0.1 Modele Dynamiczne

Wielkość: px
Rozpocząć pokaz od strony:

Download "0.1 Modele Dynamiczne"

Transkrypt

1 0.1 Modele Dynamiczne Wprowadzenie Często konkretne działanie czy zjawisko ekonomiczne nie tylko zależy od bieżących wartości pewnych wskaźników - zmiennych objaśniających modelu, ale również od ich wartości przeszłych, oraz wartości zjawiska z poprzednich okresów. Lemat 1 Mnożnik bezpośredni mierzy krótkookresową reakcję na zmianę wartości zmiennej objaśniającej. Wynosi on β 0 Lemat 2 Mnożnik długookresowy mierzy skumulowany efekt powstający wskutek zmiany zmiennej wartości objaśniającej w okresie 0. Dla modelu bez części autoregresyjnej wynosi on β τ = τ i=0 β i, a gdy część autoregresyjna występuje to β τ = P τ i=0 β i 1 P p i=0 γ i Operator opóźnień Użytecznymi narzędziami skracającymi zapis postaci analitycznej modeli dynamicznych są oprerator opóźnień i operator różnicowy. Operator opóźnień jest zdefiniowany następująco: Lx t = x x 1 Ten operator możemy w obliczeniach traktować jak liczbę. Ma on następujące własności: La = a L 2 x t = L(Lx t ) = Lx t 1 = x t 2 L p x t = x t p Operator różnicowy Drugim użytecznym narzędziem jest operator różnicowy x t = x t x t 1 Ten operator również może w obliczeniach być traktowany jak liczba. Ma on następujące własności: a = 0 1

2 2 x t = x t = (x t x t 1 ) = (x t x t 1 ) (x t 1 x t 2 ) p x t =... = (x t x t 1 )... (x t (p+1) x t p ) x t = x t 1 + x t x t = (1 L)x t Możemy połączyć użycie obu operatorów: 2 x t = (1 L) 2 x t = (1 2L + L 2 )x t = x t 2x t 1 + x t 2 = x t x t 1 Dodatkowo zauważmy, że: (1 L) 2 x t = (1 L)(1 L)x t = (1 L)(x t x t 1 ) = (x t x t 1 ) (x t 1 x t 2 ) Dynamiczne równanie regresji możemy przedstawić jako: y t = α + β i L i x t + ɛ t = α + B(L)x t + ɛ t i=0 gdzie B jest wielomianem zmiennej L: B(L) = β 0 L 0 + β 1 L 1 + β 2 L Wielomian operatora opóźnień to wyrażenie postaci: A(L) = 1 + al + (al) 2 + (al) = al i i=0 jeśli a < 1, wtedy: A(L) = 1 1 al Modele o opóźnieniach rozłożonych Distributed Lags Model z opóźnieniami rozłożonymi ma następującą formę: y t = α + β γ i L i x t + ε t i=0 możemy go zapisać jako: y t = α + β(1 γl) 1 x t + ε t (1) 2

3 0.1.5 Model autoregresyjny Ten sam model możemy zapisać w formie autoregresyjnej. Mnożąc (1) przez (1 γl) otrzymujemy: po uporządkowaniu dostajemy: y t (1 γl) = α(1 γl) + βx t + ε t (1 γl) y t = α(1 γ) + βx t + γy t 1 + (1 γl)ε t możemy go również zapisać za pomocą operatora opóźnień: C(L)y t = α + βx t + ε Modele autoregresyjne o opóźnieniach rozłożonych (ARDL) Autoregressive Distributed Lags Bardziej ogólnym zapisem modeli dynamicznych jest postać ARDL. y t = µ + p r γ i y t i + β j x t j + δw t + ε t (2) i=1 j=0 gdzie o składniku losowym ɛ t zakładamy że jest homoscedastyczny i nieskorelowany. Możemy zapisać model (2) w bardziej zwięzłej postaci: gdzie: oraz C(L)y t = µ + B(L)x t + δw t + ε t C(L) = 1 γ 1 L 1 γ 2 L 2... γ p L p B(L) = β 0 β 1 L 1 β 2 L 2... β r L r Model w tej postaci zapisujemy jeszcze krócej jako ARDL(p, r). Liczby wskazują na rząd wielomianów operatorów użytych do zapisu modelu. Klasyczny Model Regresji Liniowej jest specjalnym przypadkiem ARDL dla którego p = 0, oraz r = Stacjonarność Lemat 3 Proces stochastyczny jest słabo (wariancyjnie) stacjonarny jeśli var(x i ) = σ 2 < oraz cov(x t, x t+h ) = cov(x t+j, x t+j+h ) = γ h dla dowolnych t, j, h. 3

4 Intuicyjnie proces stochastyczny jest stacjonarny jeżeli ma skończoną wariancję oraz kowariancje między obserwacjami nie zależą od czasu, a jedynie od odległości między obserwacjami. Lemat 4 Proces zintegrowany stopnia zero, oznaczamy I(0). Można przedstawić go w postaci x t E(x t ) = i=0 ε t i, gdzie ε t IID (0, σ 2 ) - biały szum. Lemat 5 Proces stochastyczny x t nazywamy procesem zintegrowanym rzędu d jeżeli d x t jest I(0) Stabilność modelu dynamicznego Stabilność modelu dynamicznego zależy od części autoregresyjnej modelu. Lemat 6 Model dynamiczny nazywamy modelem stabilnym jeżeli pierwiastki wielomianu operatora opóźnień jego części autoregresyjnej leżą poza kołem jednostkowym. Rozwiązaniem stabilnym modelu dynamicznego nazywamy rozwiązanie dla którego y t = y t 1 =... = y t p, x t = x t 1 =... = x t q, oraz iε i = Model ARIMA Nazwa modelu jest zbitką trzech nazw. AR pochodzi od procesu autoregresyjnego, I od procesu zintegrowanego, a MA od procesu średniej ruchomej. Postać analityczna modelu jest dość skomplikowana: d y t = µ + γ 1 d y t 1 + γ 2 d y t γ p d y t p + ε t θ 1 ε t 1... θ q ε t q ale zapis można uprościć stosując wielomiany operatora opóźnień i operator różnicowy: C(L)[(1 L) d y t ] = µ + D(L)ε t Innym sposobem zapisu modelu jest ARIMA(p, d, q), gdzie p oznacza rząd procesu autoregresyjnego, q rząd procesu średniej ruchomej, a d rząd integracji procesu Pierwiastki jednostkowe i Test Dickey a-fullera Jeżeli proces stochastyczny zawiera pierwiastek który leży wewnątrz bądź na obrzeżu koła jednostkowego, to jest procesem niestacjonarnym. Test Dicke ya- Fullera wykrywa obecność pierwiastków jednostkowych. 4

