SCENARIUSZ LEKCJI MATEMATYKI
|
|
- Stefan Markiewicz
- 8 lat temu
- Przeglądów:
Transkrypt
1 Wiesław Maleszewski Maj 2015r. SCENARIUSZ LEKCJI MATEMATYKI W SZKOLE PONADGIMNAZJALNEJ Temat: Nierówności kwadratowe zupełne Cele nauczania: ogólne o rozwijanie aktywności umysłowej, a w tym umiejętności logicznego rozumowania, porównywania i wnioskowania; o doskonalenie umiejętności wykorzystywania poznanych wzorów do rozwiązywania zadań pseudo-praktycznych; o kształtowanie umiejętności dostrzegania i opisywania zależności pomiędzy różnymi wielkościami; o kształtowanie porządku i elegancji w wyrażaniu myśli; o kształtowanie precyzji wypowiedzi i poprawnego stosowania terminów matematycznych; o kształtowanie sprawności rachunkowej. szczegółowe o uczeń potrafi rozwiązywać nierówności kwadratowe z jedną niewiadomą. Metoda nauczania: Metoda JIGSAW Forma nauczania: praca w grupach zgodnie z ideą metody JIGSAW Przebieg lekcji: 1. Czynności organizacyjne (temat, podział na grupy, obecność) 2. Uczniowie pracują w grupach tzw. eksperckich. Każda grupa otrzymuje do przestudiowania inną część lub inny aspekt tematu. Grupy mają za zadanie przedyskutować, opracować swoją część zagadnienia. Każda osoba w grupie musi na tyle dobrze zrozumieć zagadnienie, żeby móc wytłumaczyć je w innej grupie uczniów, i tak: I gr. rozwiązywanie nierówności kwadratowych zupełnych, gdzie II gr. rozwiązywanie nierówności kwadratowych zupełnych, gdzie III gr. rozwiązywanie nierówności kwadratowych zupełnych, gdzie Uczniowie w grupach pracują ze swoją kartą pracy 3. Drugi podział na grupy polega na tym, że w skład każdej nowej grupy wchodzi przedstawiciel każdej z poprzednich (eksperckich) grup. Przedstawiciele ci kolejno relacjonują, czego nauczyli się w poprzednich grupach, na poprzednim etapie. Wszyscy w nowych grupach rozwiązują wszystkie przykłady. 4. Eksperci wracają do swoich grup i konfrontują zdobytą całościową wiedzę. Sprawdzają czy wszyscy nauczyli się wszystkiego. 5. Uczniowie ćwiczeniowo rozwiązują zadania z podręcznika z tematu nierówności kwadratowe zupełne, tak aby utrwalić zdobyte wiadomości i umiejętności. 6. Podsumowanie i zadanie pracy domowej (stosownie do przebiegu lekcji i stopnia opanowania materiału).
2 Przykład 1.1. Rozwiąż nierówność. Karta Pracy Grupa I Rozwiązujemy nierówność:. Zauważamy, że zatem trójmian kwadratowy nie ma pierwiastków. Rysujemy parabolę i zaznaczamy, gdzie wykres leży powyżej osi Przykład 1.2. Rozwiąż nierówność.. Zauważamy, że zatem równanie nie ma rozwiązań Rysujemy parabolę i zaznaczamy, gdzie wykres leży powyżej osi Interesuje nas, jaka cześć wykresu znajduję się poniżej osi Przykład 1.3. Rozwiąż nierówność. Zauważamy, że zatem równanie nie ma rozwiązań Rysujemy parabolę i zaznaczamy gdzie wykres leży powyżej osi Widzimy, że taka sytuacja nie zachodzi, zatem
3 Przykład 1.4. Rozwiąż nierówność. Zauważamy, że zatem równanie nie ma rozwiązań Rysujemy parabolę i zaznaczamy, gdzie wykres leży poniżej osi Widzimy, że taka sytuacja jest spełniona dla dowolnej liczby rzeczywistej, zatem Zadania: 1.1. Rozwiąż nierówność: a) b) c)
4 Karta Pracy Grupa II Przykład 2.1. Rozwiąż nierówność.. zatem równanie ma rozwiązanie, Rysujemy parabolę i zaznaczamy gdzie wykres leży powyżej osi Przykład 2.2. Rozwiąż nierówność.. zatem równanie ma rozwiązanie, Rysujemy parabolę i zaznaczamy gdzie wykres leży poniżej lub na poziomie osi. Interesuje nas, jaka cześć wykresu znajduję się poniżej lub na osi.
