OSZACOWANIE WPŁYWU MODUŁU NA TRWAŁOŚĆ STOŻKOWEJ PRZEKŁADNI EWOLWENTOWEJ O ZĘBACH SKOŚNYCH
|
|
- Dagmara Marczak
- 8 lat temu
- Przeglądów:
Transkrypt
1 Miron Czerniec Vior Bereza Juri Czerniec 3 OSZACOWANIE WPŁYWU MODUŁU NA TRWAŁOŚĆ STOŻKOWEJ PRZEKŁADNI EWOLWENTOWEJ O ZĘBACH SKOŚNYCH Sreszczenie. W aryule przedsawiono zodyfiowaną eodę badania ineyi zużywania przeładni sożowych z zębai sośnyi oraz przebadano wpływ odulu na ich rwałość. Usalono że zwięszenie odułu powodue wzros rwałości. Wynii obliczeń podano w posaci graficzne. Słowa luczowe: przeładnia sożowa o zębach sośnych eoda badania ineyi zużywania oduł zazębienia rwałość. WSTĘP Dla opisu procesu zużywania w przeładniach zębaych gdzie wysępue oczenie z poślizgie sosowany es auorsi odel aeayczny zużywania ściernego []. W oparciu o en odel ribologiczny przez auorów zosała opracowana eoda na szacowanie rwałości przeładni zębaych walcowych w dowolnie wybrany puncie zarysu zęba []. W pracy [3] z wyorzysanie e eody przeprowadzono analizę wpływu pochylenia linii zębów na zużycie nacisi syowe oraz prędość poślizgu. Jedny z naważnieszych paraerów przeładni zębaych es oduł zazębienia. W lieraurze bra danych doyczacych analizy wpływu odułu na rwałość przeładni walcowych oraz sożowych. W aryule przedsawiono zodyfiowaną eodę badania ineyi zużywania przeładni sożowych z zębai sośnyi oraz przebadano wpływ odulu na ich rwałość. BADANIE KINETYKI ZUŻYWANIA Zgodnie z wyniai pracy [3] wzór na zużycie liniowe w dowolny puncie zarysu a posać: 3 Insyu Technologicznych Syseów Inforacynych Wydział Mechaniczny Poliechnia Lubelsa. Kaedra Podsaw Technologii Pańswowy Uniwersye Pedagogiczny w Drohobyczu (Uraina). Dział Badań Nauowych Pańswowy Uniwersye Pedagogiczny w Drohobyczu (Uraina). 68
2 v ( fpaх ) h () C (.35 R ) h - zużycie zębów w puncie zarysu w ciągu czasu przeieszczenia ego punu na odległość b ( b - szeroość pola syu zębów); - nueraca ół: zębni oło zębae; f współczynni arcia ślizgowego; v prędość poślizgu; p - asyalne nacisi syowe; aх C - wsaźnii odporności na zużycie aeriałów pary ribologiczne; R - doraźna wyrzyałość aeriału przy rozciąganiu; b / v - czas zużywania się; v ω r sin - prędość przeieszczenia się punu syu po zarysie zęba; noinalny ą przyporu; ω - prędość ąowa zębnia; r z n /cosβ - proień óła podziałowego zębnia ory zienia się wzdłuż zęba ; n noralny oduł zazębienia zienny wzdłuż zęba; β - ą pochylenia linii zębów. Dla oceny zużycia sożowych ół zębaych wyorzysano zasępcze oła walcowe o zewnęrzny oraz wewnęrzny odułu zazębienia. Moduł noralny ax n in zęba oła sożowego będzie zienny na ego długości. Odpowiednio w sośnych przeładniach zębaych czołowy oduł zazębienia e bsin δ n +. () cos β z K Czołowy oduł zazębienia wzdłuż zęba oła sożowego w przeroach y będzie: y e (3) Re 69
3 b - długość zębów; y... b - współrzędna przerou zęba. Noralny oduł zazębienia wzdłuż zęba n y n cos β e cos β. (4) Re Wyiary oraz paraery ół sośnych zębaych : а) średnice średnie: d nzk /cos β d nzk /cosβ ; b) liczba zębów ół sożowych: zk z K ; c) liczba przełożenia uk zk / zk ; d) długość worzące sożów podziałowych R R +.5b; e) długość średnia worzące sożów podziałowych R d /sinδ; f) ąy sożów podziałowych: gδ u gδ u ; e K i) szeroość wieńca zębaego b R ψ/ ( 5ψ) Paraery ół walcowych zasępczych: а) liczba zębów: z zk /cosδ z zk /cosδ; b) liczba przełożenia u z z u. / K Zużycie zębów w dowolny puncie zarysu w ciągu zadanego czasu pracy przeładni h K 6n h. (5) Obliczenie rwałości przeładni dla zadanego granicznego zużycia przeprowadza się według wzóru: h h /6n h. (6) Masyalne nacisi syowe aõ p oraz szeroość pola syu b w y puncie oblicza się według wzorów Herza paх.564 N θ / ρ b.56 θ N ρ (7) 7
4 N N / l ³n w ; N siła iędzyzębna; θ ( ν ) / E + ( ν ) / E; E ν oduły Younga oraz współczynnii Poissone a aeriałów zębów; l - inialna długość linii przyporu w zazębieniu; in ρ - zreduowany proień rzywizny zarysów zębów; w liczba zazębień; n - liczba obroów ół. Dla walcowe zasępcze przeładni zębae o zębach sośnych ρρ ρ ρ + ρ (8) gdzie rzywizny zarysów zębów ρ rg b ρ ρ cos β ρ ρ cos β b g b arc( g cos ) arcg β β cos β ρ r ( r / r) cos arcg g b ( + ϕ ) r cos b r r z /cos β r z /cosβ u g ( + u) g ( ra / r ) cos cos r a r a r ) W + W cos( aw ( z + z) /cosβ r rcos / cos ra r + r r proienie ół podziałowych zębnia oraz oła zębaego; ϕ 4 - odsęp ąowy iędzy olenyi punai przyporu (pun weście w zazębienie pun 3 id); u liczba przełożenia ; z z- liczba zębów ół. Prędość poślizgu rb vβ ω ( rb + rb) [ g ϕ ]. (9) r b 7