5 Jeżeli mamy model autoregresji w którym zmienna y t jest szeregiem czasowymi postaci: y t = ρy t 1 + ε t (3) Chcemy sprawdzić czy zmienna y t jest stacjonarna. Wydaje się, że wystarczy przeprowadzić test czy ρ = 1 za pomocą statystyki t-studenta. Jeżeli składnik losowy w równaniu (3) jest procesem białego szumu, to jeśli ρ < 1 to ten proces jest zintegrowany stopnia zero. Lecz w przypadku gdy ρ = 1 równanie reprezentuje proces błądzenia losowego. Wtedy proces generujący y t jest niestacjonarny. W takim przypadku statystyka t nie będzie miała rozkładu t-studenta i nie możemy jej wartości używać do standardowych testów. Rozwiązaniem problemu testowania stopnia integracji jest procedura zaproponowana przez Dickey a i Fullera i nazwana od nazwisk autorów testem DF. Test DF weryfikuje hipotezę, że w równaniu (3) ρ = 1, czyli że mamy pierwiastek jednostkowy. Dlatego ten test również jest nazywany testem pierwiastka jednostkowego. Zapiszmy równanie (3) w postaci: i testujemy hipotezę zerową: y t = (1 + δ)y t 1 + ε t y t y t 1 = δy t 1 + ε t y t = δy t 1 + ε t (4) H 0 : δ = 0 H 1 : δ < 0 odrzucenie hipotezy zerowej δ = 0 na rzecz hipotezy alternatywnej oznacza że y t nie ma pierwiastków w kole jednostkowym, jest zintegrowane stopnia zero I(0). Statystyka testowa t nie ma rozkładu t-studenta. Wartości krytyczne odczytujemy z tablic wartości testu Dickey a-fullera. Wszystkie wartości krytyczne są w lewym ogonie rozkładu i są znacznie niższe od statystyk t- Studenta. Wartości krytyczne testu Dickey-Fuller a otrzymywane są za pomocą symulacji Monte Carlo, więc są one obciążone pewnym błędem. Dlatego niektóre tablice podają nie jedną, a dwie wartości krytyczne dolną i górną. Pomiędzy nimi leży obszar braku konkluzji Test ADF Test Dickey a-fullera nie uwzględnia faktu, że składnik losowy równania (3) może zawierać autokorelację. W przypadku występowania autokorelacji estymatory MNK są nieefektywne. Wobec tego stosuje się Rozszerzony test 5

6 Dickey a-fullera (Augmented Dickey-Fuller test). W równaniu regresji po prawej stronie umieszcza się opóźnione wartości zmiennej zależnej. Równanie przyjmuje postać: y t = δy t 1 + k γ i y t i + ε t (5) i=1 Sposób testowania oraz wartości krytyczne testu są identyczne jak w teście Dickey-Fullera Kointegracja i Test Engla-Grengera Jeżeli mamy równanie regresji w którym zmienne x t i y t są szeregami czasowymi, to te szeregi mogą zawierać trendy czasowe. Wobec tego są one niestacjonarne. Jeżeli istnieje między nimi długookresowy związek, to mówimy że procesy x t i y t są skointegrowane jeżeli odchylenia od ścieżki długookresowej są stacjonarne. Formalna definicja kointegracji podana przez Engla i Grengera jest następująca: Lemat 7 Mówimy, że szeregi czasowe są skointegrowane stopnia (d, b) co zapisujemy: x t, y t CI(d, b) jeżeli: 1. Oba szeregi są zintegrowane stopnia b 2. istnieje kombinacja liniowa tych zmiennych a 1 x t + a 2 y t, która jest zintegrowana stopnia d b Lemat 8 Wektor [a 1, a 2 ] nazywamy wektorem kointegrującym. Testowanie kointegracji jest analogiczne do testowania integracji. Sprawdzamy czy kombinacja liniowa zmiennych jest I(0). Test przeprowadzamy za pomocą procedury zaproponowanej przez Engla i Grengera. 1. Testujemy stopień integracji zmiennych związanych z badaną długookresową zależnością. Jeżeli w modelu mamy więcej niż dwie zmienne to stopień integracji zmiennej zależnej nie może być wyższy niż stopień integracji którejkolwiek ze zmiennych objaśniających. Ponadto liczba zmiennych o stopniu integracji wyższym od zmiennej zależnej modelu, powinna być albo równa zero, albo powinny być dwie takie zmienne. 6