5 Przykład 2.3. Rozwiąż nierówność.. zatem równanie ma rozwiązanie, Rysujemy parabolę i zaznaczamy gdzie wykres leży poniżej lub na poziomie osi Interesuje nas jaka cześć wykresu znajduję się poniżej osi Zadania: 2.1 Rozwiąż nierówność: a) b) c)
6 Karta Pracy Grupa III Przykład 3.1. Rozwiąż nierówność. Obliczamy pierwiastki: Rysujemy parabolę i zaznaczamy, gdzie wykres leży powyżej osi Widzimy, że taka sytuacja zachodzi, gdy zatem Przykład 3.2. Rozwiąż nierówność. Podobnie jak poprzednio otrzymujemy: Rysujemy parabolę i zaznaczamy gdzie wykres leży poniżej osi Widzimy, że taka sytuacja jest spełniona dla
7 Przykład 3.3. Rozwiąż nierówność. Obliczamy pierwiastki: Rysujemy parabolę i zaznaczamy gdzie wykres leży powyżej osi Widzimy, że taka sytuacja zachodzi dla Zadania 3.1. Rozwiąż nierówność: a) b) c)
Ad maiora natus sum III nr projektu RPO /15
Projekt współfinansowany przez Unię Europejską w ramach SCENARIUSZ DWUGODZINNYCH (2 X 45 MINUT) ZAJĘĆ Z MATEMATYKI W KLASIE II LICEUM PROWADZONYCH W CELU UZUPEŁNIENIA WIADOMOŚCI Temat: Doskonalenie umiejętności
SCENARIUSZ LEKCJI. Miejsca zerowe funkcji kwadratowej i ich graficzna prezentacja
SCENARIUSZ LEKCJI OPRACOWANY W RAMACH PROJEKTU: INFORMATYKA MÓJ SPOSÓB NA POZNANIE I OPISANIE ŚWIATA. PROGRAM NAUCZANIA INFORMATYKI Z ELEMENTAMI PRZEDMIOTÓW MATEMATYCZNO-PRZYRODNICZYCH Autorzy scenariusza:
Scenariusz lekcji diagnozującej z matematyki przygotowującej do sprawdzianu z funkcji kwadratowej
Scenariusz lekcji diagnozującej z matematyki przygotowującej do sprawdzianu z funkcji kwadratowej Temat : Powtórzenie i utrwalenie wiadomości z funkcji kwadratowej Czas trwania : 90 min. Środki dydaktyczne:
Lekcja 2. Pojęcie równania kwadratowego. Str Teoria 1. Równaniem wielomianowym nazywamy równanie postaci: n
Lekcja 1. Lekcja organizacyjna kontrakt. Podręcznik: A. Ceve, M. Krawczyk, M. Kruk, A. Magryś-Walczak, H. Nahorska Matematyka w zasadniczej szkole zawodowej. Wydawnictwo Podkowa. Zakres materiału: Równania
. Funkcja ta maleje dla ( ) Zadanie 1 str. 180 b) i c) Zadanie 2 str. 180 a) i b)
Lekcja 1 -. Lekcja organizacyjna kontrakt diagnoza i jej omówienie Podręcznik: W. Babiański, L. Chańko, D. Ponczek Matematyka. Zakres podstawowy. Wyd. Nowa Era. Zakres materiału: Funkcje kwadratowe Wielomiany
KONSPEKT ZAJĘĆ EDUKACYJNYCH
KONSPEKT ZAJĘĆ EDUKACYJNYCH Część organizacyjna: Opracowała: grupa 4 ds. korelacji matematyczno-fizycznej Przedmiot: matematyka Klasa: I technikum poziom podstawowy Czas trwania: 45 min. Data: Część merytoryczna
Wymagania edukacyjne, sposoby i formy sprawdzania osiągnięć i postępów edukacyjnych z matematyki.
Propozycja szczegółowego rozkładu materiału Program zakłada powtórzenie i utrwalenie wiadomości i umiejętności z wcześniejszych etapów edukacyjnych, niezbędnych w dalszym toku kształcenia (np. działania
FUNKCJE I RÓWNANIA KWADRATOWE. Lekcja 78. Pojęcie i wykres funkcji kwadratowej str
FUNKCJE I RÓWNANIA KWADRATOWE Lekcja 78. Pojęcie i wykres funkcji kwadratowej str. 178-180. Funkcja kwadratowa to taka, której wykresem jest parabola. Definicja Funkcją kwadratową nazywamy funkcje postaci
PRZYKŁADY ZADAŃ MATURALNYCH Z MATEMATYKI NA POSZCZEGÓLNE STANDARDY DLA WYBRANYCH TREŚCI PROGRAMOWYCH Z POZIOMU PODSTAWOWEGO I ROZSZERZONEGO
PRZYKŁADY ZADAŃ MATURALNYCH Z MATEMATYKI NA POSZCZEGÓLNE STANDARDY DLA WYBRANYCH TREŚCI PROGRAMOWYCH Z POZIOMU PODSTAWOWEGO I ROZSZERZONEGO ZADANIA OPRACOWANE PRZEZ Agnieszkę Sumicką Katarzynę Hejmanowską
FUNKCJA KWADRATOWA. 1. Definicje i przydatne wzory. lub trójmianem kwadratowym nazywamy funkcję postaci: f(x) = ax 2 + bx + c
FUNKCJA KWADRATOWA 1. Definicje i przydatne wzory DEFINICJA 1. Funkcja kwadratowa lub trójmianem kwadratowym nazywamy funkcję postaci: f(x) = ax + bx + c taką, że a, b, c R oraz a 0. Powyższe wyrażenie
SCENARIUSZ LEKCJI. Wielomiany komputerowe wykresy funkcji wielomianowych
Autorzy scenariusza: SCENARIUSZ LEKCJI OPRACOWANY W RAMACH PROJEKTU: INFORMATYKA MÓJ SPOSÓB NA POZNANIE I OPISANIE ŚWIATA. PROGRAM NAUCZANIA INFORMATYKI Z ELEMENTAMI PRZEDMIOTÓW MATEMATYCZNO-PRZYRODNICZYCH
Przekształcenia wykresu funkcji wykładniczej - scenariusz lekcji. ( czas realizacji: 2- wie godziny lekcyjne)
Przekształcenia wykresu funkcji wykładniczej - scenariusz lekcji. ( czas realizacji: 2- wie godziny lekcyjne) Opracowała: Marlena Lisiecka Cele realizowane podczas lekcji: - znajdowanie potrzebnych informacji
Przedmiotowy System Oceniania z matematyki klasy 4 6 Szkoły Podstawowej w Kluczewie. Przedmiotowy System Oceniania z matematyki jest zgodny z:
Przedmiotowy System Oceniania z matematyki klasy 4 6 Szkoły Podstawowej w Kluczewie Przedmiotowy System Oceniania z matematyki jest zgodny z: 1. Rozporządzeniem Ministra Edukacji Narodowej z dnia 27 sierpnia
Wymagania Edukacyjne w Szkole Podstawowej nr 4. im. Marii Dąbrowskiej w Kaliszu. Matematyka. Przedmiotem oceniania są:
Wymagania Edukacyjne w Szkole Podstawowej nr 4 im. Marii Dąbrowskiej w Kaliszu Matematyka - sprawność rachunkowa ucznia, Przedmiotem oceniania są: - sprawność manualna i wyobraźnia geometryczna, - znajomość
SCENARIUSZ LEKCJI MATEMATYKI PLANOWANEJ DO PRZEPROWADZENIA W KLASIE I LICEUM OGÓLNOKSZTAŁCĄCEGO
SCENARIUSZ LEKCJI MATEMATYKI PLANOWANEJ DO PRZEPROWADZENIA W KLASIE I LICEUM OGÓLNOKSZTAŁCĄCEGO DZIAŁ: Funkcje TEMAT: Wykres funkcji i miejsca zerowe funkcji w Excelu Odczytywanie własności funkcji z wykresu
Scenariusz lekcji z matematyki w szkole ponadgimnazjalnej
Scenariusz lekcji z matematyki w szkole ponadgimnazjalnej Temat: Wzory Viete a. Zastosowanie wzorów Viete a w zadaniach. Czas trwania lekcji: dwie jednostki lekcyjne (90 minut) Powiązanie z wcześniejszą
II. OBSZARY AKTYWNOŚCI PODLEGAJĄCE OCENIE:
: Przedmiotowe zasady oceniania z chemii Opracowanie: nauczyciel chemii Przedmiotem oceniania są: - wiadomości, - umiejętności, - postawa ucznia i jego aktywność. Cele szczegółowe oceniania w chemii: I.