5 Minialna długość linii przyporu bε ( n )( n ) β lіn cos βb εεβ gdy n + n β bε nn β lіn gdy n + nβ cos βb εεβ n n - części ułaowe współczynniów porycia ε ε ; β + ε z sin a b b sin β e e ε β π ω r ω r b b e r r r e r r r. sin a b z β π z ω Rozwiązanie zagadnienia przeprowadzono według nasępuących danych wyściowych: n 75 obr/in; β ; f.7; ; u K 5 ( u 5); z K ; P W; b5 ; ψ ; h.3 ; aeriały ół - zębni sal 38HМJА azoowana na głęboość НВ 6; R 4 МPа R. 73 МPа τ S 365 МPа C ; oło zębae sal 4H harowanie НВ 34; R 98 МPа R. 69 МPа τ S 345 МPа C.7 6.5; E E. 6 МPа ν ν.3; sarowanie ole z lepością ineayczną ν 5 ss; zazębienie ednoparowe oraz dwuparowe. + 5 Wynii rozwiązania nuerycznego podano na rys.. 7
6 in [godz] in [godz] in [godz] [] 4 5 [] 6 6 а) β b) β 4 5 [] 6 u5 in in in in c) β Rys.. Zależność rwałości przeładni od odułu zazębienia: linie ciągle odpowiadaą y linie resowe y b in zazębienie ednoparowe in zazębienie dwuparowe 73
7 PODSUMOWANIE W wyniu rozwiązania nuerycznego usalono że rwałość przeładni ulega znaczneu zwięszeniu ze wzrose ąa pochylenia zębów oraz ze zwięszenie odułu. LITERATURA. Czerniec M. Wyrzyałość syowo-arciowa oraz rwałość syseów riboechnicznych ślizgowych. Wyd. Poliechnii Lubelsie. 49 s.. Czerniec M. Kiełbińsi J. Prognozowanie rwałości ribologiczne ół zębaych walcowych ewolwenowych. Wyd. Poliechnii Lubelsie s. 3. Czerniec M. Kiełbińsi J. Analiza wpływu pochylenia linii zebów w przeładni walcowe ewolwenowe na zużycie nacisi syowe oraz prędość poślizgu. Tribologia 5/8. VALUE OF MODULE NFLUENCE ON CONIC EVOLVENT GEAR LONGEVITY WITH OBLIQUE COGS Absrac In he aricle odified invesigaion ehod of ineics wear of conic gears wih oblique cogs has been presened. Esablished ha odule increase leads o increase of longeviy. Resuls of invesigaions have been presened graphically. Key words: conic gear wih oblique cogs invesigaion ehod of ineics wear hooing odule longeviy. 74
METODA OBLICZENIOWA TRWAŁOŚCI PRZEKŁADNI ŚLIMAKOWEJ ZE ŚLIMAKIEM EWOLWENTOWYM
-03 T R I B O L O G I A 3 Miron CZERNIEC *, Jerzy KIEŁBIŃSKI ** METODA OBLICZENIOWA TRWAŁOŚCI PRZEKŁADNI ŚLIMAKOWEJ ZE ŚLIMAKIEM EWOLWENTOWYM CALCULATION METHOD LONGEVITY OF WORM GEAR WITH EVOLVENTARY
METODA BADANIA KINETYKI ZUŻYWANIA PRZEKŁADNI ŚLIMAKOWEJ ZE ŚLIMAKIEM ARCHIMEDESA
3-009 T R I B O L O G I A 3 Miron CZERNIEC *, Jerzy KIEŁBIŃSKI * METODA BADANIA KINETYKI ZUŻYWANIA PRZEKŁADNI ŚLIMAKOWEJ ZE ŚLIMAKIEM ARCHIMEDESA THE INVESTIGATION METHOD OF KINETICS WEAR OF A WORM GEAR
OSZACOWANIE WPŁYWU KOREKCJI ZĘBÓW NA ZUŻYCIE, TRWAŁOŚĆ ORAZ WYTRZYMAŁOŚĆ KONTAKTOWĄ EWOLWENTOWYCH PRZEKŁADNI WALCOWYCH O ZĘBACH PROSTYCH
3-0 T R I B O L O G I A 7 Miron CZERNIEC *,** Jerzy KIELBIŃSKI * Roman JAREMA ** OSZACOWANIE WPŁYWU KOREKCJI ZĘBÓW NA ZUŻYCIE, TRWAŁOŚĆ ORAZ WYTRZYMAŁOŚĆ KONTAKTOWĄ EWOLWENTOWYCH PRZEKŁADNI WALCOWYCH O
Koła stożkowe o zębach skośnych i krzywoliniowych oraz odpowiadające im zastępcze koła walcowe wytrzymałościowo równoważne
Spis treści PRZEDMOWA... 9 1. OGÓLNA CHARAKTERYSTYKA I KLASYFIKACJA PRZEKŁADNI ZĘBATYCH... 11 2. ZASTOSOWANIE I WYMAGANIA STAWIANE PRZEKŁADNIOM ZĘBATYM... 22 3. GEOMETRIA I KINEMATYKA PRZEKŁADNI WALCOWYCH
Spis treści. Przedmowa 11
Przykłady obliczeń z podstaw konstrukcji maszyn. [Tom] 2, Łożyska, sprzęgła i hamulce, przekładnie mechaniczne / pod redakcją Eugeniusza Mazanka ; autorzy: Andrzej Dziurski, Ludwik Kania, Andrzej Kasprzycki,
KOMPUTEROWO WSPOMAGANE WYZNACZANIE DYNAMICZNYCH SIŁ MIĘDZYZĘBNYCH W PRZEKŁADNIACH WALCOWYCH O ZĘBACH PROSTYCH I SKOŚNYCH
MECHANIK 7/015 Mgr inż. Jerzy MARSZAŁEK Dr hab. inż. Józef DREWNIAK, prof. ATH Akademia Techniczno-Humanistyczna w Bielsku-Białej DOI: 10.17814/mechanik.015.7.66 KOMPUTEROWO WSPOMAGANE WYZNACZANIE DYNAMICZNYCH
3. Wstępny dobór parametrów przekładni stałej
4,55 n1= 3500 obr/min n= 1750 obr/min N= 4,55 kw 0,70 1,00 16 37 1,41 1,4 8 30,7 1,41 1. Obliczenie momentu Moment na kole n1 obliczam z zależności: 9550 9550 Moment na kole n obliczam z zależności: 9550
Przekładnie zębate : zasady działania : obliczenia geometryczne i wytrzymałościowe / Antoni Skoć, Eugeniusz Świtoński. Warszawa, 2017.
Przekładnie zębate : zasady działania : obliczenia geometryczne i wytrzymałościowe / Antoni Skoć, Eugeniusz Świtoński. Warszawa, 2017 Spis treści Przedmowa XV 1. Znaczenie przekładni zębatych w napędach
OWE PRZEKŁADNIE WALCOWE O ZĘBACH Z BACH ŚRUBOWYCH
CZOŁOWE OWE PRZEKŁADNIE WALCOWE O ZĘBACH Z BACH ŚRUBOWYCH Klasyfikacja przekładni zębatych w zależności od kinematyki zazębień PRZEKŁADNIE ZĘBATE CZOŁOWE ŚRUBOWE WALCOWE (równoległe) STOŻKOWE (kątowe)
POMIAR KÓŁ ZĘBATYCH WALCOWYCH cz. 1.