7 2. Jeżeli znamy postać wektora kointegrującego [1, β] to test Dickey a- Fullera na kointegrację polega na obliczeniu statystyki t-studenta dla parametru δ w regresji gdzie: u t = δu t 1 + ε t (6) u t = y t βx t i porównaniu jej z wartością krytyczną z tablic dla testu DF. Dla testu ADF procedura jest analogiczna. Obliczamy statystykę t dla parametru δ z równania: k u t = δu t 1 + δ i u t i + ε t (7) Jeżeli relacja długookresowa nie jest znana a prori to najpierw szacujemy MNK parametry wektora kointegrującego. i=1 y t = β 1 x β k x k + ν t Następnie do równania (6) lub (7) w zależności od postaci testu zamiast u t wstawiamy oszacowane wektor reszt ν, więc: lub w przypadku testu ADF: ν t = δν t 1 + ε t ν t = δν t 1 + k δ i ν t i + ζ t i=1 Podobnie jak w przypadku testu integracji statystyka wartości krytyczne dla statystyki t-studenta odczytujemy z tablic testu DF. Gdy musimy oszacować wektor kointegujący wartości krytyczne dla statystyki testowej zależą również od liczby szacowanych parametrów wektora kointegrującego m Mechanizm korekcji błędem (ECM) Jeżeli dwa szeregi czasowe x t i y t są niestacjonarne i skointegrowane, to ich kointegracja powoduje, że składnik losowy relacji długookresowej nie zwiększa się. Engle i Grenger udowodnili, że każdy szereg skointegrowany ma reprezentację za pomocą mechanizmu korekty błędem. Twierdzenie odwrotne jest również prawdziwe, tzn. każdy mechanizm korekty błędem można przedstawić za pomocą szeregów skointegrowanych. 7

8 Rozpatrzmy model: y t = βx t + ɛ t (8) gdzie y t oraz x t są I(1). Przypuśćmy że y t i x t są CI(1, 1) z wektorem kointegrującym [ 1, β]. Wobec tego model (8) można przedstawić za pomocą mechanizmu korekty błędem y t = α 1 x t + α 2 (y t 1 βx t 1 ) + ε t (9) gdzie α 2 < 0. Ten model szacuje się również za pomocą dwustopniowej procedury Engla-Grengera. W pierwszym kroku szacujemy równanie (8) za pomocą MNK i testujemy hipotezę o stacjonarności reszt. Jeśli są stacjonarne to szacujemy (9) zastępując β otrzymanym w pierwszym kroku estymatorem. W ten sposób w równaniu (9) wszystkie zmienne są stacjonarne Zadania Zadanie 1. Mamy proces DL następującej postaci y t = µ + β 0 x t + β 1 x t 1 + ε t (a) Wyjaśnij jaka jest intepretacja współczynników przy β 0 i β 1 (b) Podaj jaki będzie wpływ na y t zmiany x t 1 i x t o jednostkę. Jak nazywamy współczynnik β τ? (c) Policz odchylenie standartowe współczynnika β τ [, jeżeli macierz ] wariancjikowariancji dla β 0 i β 1 ma postać: var(β τ ) = σ00 σ 01 σ 11 Rozwiązanie ad a) β 0 zmiana y t jeśli x t wzrośnie o jednostkę, β 1 zmiana y t jeśli x t 1 wzrośnie o jednostkę. ad b) β 0 jest to mnożnik bezpośredni, β τ jest to mnożnik długookresowy. β τ = β 0 + β 1 W pierwszym okresie y t zmieni się o β 0, w następnym y t zmieni się o β τ ad c) var(β τ ) = var(β 0 +β 1 ) = var(β 0 )+var(β1)+2cov(β 0 β 1 ) = σ 00 +σ 11 +2σ 01 se(β τ ) = σ 00 + σ σ 01 8

9 Zadanie 2. Mamy proces ARDL następującej postaci: y t = µ + ay t 1 + β 0 x t + β 1 x t 1 + ε t (a) Podaj warunek konieczny do tego, aby proces ten był stabilny (wpływ ɛ t na y t+s malał z upływem czasu) (b) Znajdź wielkość mnożnika bezpośredniego i długookresowego dla zmiennej x t. Jaka jest intepretacja tych mnożników? (c) Chcemy przeanalizować scenariusz w którym x t 1 było większe o 1 niż obserwowane. O ile większe w takim przypadku będzie oczekiwany y t? (d) Chcemy przeanalizować scenariusz w którym x t i x t 1 były większe o 1 niż obserwowane. O ile większe w takim przypadku będzie oczekiwany y t? (e) Jakie warunki musi spełniać ɛ t, żeby model ten można było wyestymować za pomocą MNK? Rozwiązanie ad a) Wartości bezwzględne pierwiastków wielomianu opóźnień muszą być większe od 1. 1 al = 0 = L = 1 a L > 1 = a < 1 = a ( 1, 1) ad b) mnożnik bezpośredni β 0 ; mnożnik długookresowy β 0+β 1. Mnożnik bezpośredni to efekt krótkookresowy (natychmiastowy). Mnożnik długo- 1 a okresowy pokazuje efekt zmiany w dłuższym okresie. ad c) E(y t ) wzrośnie o β 1 ad d) E(y t ) wzrośnie o β 0 + β 1 + aβ 0, ponieważ należy uwzględnić wpływ x t 1 na y t 1 ad e) cov(ε t, x t ) = 0, cov(ε t, x t 1 ) = 0, cov(ε t, y t ) = 0, cov(ε t, y t 1 ) = 0 9

10 Zadanie 3. Mamy następujący proces ARIM A(p, d, q): y t = µ + a y t 1 + ε t + θε t 1 E(ε) = 0 var(ε) = σ 2 I (a) Ile wynoszą parametry p, d, q? (b) Jaki jest warunek stabilności procesu y t? (c) Jakie jest rozwiązanie długookresowe dla procesu y t? (d) Czemu jest równa wartość oczekiwana procesu y t? (e) Jaka jest wariancja procesu y t? Rozwiązanie ad a) ARIMA (1,1,1) ad b) Pierwiastek wielomianu operatora opóźnień musi leżeć poza kołem jednostkowym, czyli: można zapisać jako: y t = µ + a y t 1 + ε t + θε t 1 (1 al) y t = µ + ε t + θε t 1 1 al = 0 = L = 1 a L > 1 = a < 1 = a ( 1, 1) ac c) Rozwiązanie długookresowe y = µ 1 a ad d) E( y t ) = E(µ) + E(a y t 1 ) + E(ε t ) + E(θε t 1 ) E( y t ) = E(µ) + E(a y t 1 ) E( y t ) = µ 1 a 10