PRZEDMIOTOWE ZASADY OCENIANIA Z MATEMATYKI DLA KLAS IV - VI. Szkoła Podstawowa nr 2 w Piszu Im. Henryka Sienkiewicza
PRZEDMIOTOWE ZASADY OCENIANIA Z MATEMATYKI DLA KLAS IV - VI Szkoła Podstawowa nr 2 w Piszu Im. Henryka Sienkiewicza Nauczanie odbywa się według programu Gdańskiego Wydawnictwa Oświatowego Matematyka z
Wykazywanie tożsamości trygonometrycznych. Scenariusz lekcji
Scenariusz lekcji 1. Informacje wstępne: Data: 28 maja 2013r.; Klasa: I c liceum (profil bezpieczeństwo wewnętrzne); Czas trwania zajęć: 45 minut; Nauczany przedmiot: matematyka; 2. Program nauczania:
PRZEDMIOTOWY SYSTEM OCENIANIA Z CHEMII W GIMNAZJUM IM. NA BURSZTYNOWYM SZLAKU W MIKOSZEWIE
Mikoszewo, dn. 01.09.2016 r. PRZEDMIOTOWY SYSTEM OCENIANIA Z CHEMII W GIMNAZJUM IM. NA BURSZTYNOWYM SZLAKU W MIKOSZEWIE Przedmiotowy System Oceniania sporządzony został w oparciu o: 1. Rozporządzenie MEN
W planie dydaktycznym założono 172 godziny w ciągu roku. Treści podstawy programowej. Propozycje środków dydaktycznych. Temat (rozumiany jako lekcja)
Ramowy plan nauczania (roczny plan dydaktyczny) dla przedmiotu matematyka w zakresie rozszerzonym dla klasy I liceum ogólnokształcącego uwzględniający kształcone i treści podstawy programowej W planie
Diagnoza wstępna z matematyki Klasa pierwsza szkoły ponadgimnazjalnej
Diagnoza wstępna z matematyki Klasa pierwsza szkoły ponadgimnazjalnej 1 Cel: Uzyskanie informacji o poziomie wiedzy i umiejętności uczniów, które pozwolą efektywniej zaplanować pracę z zespołem klasowym.
PUBLIKACJA PODSUMOWUJACA ZAJĘCIA DODATKOWE Z MATEMATYKI. realizowane w ramach projektu Stąd do przyszłości. nr. POKL.09.01.
Mołodiatycze, 22.06.2012 PUBLIKACJA PODSUMOWUJACA ZAJĘCIA DODATKOWE Z MATEMATYKI realizowane w ramach projektu Stąd do przyszłości nr. POKL.09.01.02-06-090/11 Opracował: Zygmunt Krawiec 1 W ramach projektu
Renata Krzemińska. nauczyciel matematyki i informatyki
Program zajęć wyrównawczych w Gimnazjum Matematyka J1 w ramach projektu pn. Czym skorupka za młodu nasiąknie - rozwój kompetencji kluczowych uczniów Zespołu Szkół w Nowej Wsi Lęborskiej Renata Krzemińska
Scenariusz lekcji 1. Informacje wst pne: 2. Program nauczania: 3. Temat zaj 4. Integracja: 5. Cele lekcji: Ucze potrafi:
Scenariusz lekcji 1. Informacje wstępne: Data: 25 września 2012r. Klasa: II a 2 liceum (profil bezpieczeństwo wewnętrzne); Czas trwania zajęć: 45 minut; Nauczany przedmiot: matematyka. 2. Program nauczania:
Scenariusz lekcji. 1. Informacje wstępne: Data: 27 maja 2013r.
1. Informacje wstępne: Data: 7 maja 013r. Scenariusz lekcji matematyki: Scenariusz lekcji Klasa: II a liceum (profil bezpieczeństwo wewnętrzne); Czas trwania zajęć: 45 minut; Nauczany przedmiot: matematyka..