I. Cel ćwiczenia: POMIAR KÓŁ ZĘBATYCH WALCOWYCH cz. 1. 1. Zidentyfikować koło zębate przeznaczone do pomiaru i określić jego podstawowe parametry 2. Dokonać pomiaru grubości zęba suwmiarką modułową lub
Przekładnie zębate. Klasyfikacja przekładni zębatych. 1. Ze względu na miejsce zazębienia. 2. Ze względu na ruchomość osi
Przekładnie zębate Klasyfikacja przekładni zębatych 1. Ze względu na miejsce zazębienia O zazębieniu zewnętrznym O zazębieniu wewnętrznym 2. Ze względu na ruchomość osi O osiach stałych Planetarne przynajmniej
PRĘDKOŚĆ POŚLIZGU W ZAZĘBIENIU PRZEKŁADNI ŚLIMAKOWEJ
KOMISJA BUDOWY MASZYN PAN ODDZIAŁ W POZNANIU ol. 7 nr Archiwum Technologii Maszyn i Automatyzacji 007 LESZEK SKOCZYLAS PRĘDKOŚĆ POŚLIZGU W ZAZĘBIENIU PRZEKŁADNI ŚLIMAKOWEJ W artykule przedstawiono sposób
Reduktor 2-stopniowy, walcowy.
Reduktor 2-stopniowy, walcowy. 1. Dane wejściowe Projektowana przekładnia należy do grupy reduktorów walcowych. Funkcję sprzęgła pełni przekładnia pasowa na wejściu, która charakteryzuje się pewną elastycznością
Przekładnie ślimakowe / Henryk Grzegorz Sabiniak. Warszawa, cop Spis treści
Przekładnie ślimakowe / Henryk Grzegorz Sabiniak. Warszawa, cop. 2016 Spis treści Przedmowa XI 1. Podział przekładni ślimakowych 1 I. MODELOWANIE I OBLICZANIE ROZKŁADU OBCIĄŻENIA W ZAZĘBIENIACH ŚLIMAKOWYCH
Temat 6. ( ) ( ) ( ) k. Szeregi Fouriera. Własności szeregów Fouriera. θ możemy traktować jako funkcje ω, których dziedziną jest dyskretny zbiór
ema 6 Opracował: Lesław Dereń Kaedra eorii Sygnałów Insyu eleomuniacji, eleinformayi i Ausyi Poliechnia Wrocławsa Prawa auorsie zasrzeżone Szeregi ouriera Jeżeli f ( ) jes funcją oresową o oresie, czyli
Podstawy Konstrukcji Maszyn
0-05-7 Podstawy Konstrukcji Maszyn Część Wykład nr.3. Przesunięcie zarysu przypomnienie znanych zagadnień (wykład nr. ) Zabieg przesunięcia zarysu polega na przybliżeniu lub oddaleniu narzędzia od osi
Podstawy Konstrukcji Maszyn
Podstawy Konstrukcji Maszyn Część Wykład nr. 1 1. Podstawowe prawo zazębienia I1 przełożenie kinematyczne 1 i 1 = = ω ω r r w w1 1 . Rozkład prędkości w zazębieniu 3 4 3. Zarys cykloidalny i ewolwentowy
Instytut Konstrukcji Maszyn, Instytut Pojazdów Szynowych 1
1. SPRZĘGŁO TULEJOWE. Sprawdzić nośność sprzęgła z uwagi na naciski powierzchniowe w rowkach wpustowych. Przyjąć, że p dop = 60 Pa. Zaproponować sposób zabezpieczenia tulei przed przesuwaniem się wzdłuż
Scientific Journal of Silesian University of Technology. Series Transport Zeszyty Naukowe Politechniki Śląskiej. Seria Transport
Scientific Journal of Silesian University of Technology. Series Transport Zeszyty Naukowe Politechniki Śląskiej. Seria Transport Volume 89 2015 p-issn: 0209-3324 e-issn: 2450-1549 DOI: Journal homepage:
OBLICZANIE KÓŁK ZĘBATYCH
OBLICZANIE KÓŁK ZĘBATYCH koło podziałowe linia przyporu P R P N P O koło podziałowe Najsilniejsze zginanie zęba następuje wówczas, gdy siła P N jest przyłożona u wierzchołka zęba. Siłę P N można rozłożyć
Ł ć ź ź Ą Ń ź ź ź Ę Ą Ń ć Ł Ł ć ć ć ć ć ć ć ć ć ź ź ć ć Ł ć ć ć Ł ć Ł ć ź Ś Ś ć ź ć ź ź ć Ł Ę Ę Ń ź ź ć ć Ł Ł Ą Ą ź Ą Ę ź ź Ś Ł ŚĆ ć ć ć Ń Ą Ę ź Ę Ł Ę Ą ź Ń ć ć ź ź Ą ź ź ć ć ŚĆ ć Ś Ś Ś ć Ę ć ć ć Ś
Ą ć ź ć Ą ć Ą Ą Ł Ź Ą Ź ć ć Ź Ą Ą Ą ź Ł ć Ź Ą ć ź ć Ą Ź ć ź Ą Ą Ą Ł Ą Ł Ź ć Ś Ń ć Ł Ź Ó ć ć ć Ą ÓŁ ź Ą Ą Ź ć Ź Ź Ą Ł Ł ć ć ć ć ź ć ź ć Ą Ą Ź Ź Ą ć Ą Ź Ś Ą Ó Ź Ó Ą Ź Ą Ł Ł Ź ć Ś ć Ą Ą ć Ź Ó Ś Ś Ź ź ź Ś
Projektowanie walcowych przekładni zębatych o zmieniającym się przełożeniu. Igor Zarębski Promotor: dr hab. inż. Tadeusz Sałaciński
Projektowanie walcowych przekładni zębatych o zmieniającym się przełożeniu Igor Zarębski Promotor: dr hab. inż. Tadeusz Sałaciński Zarys historyczny Idea przekładni zębatych o zmiennym przełożeniu, opartych
Obróbka wytaczarska: Obróbka frezerska: Obróbka mechaniczna w ZAMET Budowa Maszyn S.A.