11 ad e) (var( y t )) = var(µ + a y t 1 + ε t + θε t 1 ) (var( y t )) = var(µ) + var(a y t 1 ) + var(ε t ) + var(θε t 1 ) (var( y t )) = 0 + a 2 var( y t ) + σ 2 I + θ 2 σ 2 I (1 a 2 )(var( y t )) = σ 2 I + θ 2 σ 2 I (var( y t )) = σ2 I + θ 2 σ 2 I (1 a 2 ) Zadanie 7. Estymacja modelu AR(2) na pierwszych różnicach dla próby 100 obserwacji dała następujący wynik (w nawiasach są błędy standardowe) y t = 0, 18 0, 14 y t y t 1 + ε t (0, 12) (0, 05) (0, 10) Przetestuj na poziomie istotności α = 0, 05 hipotezę o pierwiastku jednostkowym. Dokładnie objaśnij jak brzmi hipoteza zerowa i alternatywna. Rozwiązanie Zapiszmy ogólną postać modelu: Należy przetestować hipotezę y t = α + βy t 1 + γ y t 1 + ε H 0 : β = 0 H 1 : β < 0 Wartość statystyki testowej wynosi t = 0,14 = 2, 8. Wartość krytyczną 0,05 odczytana z tablic testu Dickey a-fullera wynosi t DF (100) = 2, 9. Ponieważ t > t DF brak jest podstaw do odrzucania hipotezy zerowej o istnieniu pierwiastka jednostkowego. Zadanie 8. Powiedzmy, że mamy model: y t = α(y t 1 βx t 1 ) + δ y t 1 + ε t 11

12 i wyniki następujących regresji dla 100 obserwacji (poziom istotności α = 0, 05) y t = 0, 4 y t +0.2 y t 1 (0, 2) (0, 02) x t = 0, 8 x t +0.2 x t 1 (0, 5) (0, 1) (a) Czy w tym przypadku ma sens (i dlaczego) testowanie kointegracji między x t i y t? (b) Powiedzmy, że otrzymałeś z MNK reszty û t z regresji y t na x t a regresji û t na u t 1 ˆ dała następujący wynik (błędy standardowe w nawiasach) û t = 0, 8 u t 1 ˆ (0, 2) Jaki jest wynik testu na kointegrację? Rozwiązanie ad a) Wartość krytyczna testu Dickey a-fullera t DF (100) = 2, 9 ad b) t y = 0, 4 0, 2 = 2 Ponieważ statystyka testowa t y = 2 > t DF wartości krytycznej testu wnioskujemy, że istnieje pierwiastek jednostkowy, czyli szereg y t jest zintegrowany stopnia jeden I(1). t x = 0, 8 0, 5 = 1, 6 Ponieważ statystyka testowa t x = 1.6 > t DF wartości krytycznej testu wnioskujemy że istnieje pierwiastek jednostkowy, czyli szereg y t jest zintegrowany stopnia jeden I(1). Ponieważ oba szeregi są I(1) testowanie kointegracji jest sensowne, bowiem model może wskazywać nie na relację pomiędzy zmiennymi x t i y t, a między trendami zawartymi w zmiennych. t = 0, 8 0, 2 = 4 Ponieważ statystyka testowa t x = 4 < t DF wartości krytycznej testu wnioskujemy że zmienne są skointegrowane. 12

13 Literatura [1] Wojciech Charemza, Derek Deadman (1997) Nowa ekonometria, PWE. [2] William H. Greene (2003) Econometric Analysis, 5th edition. [3] Jerzy Mycielski (2000), WNE. 13

0.1 Modele Dynamiczne

0.1 Modele Dynamiczne 0.1 Modele Dynamiczne 0.1.1 Wprowadzenie Często konkretne działanie czy zjawisko ekonomiczne nie tylko zależy od bieżących wartości pewnych wskaźników - zmiennych objaśniających modelu, ale również od

Bardziej szczegółowo

Podczas zajęć będziemy zajmować się głownie procesami ergodycznymi zdefiniowanymi na przestrzeniach ciągłych.

Podczas zajęć będziemy zajmować się głownie procesami ergodycznymi zdefiniowanymi na przestrzeniach ciągłych. Trochę teorii W celu przeprowadzenia rygorystycznej ekonometrycznej analizy szeregu finansowego będziemy traktowali obserwowany ciąg danych (x 1, x 2,..., x T ) jako realizację pewnego procesu stochastycznego.

Bardziej szczegółowo

Przyczynowość Kointegracja. Kointegracja. Kointegracja

Przyczynowość Kointegracja. Kointegracja. Kointegracja korelacja a związek o charakterze przyczynowo-skutkowym korelacja a związek o charakterze przyczynowo-skutkowym Przyczynowość w sensie Grangera Zmienna x jest przyczyną w sensie Grangera zmiennej y jeżeli

Bardziej szczegółowo

Stacjonarność Integracja. Integracja. Integracja

Stacjonarność Integracja. Integracja. Integracja Biały szum AR(1) Słaba stacjonarność Szereg czasowy nazywamy słabo (wariancyjnie) stacjonarnym jeżeli: Biały szum AR(1) Słaba stacjonarność Szereg czasowy nazywamy słabo (wariancyjnie) stacjonarnym jeżeli:

Bardziej szczegółowo

1 Modele ADL - interpretacja współczynników

1 Modele ADL - interpretacja współczynników 1 Modele ADL - interpretacja współczynników ZADANIE 1.1 Dany jest proces DL następującej postaci: y t = µ + β 0 x t + β 1 x t 1 + ε t. 1. Wyjaśnić, jaka jest intepretacja współczynników β 0 i β 1. 2. Pokazać

Bardziej szczegółowo

Ekonometria. Modelowanie szeregów czasowych. Stacjonarność. Testy pierwiastka jednostkowego. Modele ARDL. Kointegracja. Jakub Mućk

Ekonometria. Modelowanie szeregów czasowych. Stacjonarność. Testy pierwiastka jednostkowego. Modele ARDL. Kointegracja. Jakub Mućk Ekonometria Modelowanie szeregów czasowych. Stacjonarność. Testy pierwiastka jednostkowego. Modele ARDL. Jakub Mućk Katedra Ekonomii Ilościowej Jakub Mućk Ekonometria Ćwiczenia 5 & 6 Szaeregi czasowe 1

Bardziej szczegółowo

Wprowadzenie Modele o opóźnieniach rozłożonych Modele autoregresyjne o opóźnieniach rozłożonych. Modele dynamiczne.