ARKUSZ HOSPITACJI DIAGNOZUJĄCEJ
ARKUSZ HOSPITACJI DIAGNOZUJĄCEJ Przedmiot: matematyka Data: 07.04.2006 Klasa: I T inf i I T mech Imię i nazwisko nauczyciela prowadzącego: Agnieszka Hodor Cel hospitacji: zdiagnozowanie umiejętności posługiwania
PRÓBNA NOWA MATURA z WSiP. Matematyka dla klasy 2 Poziom podstawowy. Zasady oceniania zadań
PRÓBNA NOWA MATURA z WSiP Matematyka dla klasy Poziom podstawowy Zasady oceniania zadań Copyright by Wydawnictwa Szkolne i Pedagogiczne sp. z o.o., Warszawa 0 Matematyka dla klasy Poziom podstawowy Kartoteka
PRZEDMIOTOWE ZASADY OCENIANIA Z PRZYRODY W KLASIE IV W SZKOLE PODSTAWOWEJ NR 2 IM. MARII SKŁODOWSKIEJ CURIE W SOBÓTCE W ROKU SZKOLNYM 2015/2016
PRZEDMIOTOWE ZASADY OCENIANIA Z PRZYRODY W KLASIE IV W SZKOLE PODSTAWOWEJ NR 2 IM. MARII SKŁODOWSKIEJ CURIE W SOBÓTCE W ROKU SZKOLNYM 2015/2016 I. Ogólne zasady oceniania. Kontrakt między nauczycielem
PRZEDMIOTOWY SYSTEM OCENIANIA Z MATEMATYKI W KLASACH 4 6 SZKOŁY PODTSAWOWEJ W WÓLCE HYŻNEŃSKIEJ
PRZEDMIOTOWY SYSTEM OCENIANIA Z MATEMATYKI W KLASACH 4 6 SZKOŁY PODTSAWOWEJ W WÓLCE HYŻNEŃSKIEJ Przedmiotowy System Oceniania jest zgodny z Rozporządzeniem Ministra Edukacji Narodowej z dnia 30.04.2007
Analiza wyników sprawdzianu próbnego w kl.6a / r.szk. 2015/2016
Analiza wyników sprawdzianu próbnego w kl.6a / r.szk. 2015/2016 Sprawdzian próbny napisało 19 uczniów klasy 6a, 1 uczeń nie przystąpił do sprawdzianu próbnego (nie był obecny w szkole). Jedna uczennica
Matematyka stosowana w kształceniu szkolnym w obiektywie diagnoz Połowy drogi
Małgorzata Iwanowska Warszawskie Centrum Innowacji Edukacyjno-Społecznych i Szkoleń Grażyna Śleszyńska Mazowieckie Samorządowe Centrum Doskonalenia Nauczycieli Beata Wąsowska-Narojczyk Mazowieckie Samorządowe
KRYTERIA OCENIANIA Z MATEMATYKI
KRYTERIA OCENIANIA Z MATEMATYKI Kryteria oceniania z matematyki są zgodne z Wewnątrzszkolnym Systemem Oceniania w Zespole Szkół w Rajczy. Nauczanie matematyki w szkole podstawowej w klasach IV odbywa się
Konspekt lekcji matematyki opracowany przez: Jadwigę Murawiecką nauczyciela Szkoły Podstawowej w Chodowie
Konspekt lekcji matematyki opracowany przez: Jadwigę Murawiecką nauczyciela Szkoły Podstawowej w Chodowie Temat: Obliczanie procentu danej liczby z wykorzystaniem sytuacji praktycznych. Klasa VI szkoły
ROZKŁAD MATERIAŁU NAUCZANIA KLASA 1, ZAKRES PODSTAWOWY
ROZKŁAD MATERIAŁU NAUCZANIA KLASA 1, ZAKRES PODSTAWOWY Numer lekcji 1 2 Nazwa działu Lekcja organizacyjna. Zapoznanie z programem nauczania i kryteriami wymagań Zbiór liczb rzeczywistych i jego 3 Zbiór
WYMAGANIA EDUKACYJNE I PRZEDMIOTOWY SYSTEM OCENIANIA. FIZYKA poziom podstawowy i rozszerzony
Programy nauczania: Klasy pierwsze: WYMAGANIA EDUKACYJNE I PRZEDMIOTOWY SYSTEM OCENIANIA FIZYKA poziom podstawowy i rozszerzony L. Lehman, W. Polesiuk Po prostu Fizyka Kształcenie w zakresie podstawowym.
Przedmiotowy system oceniania z matematyki w Szkole Podstawowej nr 96 im. Ireny Kosmowskiej w Warszawie
Przedmiotowy system oceniania z matematyki w Szkole Podstawowej nr 96 im. Ireny Kosmowskiej w Warszawie Celem przedmiotowego systemu oceniania jest: notowanie postępów i osiągnięć ucznia, (funkcja informacyjna)
Gimnazjum z Oddziałami Dwujęzycznymi nr 83 Zasady oceniania Chemia Dla klas: 1o, 1d, 2o, 2d, 3d. Nauczyciel: mgr Justyna Jankowska-Święch
Gimnazjum z Oddziałami Dwujęzycznymi nr 83 Zasady oceniania Chemia Dla klas: 1o, 1d, 2o, 2d, 3d Nauczyciel: mgr Justyna Jankowska-Święch 1.CELE OCENIANIA: Cele ogólne oceniania z chemii: -rozpoznanie przez
Temat (rozumiany jako lekcja) Propozycje środków dydaktycznych. Liczba godzin. Uwagi
Roczny plan dydaktyczny z matematyki dla pierwszej klasy szkoły branżowej I stopnia dla uczniów będących absolwentami ośmioletniej szkoły podstawowej, uwzględniający kształcone umiejętności i treści podstawy
Koło matematyczne 2abc
Koło matematyczne 2abc Autor: W. Kamińska 17.09.2015. Zmieniony 08.12.2015. "TO CO MUSIAŁEŚ ODKRYĆ SAMODZIELNIE, ZOSTANIE W TWYM UMYŚLE ŚCIEŻKĄ, KTÓRĄ W RAZIE POTRZEBY MOŻESZ PÓJŚĆ RAZ JESZCZE" G. CH.