Obróbka mechaniczna w ZAMET Budowa Maszyn S.A. Obróbka wytaczarska: Wiertarko-frezarki typu "Skoda" z czytnikiem optycznym maksymalne ciężary: na płycie możliwość obróbki z głowicy kątowej: maksymalny
POLITECHNIKA GDAŃSKA WYDZIAŁ MECHANICZNY KATEDRA KONSTRUKCJI I EKSPLOATACJI MASZYN
POLITECHNIKA GDAŃSKA WYDZIAŁ MECHANICZNY KATEDRA KONSTRUKCJI I EKSPLOATACJI MASZYN KOREKCJA ZAZĘBIENIA ĆWICZENIE LABORATORYJNE NR 5 Z PODSTAW KONSTRUKCJI MASZYN OPRACOWAŁ: dr inż. Jan KŁOPOCKI Gdańsk 2000
WYKORZYSTANIE MES DO WYZNACZANIA WPŁYWU PĘKNIĘCIA W STOPIE ZĘBA KOŁA NA ZMIANĘ SZTYWNOŚCI ZAZĘBIENIA
ZESZYTY NAUKOWE POLITECHNIKI ŚLĄSKIEJ 2009 Seria: TRANSPORT z. 65 Nr kol. 1807 Tomasz FIGLUS, Piotr FOLĘGA, Piotr CZECH, Grzegorz WOJNAR WYKORZYSTANIE MES DO WYZNACZANIA WPŁYWU PĘKNIĘCIA W STOPIE ZĘBA
Dobór sprzęgieł hydrokinetycznych 179 Bibliografia 183
Podstawy konstrukcji maszyn. T. 3 / autorzy: Tadeusz Kacperski, Andrzej Krukowski, Sylwester Markusik, Włodzimierz Ozimowski ; pod redakcją Marka Dietricha. wyd. 3, 3 dodr. Warszawa, 2015 Spis treści 1.
KATEDRA TECHNOLOGII MASZYN I AUTOMATYZACJI PRODUKCJI
KATEDRA TECHNOLOGII MASZYN I AUTOMATYZACJI PRODUKCJI TEMAT ĆWICZENIA: ĆWICZENIE NR 3 POMIAR KÓŁ ZĘBATYCH WALCOWYCH ZADANIA DO WYKONANIA: 1. Zidentyfikować koło zębate przeznaczone do pomiaru i określić
ANALIZA NAPRĘŻEŃ W KOŁACH ZĘBATYCH WYZNACZONYCH METODĄ ELEMENTÓW BRZEGOWYCH
3-2006 PROBLEMY EKSPLOATACJI 157 Piotr FOLĘGA Politechnika Śląska, Gliwice ANALIZA NAPRĘŻEŃ W KOŁACH ZĘBATYCH WYZNACZONYCH METODĄ ELEMENTÓW BRZEGOWYCH Słowa kluczowe Koła zębate, zużycie ścierne zębów,
Analiza dynamiczna uproszczonego modelu walcowej przekładni zębatej z uwzględnieniem prostokątnego przebiegu sztywności zazębienia
MARSZAŁEK Jerzy DREWNIAK Józef Analiza dynamiczna uproszczonego modelu walcowej przekładni zębatej z uwzględnieniem prostokątnego przebiegu sztywności zazębienia WSTĘP Przekładnie zębate należą do mechanizmów
KATEDRA TECHNOLOGII MASZYN I AUTOMATYZACJI PRODUKCJI
KATEDRA TECHNOLOGII MASZYN I AUTOMATYZACJI PRODUKCJI TEMAT ĆWICZENIA: ĆWICZENIE NR 3 POMIAR KÓŁ ZĘBATYCH WALCOWYCH ZADANIA DO WYKONANIA: 1. Zidentyfikować koło zębate przeznaczone do pomiaru i określić
Porównanie wytrzymałości kół zębatych stożkowych o zębach kołowołukowych wyznaczonej wg normy ISO z analizą numeryczną MES
KÓSKA Mateusz 1 DREWNIAK Józef 2 KÓSKA Monika 3 Porównanie wytrzymałości kół zębatych stożkowych o zębach kołowołukowych wyznaczonej wg normy ISO z analizą numeryczną MES WSTĘP Przekładnie zębate są stosowane
DYSKRETNY MODEL DYNAMICZNY PRZEKŁADNI ZĘBATEJ STOŻKOWEJ WERYFIKACJA KODU ŹRÓDŁOWEGO PROGRAMU DO SYMULACJI NUMERYCZNEJ
ZESZYTY NAUKOWE POLITECHNIKI ŚLĄSKIE 04 Seria: TRANSPORT z. 83 Nr kol. 904 Krzyszof TWARDOCH DYSKRETNY MODEL DYNAMICZNY PRZEKŁADNI ZĘBATE STOŻKOWE WERYFIKACA KODU ŹRÓDŁOWEGO PROGRAMU DO SYMULACI NUMERYCZNE
ZESZYTY NAUKOWE NR 10(82) AKADEMII MORSKIEJ W SZCZECINIE
ISSN 1733-8670 ZESZYTY NAUKOWE NR 10(82) AKADEMII MORSKIEJ W SZCZECINIE IV MIĘDZYNARODOWA KONFERENCJA NAUKOWO-TECHNICZNA EXPLO-SHIP 2006 Stefan Berczyński, Zenon Grządziel, Szymon Rukowicz Analiza porównawcza
MECHANIKA OGÓLNA (II)
MECHNIK GÓLN (II) Semestr: II (Mechanika I), III (Mechanika II), rok akad. 2013/2014 Liczba godzin: sem. II *) - wykład 30 godz., ćwiczenia 30 godz. sem. III *) - wykład 30 godz., ćwiczenia 30 godz., ale
ń Ę Ę Ę Ę ń ń Ś ź Ę ś ś Ę Ś Ą Ę Ę Ę Ę Ż Ę Ę ść Ą Ł Ę Ć ć Ś Ę Ę ś Ę Ż Ś Ę Ę ń Ż Ę Ć ź ć Ł ś Ę ś Ż ś Ś ś Ę ć Ł ś Ż ŚĆ Ę ń ŚĆ ść ś ś ń ś Ś ś ś Ęś Ę ć ś ść ń ń Ć ś Ą ń ć Ą Ś ń ś ś ć ć ś źć ć ź ś ń Ę ś Ę ć
(12) OPIS PATENTOWY (19)PL (11) (13) B1
RZECZPOSPOLITA POLSKA (12) OPIS PATENTOWY (19)PL (11)160312 (13) B1 (21) Numer zgłoszenia: 280556 (51) IntCl5: Urząd Patentowy Rzeczypospolitej Polskiej (22) Data zgłoszenia: 04.07.1989 F16H 57/12 (54)
ności od kinematyki zazębie
Klasyfikacja przekładni zębatych z w zależno ności od kinematyki zazębie bień PRZEKŁADNIE ZĘBATE CZOŁOWE ŚRUBOWE WALCOWE (równoległe) STOŻKOWE (kątowe) HIPERBOIDALNE ŚLIMAKOWE o zebach prostych o zębach
DRGANIA SWOBODNE UKŁADU O DWÓCH STOPNIACH SWOBODY. Rys Model układu