Wprowadzenie Modele o opóźnieniach rozłożonych Modele autoregresyjne o opóźnieniach rozłożonych. Modele dynamiczne. opisują kształtowanie się zjawiska w czasie opisują kształtowanie się zjawiska w czasie Najważniejszymi zastosowaniami modeli dynamicznych są opisują kształtowanie się zjawiska w czasie Najważniejszymi

Bardziej szczegółowo

Ekonometria. Modelowanie szeregów czasowych. Stacjonarność. Testy pierwiastka jednostkowego. Modele ARDL. Kointegracja. Jakub Mućk

Ekonometria. Modelowanie szeregów czasowych. Stacjonarność. Testy pierwiastka jednostkowego. Modele ARDL. Kointegracja. Jakub Mućk Ekonometria Modelowanie szeregów czasowych. Stacjonarność. Testy pierwiastka jednostkowego. Modele ARDL. Kointegracja Jakub Mućk Katedra Ekonomii Ilościowej Jakub Mućk Ekonometria Wykład 5 & 6 Szaeregi

Bardziej szczegółowo

Stanisław Cichocki. Natalia Neherbecka. Zajęcia 13

Stanisław Cichocki. Natalia Neherbecka. Zajęcia 13 Stanisław Cichocki Natalia Neherbecka Zajęcia 13 1 1. Kryteria informacyjne 2. Testowanie autokorelacji 3. Modele dynamiczne: modele o rozłożonych opóźnieniach (DL) modele autoregresyjne o rozłożonych

Bardziej szczegółowo

Stanisław Cichocki. Natalia Nehrebecka. Zajęcia 15-16

Stanisław Cichocki. Natalia Nehrebecka. Zajęcia 15-16 Stanisław Cichocki Natalia Nehrebecka Zajęcia 15-16 1 1. Sezonowość 2. Zmienne stacjonarne 3. Zmienne zintegrowane 4. Test Dickey-Fullera 5. Rozszerzony test Dickey-Fullera 6. Test KPSS 7. Regresja pozorna

Bardziej szczegółowo

2.6 Zmienne stacjonarne i niestacjonarne 2.6. ZMIENNE STACJONARNE I NIESTACJONARNE 33. RYSUNEK 2.6: PKB w wyrażeniu realnym

2.6 Zmienne stacjonarne i niestacjonarne 2.6. ZMIENNE STACJONARNE I NIESTACJONARNE 33. RYSUNEK 2.6: PKB w wyrażeniu realnym 2.6. ZMIENNE STACJONARNE I NIESTACJONARNE 33 tale. Rysunek 2.6 ilustruje sezonowość w logarytmie PKB w wyrażeniu realnym. Realny PKB został uzyskany poprzez zdeflowanie nominalnego PKB przez indeks cen

Bardziej szczegółowo

Stanisław Cihcocki. Natalia Nehrebecka

Stanisław Cihcocki. Natalia Nehrebecka Stanisław Cihcocki Natalia Nehrebecka 1 1. Kryteria informacyjne 2. Testowanie autokorelacji w modelu 3. Modele dynamiczne: modele o rozłożonych opóźnieniach (DL) modele autoregresyjne o rozłożonych opóźnieniach

Bardziej szczegółowo

Ekonometria Wykład 5. Procesy stochastyczne, stacjonarność, integracja. Dr Michał Gradzewicz Katedra Ekonomii I KAE

Ekonometria Wykład 5. Procesy stochastyczne, stacjonarność, integracja. Dr Michał Gradzewicz Katedra Ekonomii I KAE Ekonometria Wykład 5. Procesy stochastyczne, stacjonarność, integracja Dr Michał Gradzewicz Katedra Ekonomii I KAE Ekonometria szeregów czasowych Procesy stochastyczne Stacjonarność i biały szum Niestacjonarność:

Bardziej szczegółowo

Zadanie 1 Zakładając liniową relację między wydatkami na obuwie a dochodem oszacować MNK parametry modelu: y t. X 1 t. Tabela 1.

Zadanie 1 Zakładając liniową relację między wydatkami na obuwie a dochodem oszacować MNK parametry modelu: y t. X 1 t. Tabela 1. tel. 44 683 1 55 tel. kom. 64 566 811 e-mail: biuro@wszechwiedza.pl Zadanie 1 Zakładając liniową relację między wydatkami na obuwie a dochodem oszacować MNK parametry modelu: gdzie: y t X t y t = 1 X 1

Bardziej szczegółowo

Stanisław Cichocki Natalia Neherbecka

Stanisław Cichocki Natalia Neherbecka Stanisław Cichocki Natalia Neherbecka 13 marca 2010 1 1. Kryteria informacyjne 2. Modele dynamiczne: modele o rozłożonych opóźnieniach (DL) modele autoregresyjne o rozłożonych opóźnieniach (ADL) 3. Analiza

Bardziej szczegółowo

Niestacjonarne zmienne czasowe własności i testowanie

Niestacjonarne zmienne czasowe własności i testowanie Materiał dla studentów Niestacjonarne zmienne czasowe własności i testowanie (studium przypadku) Część 3: Przykłady testowania niestacjonarności Nazwa przedmiotu: ekonometria finansowa I (22204), analiza