SCENARIUSZ LEKCJI Z MATEMATYKI. opracowała Hanna Szmyt
SCENARIUSZ LEKCJI Z MATEMATYKI opracowała Hanna Szmyt Temat: Zadania optymalizacyjne dotyczące funkcji kwadratowej. 1. Cele główne: pokazanie zastosowań własności funkcji kwadratowe w zadaniach optymalizacyjnych,
KRYTERIA I ZASADY OCENIANIA Z MATEMATYKI. zgodne z Wewnątrzszkolnymi Zasadami Oceniania w Zespole Szkół przy ul. Grunwaldzkiej 9 w Łowiczu.
KRYTERIA I ZASADY OCENIANIA Z MATEMATYKI zgodne z Wewnątrzszkolnymi Zasadami Oceniania w Zespole Szkół przy ul. Grunwaldzkiej 9 w Łowiczu. Nauczanie matematyki w szkole podstawowej w klasach IV VI odbywa
Scenariusz lekcyjny Przesunięcia wykresu funkcji równolegle do osi odciętych i osi rzędnych. Scenariusz lekcyjny
Scenariusz lekcyjny Klasa: I c liceum ogólnokształcące (profil bezpieczeństwo wewnętrzne). Czas trwania zajęć: 45 minut. Nauczany przedmiot: matematyka. Program nauczania: Kształcenie w zakresie podstawowym
PRZEDMIOTOWE OCENIANIE Z CHEMII W ZESPOLE SZKÓŁ W SZUTOWIE
PRZEDMIOTOWE OCENIANIE Z CHEMII W ZESPOLE SZKÓŁ W SZUTOWIE Sztutowo, 01.09.2016. Przedmiotowe Ocenianie sporządzone zostało w oparciu o: 1. Rozporządzenie MEN z dnia 10.06.2015 r. 2. Statut Szkoły 3. Wewnątrzszkolne
Scenariusz lekcji. 3. Temat lekcji: Zastosowanie własności trójmianu kwadratowego: rysowanie wykresu, wyznaczanie wzoru o podanych własnościach;
Scenariusz lekcji 1. Informacje wstępne: Data: 16 kwietnia 2013r.; Klasa: I c liceum (profil bezpieczeństwo wewnętrzne); Czas trwania zajęć: 45 minut; Nauczany przedmiot: matematyka; 2. Program nauczania:
PRZEDMIOTOWY SYSTEM OCENIANIA Z MATEMATYKI W KLASACH IV VI SZKOŁY PODSTAWOWEJ W WÓLCE HYŻNEŃSKIEJ
PRZEDMIOTOWY SYSTEM OCENIANIA Z MATEMATYKI W KLASACH IV VI SZKOŁY PODSTAWOWEJ W WÓLCE HYŻNEŃSKIEJ Przedmiotowy System Oceniania jest zgodny z Rozporządzeniem Ministra Edukacji Narodowej z dnia 30.04.2007
Rozwiązania zadań. Arkusz Maturalny z matematyki nr 1 POZIOM ROZSZERZONY. Aby istniały dwa różne pierwiastki równania kwadratowego wyróżnik
Rozwiązania zadań Arkusz Maturalny z matematyki nr 1 POZIOM ROZSZERZONY Zadanie 1 (5pkt) Równanie jest kwadratowe, więc Aby istniały dwa różne pierwiastki równania kwadratowego wyróżnik /:4 nierówności
SCENARIUSZ LEKCJI. 4.Integracja: Wewnątrzprzedmiotowa.
1. Informacje wstępne: Publiczne Gimnazjum Nr 6 w Opolu Data:08.01.2013 r. Klasa:.II b Czas trwania zajęć: 45 min. Nauczany przedmiot: matematyka Nauczyciel: Ewa Jakubowska SCENARIUSZ LEKCJI 2.Program
PRZEDMIOTOWY SYSTEM OCENIANIA Z MATEMATYKI DLA KLAS IV VI
PRZEDMIOTOWY SYSTEM OCENIANIA Z MATEMATYKI DLA KLAS IV VI GŁÓWNE ZAŁOŻENIA PSO 1. Ocenianie w matematyce powinno wskazywać, jakie wiadomości i umiejętności są najważniejsze dla uczniów w procesie uczenia
KĄTY. Cele operacyjne. Metody nauczania. Materiały. Czas trwania. Struktura i opis lekcji
KĄTY Cele operacyjne Uczeń zna: pojęcie kąta i miary kąta, zależności miarowe między kątami Uczeń umie: konstruować kąty przystające do danych, kreślić geometryczne sumy i różnice kątów, rozróżniać rodzaje
Analiza jakościowa testów na wejściu i testów na wyjściu dla uczniów I naboru
Analiza jakościowa testów na wejściu i testów na wyjściu dla uczniów I naboru Analizie jakościowej poddano testy diagnostyczne i sumatywne pisane przez 2561 uczniów klas VI z pierwszego naboru. Analizie
PRZEDMIOTOWE OCENIANIE Z CHEMII
PRZEDMIOTOWE OCENIANIE Z CHEMII w Szkole Podstawowej w Chorzewie I.Główne założenia PO II.Metody i narzędzia oraz szczegółowe zasady sprawdzania i oceniania osiągnięć uczniów III.Wymagania na poszczególne
RAPORT ZBIORCZY z diagnozy Matematyka PP
RAPORT ZBIORCZY z diagnozy Matematyka PP przeprowadzonej w klasach drugich szkół ponadgimnazjalnych Analiza statystyczna Wskaźnik Wartość wskaźnika Wyjaśnienie Liczba uczniów Liczba uczniów, którzy przystąpili
Kryteria oceniania z chemii I
Kryteria oceniania z chemii I 1. Ocenianiu podlegają następujące formy aktywności uczniów: sprawdziany obejmują wiadomości z większej partii materiału, są zapowiedziane co najmniej tydzień wcześniej, kartkówki
Przedmiotowy system oceniania z fizyki kl. I, II i III gimnazjum.