Ćwiczenie 7 DRGANIA SWOBODNE UKŁADU O DWÓCH STOPNIACH SWOBODY. Cel ćwiczenia Doświadczalne wyznaczenie częstości drgań własnych układu o dwóch stopniach swobody, pokazanie postaci drgań odpowiadających
ANALIZA WPŁYWU NACISKU OSIOWEGO NA ZUŻYCIE UZBROJENIA ŚWIDRÓW GRYZOWYCH AXIAL THRUST EFFECT ON DRILLING BITS EQUIPMENT WEAR ANALYSIS
Miron CZERNIEC Piotr JAREMEK ANALIZA WPŁYWU NACISKU OSIOWEGO NA ZUŻYCIE UZBROJENIA ŚWIDRÓW GRYZOWYCH AXIAL THRUST EFFECT ON DRILLING BITS EQUIPMENT WEAR ANALYSIS Przedstawiono wyniki badań zużycia uzbrojenia
ψ przedstawia zależność
Ruch falowy 4-4 Ruch falowy Ruch falowy polega na rozchodzeniu się zaburzenia (odkszałcenia) w ośrodku sprężysym Wielkość zaburzenia jes, podobnie jak w przypadku drgań, funkcją czasu () Zaburzenie rozchodzi
ANALITYCZNO-NUMERYCZNE METODY WYZNACZANIA OBSZARU STYKU PRZEKŁADNI WKLĘSŁO-WYPUKŁYCH NOWIKOWA
ZESZYTY NAUKOWE POLITECHNIKI ŚLĄSKIEJ 2014 Seria: TRANSPORT z. 82 Nr kol. 1903 Tadeusz MARKOWSKI 1, Michał BATSCH 2 ANALITYCZNO-NUMERYCZNE METODY WYZNACZANIA OBSZARU STYKU PRZEKŁADNI WKLĘSŁO-WYPUKŁYCH
GAL 80 zadań z liczb zespolonych
GAL 80 zadań z liczb zespolonych Postać algebraiczna liczby zespolonej 1 Sprowadź wyrażenia do postaci algebraicznej: (a) ( + i)(3 i) + ( + 31)(3 + 41), (b) (4 + 3i)(5 i) ( 6i), (5 + i)(7 6i) (c), 3 +
MODELOWANIE OBCIĄŻEŃ MECHANICZNYCH KÓŁ ZĘBATYCH O NIETYPOWYCH ZARYSACH Z ZASTOSOWANIEM MES
MODELOWANIE INŻYNIERSKIE ISSN 1896-771X 39, s. 143-150, Gliwice 2010 MODELOWANIE OBCIĄŻEŃ MECHANICZNYCH KÓŁ ZĘBATYCH O NIETYPOWYCH ZARYSACH Z ZASTOSOWANIEM MES TADEUSZ MARKOWSKI, GRZEGORZ BUDZIK, JACEK
Zagadnienia brzegowe dla równań eliptycznych
Temat 7 Zagadnienia brzegowe dla równań eliptycznych Rozważmy płaski obszar R 2 ograniczony krzywą. la równania Laplace a (Poissona) stawia się trzy podstawowe zagadnienia brzegowe. Zagadnienie irichleta
ń ż Ą Ł ż ć ż ć ż ć Ś Ż ć ć ż ć ż ż ż Ą ż ż Ź ń Ą ź ń ź ń Ą ż Ń ż ń Ą ń ż ń Ź ć ń ż Ń Ą ż ż ż ć ń ń Ł ż ż ż ń Ź ź Ą ż Ł ż ż ć ń Ś ć Ó ż ć Ś ż ż Ą ń ż ń Ł ż Ż ń Ą Ł ć ż ń ż ń Ż ń ń Ą ż ż Ł ż ż ż ż ć ż Ń
Granica i ciągłość funkcji. 1 Granica funkcji rzeczywistej jednej zmiennej rzeczywsitej
Wydział Matematyki Stosowanej Zestaw zadań nr 3 Akademia Górniczo-Hutnicza w Krakowie WEiP, energetyka, I rok Elżbieta Adamus listopada 07r. Granica i ciągłość funkcji Granica funkcji rzeczywistej jednej
( Shibata and Uchida 1986)
10 40 (http://home.hiroshima-u.ac.jp/hasc/news/3c279/index.html, Shibata and Uchida 1986) aaacs3ichve9txtbeb0ukdgocsy0kwiswja0swzrgg0vuireaqm2sa6x7s4lofm+dle2bcf+ah+agipifkjp8w9o+amupe0alnkr0ldw9mwupxcyj82+3zn35s2efbporjivx4wh4xmph2uez59mpn02lzt+xo+dtmtlmh24qbrtmbf0hv/wlkncur1g0vqsv25z7fc6v9wvuewe/qbad+woz+75zq5jmwpxqe4vrdskhhrypcqttqgqpepghoxaaajc1gefovqr1w+ad5ezuz+qqhvcbctdzq7arwywquq1ekvfblhaki+icl7offabhqss5m7oa7ugb0paq2mfzwxyir3ja0ccuwm7aggipsinzwulwxa7qjko0fbaihs4nya3ps5am07zejq3hu8pn8dxfm59vuqvfmo3i7wsven72cdudbgybe4dvdj4/v+wh13rpz+sf3pwenry6twb9zc90vpya3734li/sbw+l8zzkf+e/898zreywo/+sntvux5cwfya+1fojwb1halgoqi+laysdn9fhmbpjb3ge5dohdaoqjx0/urf6dv9mn4zdcmywonsy2zimag/luhdavznne4=
Listwy zębate / Koła modułowe / Koła stożkowe
Strona Listwy zębate.2 Koła modułowe z piastą.4 Koła modułowe bez piasty. Koła stożkowe. z uzębieniem prostym Koła stożkowe. z uzębieniem łukowym Koła modułowe.34 i listwy zębate specjalne czesci.maszyn@haberkorn.pl
Szeregi Fouriera (6 rozwiązanych zadań +dodatek)
PWR I Załad eorii Obwodów Szeregi ouriera (6 rozwiązanych zadań +dodae) Opracował Dr Czesław Michali Zad Znaleźć ores nasępujących sygnałów: a) y 3cos(ω ) + 5cos(7ω ) + cos(5ω ), b) y cos(ω ) + 5cos(ω
Ę ĘŃ ć Ą Ś ć ć ć ć ć ć Ń Ł ć Ń Ą ć ć Ę ć Ń ć Ń ć ź Ę Ń ć Ę ć ć ć ć ź ć ć ć ć ć ĄĄ Ę Ą ź ć Ą ć ć ź ź Ń Ą Ą Ę Ę Ę ć źć Ń Ą Ń ć Ł ź ź ć ć Ł ć Ę ć Ń Ń ź Ę ź ć Ę Ś Ń ć Ą Ń Ń Ń Ą Ą ź Ą Ę Ł ć Ń Ń ć ź Ń Ą Ę Ę
ż Ą Ź Ą Ż ź ż ć Ą ż ź ć ź Ś ż ź ć ż ĄĄ ż ż ź ż ć ć Ę ć ż ć Ś ć ć ź ż ż ć ż ć Ę ć Ę Ę ż ż Ę ć Ś ż ć ż ć ż Ą ź ż źć ż ż ż ż ź ź ż ć ć ż ć ż ć ć ż Ę ć ź ć ć ż ć ć ż ć ć ć ć ż Źć ź ż ć ć Ę Ą Ę ć ź Ę Ę ż Ę
Rachunek całkowy funkcji wielu zmiennych