Bardziej szczegółowo

EKONOMETRIA STOSOWANA PRZYKŁADOWE ZADANIA EGZAMINACYJNE

EKONOMETRIA STOSOWANA PRZYKŁADOWE ZADANIA EGZAMINACYJNE EKONOMETRIA STOSOWANA PRZYKŁADOWE ZADANIA EGZAMINACYJNE ZADANIE 1 Oszacowano zależność między luką popytowa a stopą inflacji dla gospodarki niemieckiej. Wyniki estymacji są następujące: Estymacja KMNK,

Bardziej szczegółowo

Metoda Johansena objaśnienia i przykłady

Metoda Johansena objaśnienia i przykłady Metoda Johansena objaśnienia i przykłady Model wektorowej autoregresji rzędu p, VAR(p), ma postad gdzie oznacza wektor zmiennych endogenicznych modelu. Model VAR jest stabilny, jeżeli dla, tzn. wielomian

Bardziej szczegółowo

Rozdział 2: Metoda największej wiarygodności i nieliniowa metoda najmniejszych kwadratów

Rozdział 2: Metoda największej wiarygodności i nieliniowa metoda najmniejszych kwadratów Rozdział : Metoda największej wiarygodności i nieliniowa metoda najmniejszych kwadratów W tym rozdziale omówione zostaną dwie najpopularniejsze metody estymacji parametrów w ekonometrycznych modelach nieliniowych,

Bardziej szczegółowo

Czasowy wymiar danych

Czasowy wymiar danych Problem autokorelacji Model regresji dla szeregów czasowych Model regresji dla szeregów czasowych y t = X t β + ε t Zasadnicze różnice 1 Budowa prognoz 2 Problem stabilności parametrów 3 Problem autokorelacji

Bardziej szczegółowo

Natalia Neherbecka. 11 czerwca 2010

Natalia Neherbecka. 11 czerwca 2010 Natalia Neherbecka 11 czerwca 2010 1 1. Konsekwencje heteroskedastyczności i autokorelacji 2. Uogólniona MNK 3. Stosowalna Uogólniona MNK 4. Odporne macierze wariancji i kowariancji b 2 1. Konsekwencje

Bardziej szczegółowo

Testowanie hipotez statystycznych

Testowanie hipotez statystycznych Testowanie hipotez statystycznych Wyk lad 8 Natalia Nehrebecka Stanis law Cichocki 29 listopada 2015 Plan zajeć 1 Rozk lad estymatora b Rozk lad sumy kwadratów reszt 2 Hipotezy proste - test t Badanie

Bardziej szczegółowo

Testowanie hipotez statystycznych

Testowanie hipotez statystycznych round Testowanie hipotez statystycznych Wyk lad 9 Natalia Nehrebecka Stanis law Cichocki 13 grudnia 2014 Plan zajeć 1 Rozk lad estymatora b Rozk lad sumy kwadratów reszt 2 Hipotezy proste - test t Badanie

Bardziej szczegółowo

1.1 Klasyczny Model Regresji Liniowej

1.1 Klasyczny Model Regresji Liniowej 1.1 Klasyczny Model Regresji Liniowej Klasyczny model Regresji Liniowej jest bardzo użytecznym narzędziem służącym do analizy danych empirycznych. Analiza regresji zajmuje się opisem zależności między

Bardziej szczegółowo

Prognozowanie i Symulacje. Wykład VI. Niestacjonarne szeregi czasowe

Prognozowanie i Symulacje. Wykład VI. Niestacjonarne szeregi czasowe Prognozowanie i Symulacje. Wykład VI. e-mail:e.kozlovski@pollub.pl Spis treści Analiza stacjonarności szeregów czasowych 1 Analiza stacjonarności szeregów czasowych Modele niestacjonarne Szeregi TS i DS

Bardziej szczegółowo

TEST STATYSTYCZNY. Jeżeli hipotezę zerową odrzucimy na danym poziomie istotności, to odrzucimy ją na każdym większym poziomie istotności.

TEST STATYSTYCZNY. Jeżeli hipotezę zerową odrzucimy na danym poziomie istotności, to odrzucimy ją na każdym większym poziomie istotności. TEST STATYSTYCZNY Testem statystycznym nazywamy regułę postępowania rozstrzygająca, przy jakich wynikach z próby hipotezę sprawdzaną H 0 należy odrzucić, a przy jakich nie ma podstaw do jej odrzucenia.

Bardziej szczegółowo

WYKŁAD: Szeregi czasowe I. Zaawansowane Metody Uczenia Maszynowego

WYKŁAD: Szeregi czasowe I. Zaawansowane Metody Uczenia Maszynowego WYKŁAD: Szeregi czasowe I Zaawansowane Metody Uczenia Maszynowego Szereg czasowy (X t ) - ciąg zmiennych losowych indeksowany parametrem t (czas). Z reguły t N lub t Z. Dotąd rozpatrywaliśmy: (X t )- ciąg

Bardziej szczegółowo

2. Założenie niezależności zakłóceń modelu - autokorelacja składnika losowego - test Durbina - Watsona

2. Założenie niezależności zakłóceń modelu - autokorelacja składnika losowego - test Durbina - Watsona Sprawdzanie założeń przyjętych o modelu (etap IIIC przyjętego schematu modelowania regresyjnego) 1. Szum 2. Założenie niezależności zakłóceń modelu - autokorelacja składnika losowego - test Durbina - Watsona

Bardziej szczegółowo

Stanisław Cichocki. Natalia Nehrebecka

Stanisław Cichocki. Natalia Nehrebecka Stanisław Cichocki Natalia Nehrebecka 1. Testy diagnostyczne 2. Testowanie prawidłowości formy funkcyjnej modelu 3. Testowanie normalności składników losowych 4. Testowanie stabilności parametrów 5. Testowanie

Bardziej szczegółowo

Wprowadzenie Model ARMA Sezonowość Prognozowanie Model regresji z błędami ARMA. Modele ARMA