Zespół Szkół w Trzęsówce Przedmiotowy system oceniania z fizyki kl. I, II i III gimnazjum. Opracowanie Ewelina Pięta I. PODSTAWA PRAWNA DO OPRACOWANIA PRZEDMIOTOWEGO SYSTEMU OCENIANIA: 1.Rozporządzenie
SCENARIUSZ LEKCJI. 4.Integracja: Wewnątrzprzedmiotowa.
1. Informacje wstępne: Publiczne Gimnazjum Nr 6 w Opolu Klasa:.II b Czas trwania zajęć: 45 min. Nauczany przedmiot: matematyka Nauczyciel: Ewa Jakubowska SCENARIUSZ LEKCJI 2.Program nauczania: Matematyka
Od autorów... 7 Zamiast wstępu zrozumieć symbolikę... 9 Zdania Liczby rzeczywiste i ich zbiory... 15
Spis treści Od autorów........................................... 7 Zamiast wstępu zrozumieć symbolikę................... 9 Zdania............................................... 10 1. Liczby rzeczywiste
WYMAGANIA EDUKACYJNE NA POSZCZEGÓLNE OCENY MATEMATYKA STOSOWANA - KLASA II I. POWTÓRZENIE I UTRWALENIE WIADOMOŚCI Z ZAKRESU KLASY PIERWSZEJ
WYMAGANIA EDUKACYJNE NA POSZCZEGÓLNE OCENY MATEMATYKA STOSOWANA - KLASA II I. POWTÓRZENIE I UTRWALENIE WIADOMOŚCI Z ZAKRESU KLASY PIERWSZEJ zna i potrafi stosować przekształcenia wykresów funkcji zna i
Wymagania edukacyjne z fizyki II klasa Akademickie Gimnazjum Mistrzostwa Sportowego.
Wymagania edukacyjne z fizyki II klasa Akademickie Gimnazjum Mistrzostwa Sportowego. I. Wymagania programowe 1. Obserwowanie i opisywanie zjawisk fizycznych i astronomicznych. 2. Posługiwanie się metodami
ARKUSZ OBSERWACYJNY LEKCJI. Uwagi nauczyciela hospitującego lekcję koleżeńską na temat zajęć:
Temat zajęć: Proporcjonalność odwrotna. Lekcja dla uczniów klasy: II c Data zajęć: 17 marzec 2005r. 1. Przebieg lekcji. Nauczycielka zgodnie z przyjętymi celami wprowadziła pojęcie proporcjonalności odwrotnej,
Scenariusz lekcji matematyki w gimnazjum: NIE TAKI EGZAMIN STRASZNY UDOWODNIJ, Z E.
Scenariusz lekcji matematyki w gimnazjum: NIE TAKI EGZAMIN STRASZNY UDOWODNIJ, Z E. Kształtowanie umiejętności rozumowania i argumentowania. Materiały wypracowane na warsztatach: Realizacja wybranych treści
Zespół Szkół nr 3 im. Jana III Sobieskiego w Szczytnie - liceum. Przedmiotowe zasady oceniania: MATEMATYKA
Zespół Szkół nr 3 im. Jana III Sobieskiego w Szczytnie - liceum Przedmiotowe zasady oceniania: MATEMATYKA Rok szkolny: 2015/2016 Przedmiot: matematyka- poziom podstawowy i rozszerzony. Nauczyciele: A.
Analiza wyników badania Kompetencji trzecioklasistów uczniów klasy 3a i 3b w roku szkolnym 2015/16. opracowała Joanna Chachulska
Analiza wyników badania Kompetencji trzecioklasistów uczniów klasy 3a i 3b w roku szkolnym 2015/16 opracowała Joanna Chachulska Test Kompetencji Trzecioklasistów z języka polskiego został przeprowadzony
Przedmiotowy System Oceniania z Matematyki
Przedmiotowy System Oceniania z Matematyki Opracowany na podstawie: 1. Podstawy programowej dla szkoły podstawowej z matematyki. 2. Programu nauczania Matematyka z kluczem klasa 4, 5, 6 i 7 3. Podręcznika
Scenariusz lekcji otwartej z matematyki w klasie 1C LO (2 godziny lekcyjne) przeprowadzonej w dniu 22.06.2015r.
Scenariusz lekcji otwartej z matematyki w klasie 1C LO (2 godziny lekcyjne) przeprowadzonej w dniu 22.06.2015r. Temat: Matematyka to się liczy...w życiu. Cele ogólne: podsumowanie wiadomości i umiejętności
Wymagania edukacyjne, kontrola i ocena. w nauczaniu matematyki w zakresie. podstawowym dla uczniów technikum. część II
Wymagania edukacyjne, kontrola i ocena w nauczaniu matematyki w zakresie podstawowym dla uczniów technikum część II Figury na płaszczyźnie kartezjańskiej L.p. Temat lekcji Uczeń demonstruje opanowanie
KLASA O PROFILU MATEMATYCZNO-INFORMATYCZNYM
KLASA O PROFILU MATEMATYCZNO-INFORMATYCZNYM COS SIN I. Część matematyczna Uczniowie, którzy będą uczyć się w tej klasie będą mieli możliwość rozwijać swoje talenty matematyczne, a pozyskaną wiedzę weryfikować
Przedmiotowy system oceniania z chemii w Szkole Podstawowej nr 12 w Łodzi
Przedmiotowy system oceniania z chemii w Szkole Podstawowej nr 12 w Łodzi CELE EDUKACYJNE 1. Wzbudzanie w uczniach zainteresowania chemią, jako nauką doświadczalną oraz reakcjami chemicznymi zachodzącymi
Dydaktyka matematyki (II etap edukacyjny) II rok matematyki Semestr letni 2018/2019 Ćwiczenia nr 5
Dydaktyka matematyki (II etap edukacyjny) II rok matematyki Semestr letni 2018/2019 Ćwiczenia nr 5 Zadanie domowe Kolokwium: przeczytaj z [U] o błędach w stosowaniu zasady poglądowości w nauczaniu matematyki
SCENARIUSZ LEKCJI MATEMATYKI W KLASIE 1
SCENARIUSZ LEKCJI MATEMATYKI W KLASIE 1 Tytuł cyklu WsiP Etap edukacyjny Autor scenariusza Przedmiot Czas trwania Miejsce Cele Matematyka, autorzy: M.Trzeciak, M. Jankowska szkoła ponadgimnazjalna Adam
Wymagania edukacyjne z wiedzy o społeczeństwie w szkole podstawowej i gimnazjum
Wymagania edukacyjne z wiedzy o społeczeństwie w szkole podstawowej i gimnazjum Cele oceniania na lekcjach wos. 1. Ustalenie stopnia opanowania przez ucznia wiadomości i umiejętności wynikających z programu
PRZEDMIOTOWY SYSTEM OCENIANIA z matematyki obowiązujący w Szkole Podstawowej nr 43 im. Simony Kossak w Białymstoku.
