INSTRUKCJE WARUNKOWE I INSTRUKCJE ITERACYJNE W PROGRAMIE KOMPUTEROWYM MATLAB Dr inż. Sergiusz Sienkowski ĆWICZENIE NR
Tablice (jedno i wielowymiarowe), łańcuchy znaków
Tablice (jedno i wielowymiarowe), łańcuchy znaków wer. 8 z drobnymi modyfikacjami! Wojciech Myszka Katedra Mechaniki i Inżynierii Materiałowej 2017-04-07 09:35:32 +0200 Zmienne Przypomnienie/podsumowanie
1 Podstawy c++ w pigułce.
1 Podstawy c++ w pigułce. 1.1 Struktura dokumentu. Kod programu c++ jest zwykłym tekstem napisanym w dowolnym edytorze. Plikowi takiemu nadaje się zwykle rozszerzenie.cpp i kompiluje za pomocą kompilatora,
Modelowanie rynków finansowych z wykorzystaniem pakietu R
Modelowanie rynków finansowych z wykorzystaniem pakietu R Wprowadzenie do pakietu R Mateusz Topolewski woland@mat.umk.pl Wydział Matematyki i Informatyki UMK Plan działania 1 Co i dlaczego...? 2 Przechowywanie
AKADEMIA MORSKA W SZCZECINIE WI-ET / IIT / ZTT. Instrukcja do zajęc laboratoryjnych nr 1 AUTOMATYZACJA I ROBOTYZACJA PROCESÓW PRODUKCYJNYCH
AKADEMIA MORSKA W SZCZECINIE WI-ET / IIT / ZTT Instrukcja do zajęc laboratoryjnych nr 1 AUTOMATYZACJA I ROBOTYZACJA PROCESÓW PRODUKCYJNYCH II rok Kierunek Logistyka Temat: Zajęcia wprowadzające. BHP stanowisk
Wskaźniki i dynamiczna alokacja pamięci. Spotkanie 4. Wskaźniki. Dynamiczna alokacja pamięci. Przykłady
Wskaźniki i dynamiczna alokacja pamięci. Spotkanie 4 Dr inż. Dariusz JĘDRZEJCZYK Wskaźniki Dynamiczna alokacja pamięci Przykłady 11/3/2016 AGH, Katedra Informatyki Stosowanej i Modelowania 2 Wskaźnik to
Obliczenia iteracyjne
Lekcja Strona z Obliczenia iteracyjne Zmienne iteracyjne (wyliczeniowe) Obliczenia iteracyjne wymagają zdefiniowania specjalnej zmiennej nazywanej iteracyjną lub wyliczeniową. Zmienną iteracyjną od zwykłej
Rozwiązywanie układów równań liniowych
Rozwiązywanie układów równań liniowych Marcin Orchel 1 Wstęp Jeśli znamy macierz odwrotną A 1, to możęmy znaleźć rozwiązanie układu Ax = b w wyniku mnożenia x = A 1 b (1) 1.1 Metoda eliminacji Gaussa Pierwszy
Stałe, znaki, łańcuchy znaków, wejście i wyjście sformatowane
Stałe, znaki, łańcuchy znaków, wejście i wyjście sformatowane Stałe Oprócz zmiennych w programie mamy też stałe, które jak sama nazwa mówi, zachowują swoją wartość przez cały czas działania programu. Można