Wprowadzenie Model ARMA Sezonowość Prognozowanie Model regresji z błędami ARMA. Modele ARMA Ważną klasę modeli dynamicznych stanowią modele ARMA(p, q) Ważną klasę modeli dynamicznych stanowią modele ARMA(p, q) Modele tej klasy są modelami ateoretycznymi Ważną klasę modeli dynamicznych stanowią

Bardziej szczegółowo

Ekonometria Wykład 6 - Kointegracja, rozkłady opóźnień. Dr Michał Gradzewicz Katedra Ekonomii I KAE

Ekonometria Wykład 6 - Kointegracja, rozkłady opóźnień. Dr Michał Gradzewicz Katedra Ekonomii I KAE Ekonometria Wykład 6 - Kointegracja, rozkłady opóźnień Dr Michał Gradzewicz Katedra Ekonomii I KAE Plan wykładu Ekonometria wielu szeregów czasowych i analiza zależności pomiędzy nimi Przykłady ważnych

Bardziej szczegółowo

O sezonowości mówimy wtedy, gdy zmienna zmienia się w pewnym cyklu zwykle zwiazanym z cyklem rocznym

O sezonowości mówimy wtedy, gdy zmienna zmienia się w pewnym cyklu zwykle zwiazanym z cyklem rocznym Sezonowość O sezonowości mówimy wtedy, gdy zmienna zmienia się w pewnym cyklu zwykle zwiazanym z cyklem rocznym Na przykład zmienne kwartalne charakteryzuja się zwykle sezonowościa kwartalna a zmienne

Bardziej szczegółowo

3. Analiza własności szeregu czasowego i wybór typu modelu

3. Analiza własności szeregu czasowego i wybór typu modelu 3. Analiza własności szeregu czasowego i wybór typu modelu 1. Metody analizy własności szeregu czasowego obserwacji 1.1. Analiza wykresu szeregu czasowego 1.2. Analiza statystyk opisowych zmiennej prognozowanej

Bardziej szczegółowo

Szeregi czasowe, analiza zależności krótkoi długozasięgowych

Szeregi czasowe, analiza zależności krótkoi długozasięgowych Szeregi czasowe, analiza zależności krótkoi długozasięgowych Rafał Weron rweron@im.pwr.wroc.pl Definicje Mając dany proces {X t } autokowariancję definiujemy jako : γ(t, t ) = cov(x t, X t ) = = E[(X t

Bardziej szczegółowo

Ekonometria. Prognozowanie ekonometryczne, ocena stabilności oszacowań parametrów strukturalnych. Jakub Mućk. Katedra Ekonomii Ilościowej

Ekonometria. Prognozowanie ekonometryczne, ocena stabilności oszacowań parametrów strukturalnych. Jakub Mućk. Katedra Ekonomii Ilościowej Ekonometria Prognozowanie ekonometryczne, ocena stabilności oszacowań parametrów strukturalnych Jakub Mućk Katedra Ekonomii Ilościowej Jakub Mućk Ekonometria Wykład 4 Prognozowanie, stabilność 1 / 17 Agenda

Bardziej szczegółowo

1. Stacjonarnośd i niestacjonarnośd szeregów czasowych 2. Test ADF i test KPSS 3. Budowa modeli ARMA dla zmiennych niestacjonarnych 4.

1. Stacjonarnośd i niestacjonarnośd szeregów czasowych 2. Test ADF i test KPSS 3. Budowa modeli ARMA dla zmiennych niestacjonarnych 4. 1. Stacjonarnośd i niestacjonarnośd szeregów czasowych 2. Test ADF i test KPSS 3. Budowa modeli ARMA dla zmiennych niestacjonarnych 4. Prognozowanie stóp zwrotu na podstawie modeli ARMA 5. Relacje kointegrujące

Bardziej szczegółowo

parametrów strukturalnych modelu = Y zmienna objaśniana, X 1,X 2,,X k zmienne objaśniające, k zmiennych objaśniających,

parametrów strukturalnych modelu = Y zmienna objaśniana, X 1,X 2,,X k zmienne objaśniające, k zmiennych objaśniających, 诲 瞴瞶 瞶 ƭ0 ƭ 瞰 parametrów strukturalnych modelu Y zmienna objaśniana, = + + + + + X 1,X 2,,X k zmienne objaśniające, k zmiennych objaśniających, α 0, α 1, α 2,,α k parametry strukturalne modelu, k+1 parametrów

Bardziej szczegółowo

Stanisław Cichocki Natalia Nehrebecka. Zajęcia 8

Stanisław Cichocki Natalia Nehrebecka. Zajęcia 8 Stanisław Cichocki Natalia Nehrebecka Zajęcia 8 1. Testy diagnostyczne 2. Testowanie prawidłowości formy funkcyjnej modelu 3. Testowanie normalności składników losowych 4. Testowanie stabilności parametrów

Bardziej szczegółowo

4. Średnia i autoregresja zmiennej prognozowanej

4. Średnia i autoregresja zmiennej prognozowanej 4. Średnia i autoregresja zmiennej prognozowanej 1. Średnia w próbie uczącej Własności: y = y = 1 N y = y t = 1, 2, T s = s = 1 N 1 y y R = 0 v = s 1 +, 2. Przykład. Miesięczna sprzedaż żelazek (szt.)

Bardziej szczegółowo

1 Metoda Najmniejszych Kwadratów (MNK) 2 Interpretacja parametrów modelu. 3 Klasyczny Model Regresji Liniowej (KMRL)

1 Metoda Najmniejszych Kwadratów (MNK) 2 Interpretacja parametrów modelu. 3 Klasyczny Model Regresji Liniowej (KMRL) 1 Metoda Najmniejszych Kwadratów (MNK) 1. Co to jest zmienna endogeniczna, a co to zmienne egzogeniczna? 2. Podaj postać macierzy obserwacji dla modelu y t = a + bt + ε t 3. Co to jest wartość dopasowana,

Bardziej szczegółowo

Ekonometria egzamin 01/02/ W trakcie egzaminu wolno używać jedynie długopisu o innym kolorze atramentu niż czerwony oraz kalkulatora.