Rachunek całkowy funkcji wielu zmiennych Całki potrójne wykład z MATEMATYKI Budownictwo studia niestacjonarne sem. II, rok ak. 2008/2009 Katedra Matematyki Wydział Informatyki olitechnika Białostocka 1
AutoCAD Mechanical - Konstruowanie przekładni zębatych i pasowych. Radosław JABŁOŃSKI Wydział Mechaniczny Technologiczny Politechnika Śląska, Gliwice
AutoCAD Mechanical - Konstruowanie przekładni zębatych i pasowych Radosław JABŁOŃSKI Wydział Mechaniczny Technologiczny Politechnika Śląska, Gliwice Streszczenie: W artykule opisano funkcje wspomagające
LOKALIZACJA ŚLADU WSPÓŁPRACY W ZAZĘBIENIU PRZEKŁADNI ŚLIMAKOWYCH
KOMISJA BUDOWY MASZYN PAN ODDZIAŁ W POZNANIU Vol. 26 nr 2 Archiwum Technologii Maszyn i Automatyzacji 2006 TADEUSZ MARCINIAK * LOKALIZACJA ŚLADU WSPÓŁPRACY W ZAZĘBIENIU PRZEKŁADNI ŚLIMAKOWYCH Jedną z metod
Nr 2. Laboratorium Maszyny CNC. Politechnika Poznańska Instytut Technologii Mechanicznej
Politechnia Poznańsa Instytut Technologii Mechanicznej Laboratorium Maszyny CNC Nr 2 Badania symulacyjne napędów obrabiare sterowanych numerycznie Opracował: Dr inż. Wojciech Ptaszyńsi Poznań, 3 stycznia
Pole magnetyczne magnesu w kształcie kuli
napisał Michał Wierzbicki Pole magnetyczne magnesu w kształcie kuli Rozważmy kulę o promieniu R, wykonaną z materiału ferromagnetycznego o stałej magnetyzacji M = const, skierowanej wzdłuż osi z. Gęstość
Podstawowe przypadki (stany) obciążenia elementów : 1. Rozciąganie lub ściskanie 2. Zginanie 3. Skręcanie 4. Ścinanie
Podstawowe przypadki (stany) obciążenia elementów : 1. Rozciąganie lub ściskanie 2. Zginanie 3. Skręcanie 4. Ścinanie Rozciąganie lub ściskanie Zginanie Skręcanie Ścinanie 1. Pręt rozciągany lub ściskany
Arkusz 6. Elementy geometrii analitycznej w przestrzeni
Arkusz 6. Elementy geometrii analitycznej w przestrzeni Zadanie 6.1. Obliczyć długości podanych wektorów a) a = [, 4, 12] b) b = [, 5, 2 2 ] c) c = [ρ cos φ, ρ sin φ, h], ρ 0, φ, h R c) d = [ρ cos φ cos
= 10 m/s i zatrzymał się o l = 20 m od miejsca uderzenia. Współczynnik tarcia krążka o lód wynosi a. 0,25 b. 0,3 c. 0,35 d. 0,4
Imię i nazwiso Daa Klasa Grupa A Sprawdzian 3 PracA, moc, energia mechaniczna 1. Ze sojącego działa o masie 1 wysrzelono pocis o masie 1 g. nergia ineyczna odrzuu działa w chwili, gdy pocis opuszcza lufę
Zad Sprawdzić, czy dana funkcja jest funkcją własną danego operatora. Jeśli tak, znaleźć wartość własną funkcji.
Zad. 1.1. Sprawdzić, czy dana funkcja jest funkcją własną danego operatora. Jeśli tak, znaleźć wartość własną funkcji. Zad. 1.1.a. Funkcja: ϕ = sin2x Zad. 1.1.b. Funkcja: ϕ = e x 2 2 Operator: f = d2 dx
ź ć Ń Ę Ś Ę ź Ś Ę ć ŚĆ Ó ÓŁ Ł ć ź ź ź ź Ń ć Ę Ę ź ć ć ź ć ć Ł ć Ę Ń ć Ę Ę ć Ł ć ź ź ć ź ć ć ć ź ć ź ź Ó Ń Ó Ż ź ć Ó ź ź ć ź ź Ś ć ć ź ć ć Ę Ł ź ź Ę Ę Ę Ę Ń Ę Ł Ę Ń Ń Ń ź Ń Ń ź ź Ń Ł ź ź ź Ę ź ź Ę Ń Ń
WYKŁAD 5 METODY OPTYMALIZACJI NIELINIOWEJ BEZ OGRANICZEŃ
WYKŁAD 5 METODY OPTYMALIZACJI NIELINIOWEJ BEZ OGRANICZEŃ Wstęp. Za wyjątie nielicznych funcji, najczęściej w postaci wieloianów, dla tórych ożna znaleźć iniu na drodze analitycznej, pozostała więszość
7.0. Fundament pod słupami od stropu nad piwnicą. Rzut fundamentu. Wymiary:
7.0. Fundament pod słupami od stropu nad piwnicą. Rzut fundamentu Wymiary: B=1,2m L=4,42m H=0,4m Stan graniczny I Stan graniczny II Obciążenie fundamentu odporem gruntu OBCIĄŻENIA: 221,02 221,02 221,02
Ł Ł Ł Ś Ś Ó Ó Ó Ę Ś Ż Ó Ś Ę Ź Ś Ó Ę Ś Ż Ż Ę Ó Ś Ż Ę Ś Ś ź Ę ź Ą Ł Ś Ó ź Ó Ó Ż Ó Ó Ę Ó ź Ż Ż Ó Ę Ś Ż ź Ż Ą ź ź Ż Ę Ó Ż Ó Ę Ó Ś Ń Ń Ż Ę Ś ź Ś Ż Ę Ż Ż Ę Ę Ś Ś Ó Ę Ś Ę Ż Ę ĄÓ Ó Ż Ó Ż Ę ź ź Ś Ę Ó Ś Ś ĆÓ Ż Ś
Stanowisko badawcze do modelowania pracy napędu trakcyjnego w stanach wywołanych nagłą zmianą prędkości kątowej kół pojazdu
Pior CHUDZIK, Andrzej DĘBOWSKI, omasz KOLASA, Daniel LEWANDOWSKI, Grzegorz LISOWSKI, Przemysław ŁUKASIAK 3, Rafał NOWAK Poliechnia Łódza, Insyu Auomayi (, ABB Sp. z o.o. ABB Corporae Research Cener (,
J. Szantyr Wykład nr 27 Przepływy w kanałach otwartych I
J. Szantyr Wykład nr 7 Przepływy w kanałach otwartych Przepływy w kanałach otwartych najczęściej wymuszane są działaniem siły grawitacji. Jako wstępny uproszczony przypadek przeanalizujemy spływ warstwy