PRZEDMIOTOWY SYSTEM OCENIANIA z matematyki obowiązujący w Szkole Podstawowej nr 43 im. Simony Kossak w Białymstoku. System oceniania z matematyki został opracowany na podstawie: 1. Rozporządzenia Ministra
PRZEDMIOTOWY SYSTEM OCENIANIA Z MATEMATYKI
PRZEDMIOTOWY SYSTEM OCENIANIA Z MATEMATYKI Nauczanie matematyki w klasach IV - VI Szkoły Podstawowej odbywa się na bazie programu Matematyka z plusem, GWO I. Kontrakt z uczniami 1. Każdy uczeń jest oceniany
KONSPEKT LEKCJI MATEMATYKI (2 LEKCJE) W III KLASIE GIMNAZJUM OPRACOWAŁA RENATA WOŁCZYŃSKA
KONSPEKT LEKCJI MATEMATYKI (2 LEKCJE) W III KLASIE GIMNAZJUM OPRACOWAŁA RENATA WOŁCZYŃSKA Temat: Powtórzenie i utrwalenie wiadomości o funkcji liniowej Cel ogólny Przykłady funkcji; odczytywanie własności
Otrzymaliśmy w ten sposób ograniczenie na wartości parametru m.
Dla jakich wartości parametru m dziedziną funkcji f ( x) = x + mx + m 1 jest zbiór liczb rzeczywistych? We wzorze funkcji f(x) pojawia się funkcja kwadratowa, jednak znajduje się ona pod pierwiastkiem.
Opracowanie: mgr Joanna Jakubiak-Karolak mgr Ewa Niedźwiedzka. Strona 1 z 14
Raport z Ogólnopolskiego Sprawdzianu Kompetencji Trzecioklasisty Operon w roku szkolnym 2013/2014 w Szkole Podstawowej nr 6 im. Henryka Sienkiewicza w Pruszkowie Opracowanie: mgr Joanna Jakubiak-Karolak
OCENIAMY TO, CZEGO NAUCZYLIŚMY. PRZEDMIOTOWY SYSTEM OCENIANIA Z MATEMATYKI Klasy IV - VIII
OCENIAMY TO, CZEGO NAUCZYLIŚMY PRZEDMIOTOWY SYSTEM OCENIANIA Z MATEMATYKI Klasy IV - VIII Celem przedmiotowego systemu oceniania jest: notowanie postępów i osiągnięć ucznia, ( funkcja informacyjna) wspomaganie
FUNKCJA KWADRATOWA. Wykresem funkcji kwadratowej jest parabola o wierzchołku w punkcie W = (p, q), gdzie
Funkcja kwadratowa jest to funkcja postaci y = ax 2 + bx + c, wyrażenie ax 2 + bx + c nazywamy trójmianem kwadratowym, gdzie x, a, oraz a, b, c - współczynniki liczbowe trójmianu kwadratowego. ó ó Wykresem
PRZEDMIOTOWY SYSTEM OCENIANIA I WYMAGANIA EDUKACYJNE
PRZEDMIOTOWY SYSTEM OCENIANIA I WYMAGANIA EDUKACYJNE I.Przedmiotowy System Oceniania z chemii opracowano w oparciu o: 1.Rozporządzenie MEN 2.Podstawę programową kształcenia ogólnego w zakresie nauczania
Scenariusz lekcyjny Zadania typu maturalnego: procenty, przedziały, wartość bezwzględna, błędy przybliżeń, logarytmy. Scenariusz lekcyjny
Scenariusz lekcyjny Data: 20 listopad 2012 rok. Klasa: I c liceum ogólnokształcące (profil bezpieczeństwo wewnętrzne). Czas trwania zajęć: 45 minut. Nauczany przedmiot: matematyka. Program nauczania: program
PRZEDMIOTOWY SYSTEM OCENIANIA MATEMATYKA. Bielska szkoła Przemysłowa
PRZEDMIOTOWY SYSTEM OCENIANIA MATEMATYKA Bielska szkoła Przemysłowa Obowiązuje od roku szk. 2018/2019 1. Głównym celem oceniania postępów ucznia jest wspieranie jego rozwoju, motywowanie do dalszej pracy
DZIENNIK ZAJĘĆ POZALEKCYJNYCH
DZIENNIK ZAJĘĆ POZALEKCYJNYCH REALIZOWANYCH W RAMACH PROGRAMU ROZWOJOWEGO SZKOŁY w projekcie Dolnośląska szkoła liderem projakościowych zmian w polskim systemie edukacji Priorytet IX Rozwój wykształcenia
PRZEDMIOTOWY SYSTEM OCENIANIA Z PRZYRODY DLA KLAS IV - VI
PRZEDMIOTOWY SYSTEM OCENIANIA Z PRZYRODY DLA KLAS IV - VI I. CEL OCENY Przedmiotem oceny jest: 1 Aktualny stan wiedzy ucznia i jego umiejętności. 2. Tempo przyrostu wiadomości i umiejętności. 3. Stosowanie
Kształcenie w zakresie podstawowym. Klasa 2
Kształcenie w zakresie podstawowym. Klasa 2 Poniżej podajemy umiejętności, jakie powinien zdobyć uczeń z każdego działu, aby uzyskać poszczególne stopnie. Na ocenę dopuszczającą uczeń powinien opanować
PRZEDMIOTOWE ZASADY OCENIANIA Z PRZEDMIOTU PODSTAWY PRZEDSIĘBIORCZOŚCI ORAZ EKONOMII W PRZKTYCE
PRZEDMIOTOWE ZASADY OCENIANIA Z PRZEDMIOTU PODSTAWY PRZEDSIĘBIORCZOŚCI ORAZ EKONOMII W PRZKTYCE I Przedmiotowy system oceniania jest zgodny z rozporządzeniem MEN z dnia 10.06.2015 r. w sprawie szczegółowych
Wymagania edukacyjne oraz sposoby sprawdzania osiągnięć edukacyjnych uczniów Matematyka XI LO w Krakowie. Klasa druga. Poziom podstawowy.