ZACHODNIOPOMORSKI UNIWERSYTET TECHNOLOGICZNY
ZACHODNIOPOMORSKI UNIWERSYTET TECHNOLOGICZNY w Szczecinie UNIWERSYT E ZACHODNIOPOMOR T T E CH LOGICZNY W SZCZECINIE NO SKI KATEDRA MECHANIKI I PODSTAW KONSTRUKCJI MASZYN ZAKŁAD PODSTAW KONSTRUKCJI MASZYN
Obliczenie natężenia promieniowania docierającego do powierzchni absorpcyjnej
Kolektor słoneczny dr hab. inż. Bartosz Zajączkowski, prof. uczelni Politechnika Wrocławska Wydział Mechaniczno-Energetyczny Katedra Termodynamiki, Teorii Maszyn i Urządzeń Cieplnych email: bartosz.zajaczkowski@pwr.edu.pl
MODELOWANIE W TECHNOLOGII MATERIAŁÓW
MODELOWANIE W TEHNOLOGII MATERIAŁÓW Wykłady: prof. dr a. inŝ. Andrze Milenin asysenci : gr. inŝ. Pior Kusra gr. InŜ. Toasz Rec Pok. 7, B5 E-ail: ilenin@eal.ag.edu.pl Lieraura Pierzyk M., Meody nueryczne
WYZNACZANIE NAPRĘŻEŃ W PODSTAWACH ZĘBÓW KÓŁ NAPĘDÓW ZĘBATYCH
4-2007 PROBLEMY EKSPLOATACJI 83 Piotr FOLĘGA, Tomasz FIGLUS Politechnika Śląska, Gliwice WYZNACZANIE NAPRĘŻEŃ W PODSTAWACH ZĘBÓW KÓŁ NAPĘDÓW ZĘBATYCH Słowa kluczowe Koło zębate, stan naprężenia, metoda
Temperatura w Strefie Tarcia Węzła Ślizgowego. Tadeusz Stolarski Katedra Podstaw Konstrukcji i Eksploatacji Maszyn
emperatura w Strefie arcia Węzła Ślizgowego adeusz Stolarski Katedra Podstaw Konstrukcji i Eksploatacji Maszyn emperatura w strefie styku ślizgowego Energia tracona na pokonanie oporów tarcia jest głównie
ÓŁ Ą Ś Ą Ś ę ń Ń ę ę ą ó Ź Ł ó ą ę ę ó ó ą ę Ś Ą ŚÓ ą ą ę Ó ó ę Ł ę ą ą ą Ż ęś ą ń Łą ó ń ó ó ą ę ą Ż ę ę ę ę ó ę ę ę ę ę ę ó ę ą ę ć ę ą ó ź ę ę ó ó óź ę ę ń ą ę ó ó ń ą ę ó ę ą ę ó ó ó ó ó ę ę ę ę ę
Politechnika Poznańska 2006 Ćwiczenie nr2
Obliczanie przeieszczeń układów sayczne wyznaczalnych z zasosowanie równań pracy wirualnej. Poliechnika Poznańska 006 Ćwiczenie nr. Dla układu przedsawionego na rysunku naleŝy przyjąć przekroje pręów ak,
ANALYSIS OF CAPACITY OF CYLINDRICAL INTERFERENCE FIT OF GEAR WHEEL WITH HELICAL TEETH
JAN RYŚ, PAWEŁ ROMANOWICZ * ANALIZA NOŚNOŚCI WALCOWEGO POŁĄCZENIA WCISKOWEGO KOŁA ZĘBATEGO O ZĘBACH SKOŚNYCH ANALYSIS OF CAPACITY OF CYLINDRICAL INTERFERENCE FIT OF GEAR WHEEL WITH HELICAL TEETH S t r
ANALIZA ODPOWIEDZI UKŁADÓW KONSTRUKCYJNYCH NA WYMUSZENIE W POSTACI SIŁY O DOWOLNYM PRZEBIEGU CZASOWYM
Budownicwo Mariusz Poński ANALIZA ODPOWIEDZI UKŁADÓW KONSTRUKCYJNYCH NA WYMUSZENIE W POSTACI SIŁY O DOWOLNYM PRZEBIEGU CZASOWYM Wprowadzenie Coraz większe ograniczenia czasowe podczas wykonywania projeków
Analiza Matematyczna Praca domowa
Analiza Matematyczna Praca domowa J. de Lucas Zadanie 1. Pokazać, że dla wszystkich n naturalnych ( n ) exp kx k dx 1 dx n = 1 n (e k 1). (0,1) n k=1 n! k=1 Zadanie. Obliczyć dla dowolnego n. (0,1) n (x
Koła zębate. T. 3, Sprawdzanie / Kazimierz Ochęduszko. wyd. 5, dodr. Warszawa, Spis treści
Koła zębate. T. 3, Sprawdzanie / Kazimierz Ochęduszko. wyd. 5, dodr. Warszawa, 2012 Spis treści Część pierwsza Geometryczne zaleŝności w przekładniach zębatych I. Wiadomości podstawowe 21 1. Klasyfikacja
α - stałe 1 α, s F ± Ψ taka sama Drgania nieliniowe (anharmoniczne) Harmoniczne: Inna zależność siły od Ψ : - układ nieliniowy,
Drgania nieliniowe (anharmoniczne) Harmoniczne: F s s Inna zależność siły od : - układ nieliniowy, Symetryczna siła zwrotna Niech: F s ( ) s Symetryczna wartość - drgania anharmoniczne α, s F s dla α -
Ś ć Ó Ś Ó Ą Ł Ą Ź Ź Ó ć ć Ó Ź Ą Ą Ś Ą Ł Ó Ł Ń Ź Ź ź Ź ź ć ć ć ć ć ć ć ć ć ć ć ć ć Ć Ą Ź ź ć ć ć ź Ą Ź Ą Ó Ó Ą Ń Ź ć ź ć ć ć Ą ź Ó ć Ą Ą ć ć ź Ó ć ć ć ć ć ć ć ć ć ć ć ć ć ć ć Ł Ź Ź ć ć ź ź ć ć ć ć ć ć Ó
Równanie Fresnela. napisał Michał Wierzbicki
napisał Michał Wierzbici Równanie Fresnela W anizotropowych ryształach optycznych zależność między wetorami inducji i natężenia pola eletrycznego (równanie materiałowe) jest następująca = ϵ 0 ˆϵ E (1)
v = v i e i v 1 ] T v =
v U = e i,..., e n ) v = n v i e i i= e i i v T v = = v v n v n U v v v +q 3q +q +q b c d XY X +q Y 3q r +q = r 3q = r +q = r +q = r 3q = r +q = E = E +q + E 3q + E +q = k q r+q 3 + k 3q r 3q 3 b V = kq