Wymagania edukacyjne oraz sposoby sprawdzania osiągnięć edukacyjnych uczniów Matematyka XI LO w Krakowie. Klasa druga. Poziom podstawowy. Wymagania ogólne interpretuje tekst matematyczny, po rozwiązaniu
PRZEDMIOTOWY SYSTEM OCENIANIA Z FIZYKI DOŚWIADCZALNEJ
PRZEDMIOTOWY SYSTEM OCENIANIA Z FIZYKI DOŚWIADCZALNEJ realizowany w III Liceum Ogólnokształcącym im. św. Jana Kantego w Poznaniu w roku szkolnym 2016/17 Przedmiotowy system oceniania stosowany na zajęciach
Wymagania edukacyjne z matematyki klasa II technikum
Wymagania edukacyjne z matematyki klasa II technikum Poziom rozszerzony Obowiązują wymagania z zakresu podstawowego oraz dodatkowo: 1. JĘZYK MATEMATYKI I FUNKCJE LICZBOWE Uczeń otrzymuje ocenę dopuszczającą
PRZEDMIOTOWY SYSTEM OCENIANIA Z MATEMATYKI W KLASACH IV VI SZKOŁY PODSTAWOWEJ
PRZEDMIOTOWY SYSTEM OCENIANIA Z MATEMATYKI W KLASACH IV VI SZKOŁY PODSTAWOWEJ Przedmiotowy system oceniania z matematyki jest zgodny z Wewnątrzszkolnym Systemem Oceniania w Zespole Szkół w Świlczy Nauczanie
PRZEDMIOTOWY SYSTEM OCENIANIA Z MATEMATYKI DLA KLAS I, II, III W GIMNAZJUM NR 2 W LUDŹMIERZU
PRZEDMIOTOWY SYSTEM OCENIANIA Z MATEMATYKI DLA KLAS I, II, III W GIMNAZJUM NR 2 W LUDŹMIERZU I. Dokumenty prawne stanowiące podstawę PSO Przedmiotowy system oceniania opracowany został po przeprowadzonej
PRZEDMIOTOWY SYSTEM OCENIANIA MATEMATYKA
PRZEDMIOTOWY SYSTEM OCENIANIA MATEMATYKA Rozporządzenia Ministra Edukacji Narodowej z dnia 10 czerwca 2015 r. w sprawie szczegółowych warunków i sposobu oceniania, klasyfikowania i promowania uczniów i
Scenariusz zajęć z matematyki w I klasie Liceum Ogólnokształcącego. Funkcja kwadratowa niejedno ma imię... Postać iloczynowa funkcji kwadratowej
Scenariusz zajęć z matematyki w I klasie Liceum Ogólnokształcącego Funkcja kwadratowa niejedno ma imię... Postać iloczynowa funkcji kwadratowej Opracowanie: Anna Borawska Czas trwania zajęć: jedna jednostka
Koło Matematyczne klasy 2-3 GIM
Koło Matematyczne klasy 2-3 GIM Autor: M.Prażuch 01.09.2011. Zmieniony 06.10.2017. Gminny Zespół Szkół w Bielanach Wrocławskich "TO CO MUSIAŁEŚ ODKRYĆ SAMODZIELNIE, ZOSTANIE W TWYM UMYŚLE ŚCIEŻKĄ, KTÓRĄ
Przedmiotowy system oceniania z geografii. w Zespole Szkół Politechnicznych im. Bohaterów Monte Cassino. we Wrześni
Przedmiotowy system oceniania z geografii w Zespole Szkół Politechnicznych im. Bohaterów Monte Cassino we Wrześni Poziom nauczania podstawowy i rozszerzony 1.Ważnym elementem procesu dydaktycznego jest
3. Wypowiedzi ustne: - przynajmniej raz w semestrze, - mogą obejmować materiał co najwyżej z trzech ostatnich lekcji.
PRZEDMIOTOWY SYSTEM OCENIANIA Z CHEMII W SZKOLE PODSTAWOWEJ Przedmiotowy System Oceniania z chemii w podstawówce opracowany został na podstawie: Rozporządzenia MEN z dnia 30 kwietnia 2007 r., Podstawy
Analiza wyników egzaminu maturalnego z matematyki 2014/2015. Poziom podstawowy
Analiza wyników egzaminu maturalnego z matematyki 2014/2015 Poziom podstawowy Analiza wyników egzaminu maturalnego z matematyki na poziomie podstawowym. Do egzaminu maturalnego w Technikum Zawodowym w
(Lekcja w III klasie gimnazjum. Czas trwania: 90 min.)
Katarzyna Jasek nauczycielka matematyki w gimnazjum w Górze Kalwarii Jak efektywnie i efektownie poprowadzić lekcję powtórzeniową? Powtórzenie wiadomości o funkcjach liniowych metodą układanki - Jigsaw