10.0. Schody górne, wspornikowe.
10.0. Schody górne, wspornikowe. OBCIĄŻENIA: Grupa: A "obc. stałe - pł. spocznik" Stałe γf= 1,0/0,90 Q k = 0,70 kn/m *1,5m=1,05 kn/m. Q o1 = 0,84 kn/m *1,5m=1,6 kn/m, γ f1 = 1,0, Q o = 0,63 kn/m *1,5m=0,95
Fale elektromagnetyczne spektrum
Fale elekroagneyczne spekru w próżni wszyskie fale e- rozchodzą się z prędkością c 3. 8 /s Jaes Clerk Mawell (w połowie XIX w.) wykazał, że świało jes falą elekroagneyczną rozprzesrzeniającą się falą ziennego
MAKROEKONOMIA 2. Wykład 3. Dynamiczny model DAD/DAS, część 2. Dagmara Mycielska Joanna Siwińska - Gorzelak
MAKROEKONOMIA 2 Wykład 3. Dynamiczny model DAD/DAS, część 2 Dagmara Mycielska Joanna Siwińska - Gorzelak ( ) ( ) ( ) E i E E i r r ν φ θ θ ρ ε ρ α 1 1 1 ) ( R. popyu R. Fishera Krzywa Phillipsa Oczekiwania
Pręt nr 1 - Element żelbetowy wg. PN-B-03264
Pręt nr 1 - Element żelbetowy wg. PN-B-03264 Informacje o elemencie Nazwa/Opis: element nr 5 (belka) - Brak opisu elementu. Węzły: 13 (x6.000m, y24.000m); 12 (x18.000m, y24.000m) Profil: Pr 350x900 (Beton
(12) OPIS PATENTOWY (19) PL (11) (13) B1
RZECZPOSPOLITA POLSKA (12) OPIS PATENTOWY (19) PL (11) 174162 (13) B1 (21) Numer zgłoszenia: 303848 (51) IntCl6: F16H 1/14 Urząd Patentowy Rzeczypospolitej Polskiej (22) Data zgłoszenia: 14.06.1994 (54)
Ą Ł Ą Ń Ń ź Ń Ę ź Ł Ł ź Ł Ą Ą Ą ź Ń Ą Ę Ą ź Ą Ę ź Ą ź ź Ę Ą ź Ś ć ź ć Ł Ś Ł ŁĄ Ś ź Ł ć ć Ł ŚĆ Ł Ł Ą Ń Ł Ó Ó Ą Ś ć Ę Ą Ł Ó ć Ł Ś ć Ł ź ć Ł Ł Ś Ł Ś Ł ŁĄ Ś ź Ę ź ź Ń Ę ź ć ź Ń Ś Ś Ś Ń Ś Ś Ś Ł Ń ć Ł Ł Ść Ł
PL B1. Przedsiębiorstwo Produkcyjno-Remontowe Energetyki ENERGOSERWIS S.A.,Lubliniec,PL BUP 02/06
RZECZPOSPOLITA POLSKA (12) OPIS PATENTOWY (19) PL (11) 201011 (13) B1 (21) Numer zgłoszenia: 369048 (51) Int.Cl. B65G 23/06 (2006.01) E21F 13/06 (2006.01) Urząd Patentowy Rzeczypospolitej Polskiej (22)
Zespół Szkół Technicznych. Badanie wyświetlaczy LCD
Zespół Szkół Technicznych Badanie wyświetlaczy LCD WYŚWIETLACZE LCD CZĘSC TEORETYCZNA ZALETY: ) mały pobór mocy, 2) ekonomiczność pod względem zużycia energii (pobór prądu przy 5V mniejszy niż 2mA), 3)
PRZEKŁADNIE ZĘBATE CZOŁOWE ŚRUBOWE. WALCOWE (równoległe) STOŻKOWE (kątowe) ŚLIMAKOWE HIPERBOIDALNE. o zebach prostych. walcowe. o zębach.
CZOŁOWE OWE PRZEKŁADNIE STOŻKOWE PRZEKŁADNIE ZĘBATE CZOŁOWE ŚRUBOWE WALCOWE (równoległe) STOŻKOWE (kątowe) HIPERBOIDALNE ŚLIMAKOWE o ebach prostych o ębach prostych walcowe walcowe o ębach śrubowych o
Obliczanie sił wewnętrznych w powłokach zbiorników osiowo symetrycznych
Zakład Mechaniki Budowli Prowadzący: dr hab. inż. Przemysław Litewka Ćwiczenie projektowe 3 Obliczanie sił wewnętrznych w powłokach zbiorników osiowo symetrycznych Daniel Sworek gr. KB2 Rok akademicki
ÓŁ Ą Ś Ą Ł Ś Ó Ą Ł ź ź Ą ż ż ż ż ż Ę Ę ź Ą ż Ę Ń Ę ż ż ź ż ż Ń ż Ą ż ć ż ć ć ć ć ż ć ć ć ć ż Ł Ę Ą ć ć ć ć ć ć ć ć ć ź ć ź Ę ć ź ć ż ć ć ć ż ź ć ć ć ć ż ź ż ż ć ż ż ć ż Ę Ą ć Ł ź ż ż Ł Ó ÓŁ ć Ą ć Ą ż ż
ć ź ź Ł ź ź ź Ś ć ć Ę ÓŁ ź Ń ź ź ź ć ć Ń ć ć ć Ń ź Ę Ś Ń ć ć ć ź ć ć ć ć ć ć ź Ś Ę ź ź Ż ć ź ź ć ź Ń ź ć ć ć ź ź Ł Ń ć Ń Ń ź Ś Ń Ę Ę Ę ź ć ć Ę ź Ń Ł Ę ź ź Ń Ę Ę Ł Ł Ś Ś ć ć Ł ź ć ć Ł Ó Ż Ś Ł Ó ź Ę Ń