Ekonometria egzamin 01/02/ W trakcie egzaminu wolno używać jedynie długopisu o innym kolorze atramentu niż czerwony oraz kalkulatora. imię, nazwisko, nr indeksu: Ekonometria egzamin 01/02/2019 1. Egzamin trwa 90 minut. 2. Rozwiązywanie zadań należy rozpocząć po ogłoszeniu początku egzaminu a skończyć wraz z ogłoszeniem końca egzaminu.

Bardziej szczegółowo

Ekonometria. Ćwiczenia nr 3. Jakub Mućk. Katedra Ekonomii Ilościowej

Ekonometria. Ćwiczenia nr 3. Jakub Mućk. Katedra Ekonomii Ilościowej Ekonometria Ćwiczenia nr 3 Jakub Mućk Katedra Ekonomii Ilościowej Jakub Mućk Ekonometria Ćwiczenia 3 Własności składnika losowego 1 / 18 Agenda KMNK przypomnienie 1 KMNK przypomnienie 2 3 4 Jakub Mućk

Bardziej szczegółowo

Testy pierwiastka jednostkowego

Testy pierwiastka jednostkowego 2 listopada 2017 Proces generujący ceny Wnioski Słaba efektywność rynkowa i błądzenie przypadkowe Załóżmy, że rynek jest słabo efektywny Logarytmicznej stopy zwrotu ( p t = ln ( Pt P t 1 )) w czasie t

Bardziej szczegółowo

Testowanie hipotez statystycznych związanych ą z szacowaniem i oceną ą modelu ekonometrycznego

Testowanie hipotez statystycznych związanych ą z szacowaniem i oceną ą modelu ekonometrycznego Testowanie hipotez statystycznych związanych ą z szacowaniem i oceną ą modelu ekonometrycznego Ze względu na jakość uzyskiwanych ocen parametrów strukturalnych modelu oraz weryfikację modelu, metoda najmniejszych

Bardziej szczegółowo

2.2 Autokorelacja Wprowadzenie

2.2 Autokorelacja Wprowadzenie 2.2 Autokorelacja 2.2.1 Wprowadzenie Przy wyprowadzaniu estymatorów Klasycznego Modelu Regresji Liniowej (KMRL) zakładaliśmy, że są spełnione założenia Gaussa-Markowa, tzn. składniki losowe są homoscedastyczne

Bardziej szczegółowo

Stanisław Cichocki. Natalia Nehrebecka. Wykład 12

Stanisław Cichocki. Natalia Nehrebecka. Wykład 12 Stanisław Cichocki Natalia Nehrebecka Wykład 12 1 1.Problemy z danymi Zmienne pominięte Zmienne nieistotne 2. Autokorelacja o Testowanie autokorelacji 1.Problemy z danymi Zmienne pominięte Zmienne nieistotne

Bardziej szczegółowo

Powtórzenie wiadomości z rachunku prawdopodobieństwa i statystyki.

Powtórzenie wiadomości z rachunku prawdopodobieństwa i statystyki. Powtórzenie wiadomości z rachunku prawdopodobieństwa i statystyki. Zaj ecia 5 Natalia Nehrebeceka 04 maja, 2010 Plan zaj eć 1 Rachunek prawdopodobieństwa Wektor losowy Wartość oczekiwana Wariancja Odchylenie

Bardziej szczegółowo

WNIOSKOWANIE W MODELU REGRESJI LINIOWEJ

WNIOSKOWANIE W MODELU REGRESJI LINIOWEJ WNIOSKOWANIE W MODELU REGRESJI LINIOWEJ Dana jest populacja generalna, w której dwuwymiarowa cecha (zmienna losowa) (X, Y ) ma pewien dwuwymiarowy rozk lad. Miara korelacji liniowej dla zmiennych (X, Y

Bardziej szczegółowo

Błędy przy testowaniu hipotez statystycznych. Decyzja H 0 jest prawdziwa H 0 jest faszywa

Błędy przy testowaniu hipotez statystycznych. Decyzja H 0 jest prawdziwa H 0 jest faszywa Weryfikacja hipotez statystycznych Hipotezą statystyczną nazywamy każde przypuszczenie dotyczące nieznanego rozkładu badanej cechy populacji, o prawdziwości lub fałszywości którego wnioskuje się na podstawie

Bardziej szczegółowo

Testowanie hipotez. Hipoteza prosta zawiera jeden element, np. H 0 : θ = 2, hipoteza złożona zawiera więcej niż jeden element, np. H 0 : θ > 4.

Testowanie hipotez. Hipoteza prosta zawiera jeden element, np. H 0 : θ = 2, hipoteza złożona zawiera więcej niż jeden element, np. H 0 : θ > 4. Testowanie hipotez Niech X = (X 1... X n ) będzie próbą losową na przestrzeni X zaś P = {P θ θ Θ} rodziną rozkładów prawdopodobieństwa określonych na przestrzeni próby X. Definicja 1. Hipotezą zerową Θ

Bardziej szczegółowo

Modele warunkowej heteroscedastyczności

Modele warunkowej heteroscedastyczności Teoria Przykład - zwroty z WIG Niskie koszty transakcyjne Teoria Przykład - zwroty z WIG Niskie koszty transakcyjne Racjonalne oczekiwania inwestorów P t = E(P t+1 I t ) 1 + R (1) Teoria Przykład - zwroty

Bardziej szczegółowo

Tablica Wzorów Rachunek Prawdopodobieństwa i Statystyki

Tablica Wzorów Rachunek Prawdopodobieństwa i Statystyki Tablica Wzorów Rachunek Prawdopodobieństwa i Statystyki Spis treści I. Wzory ogólne... 2 1. Średnia arytmetyczna:... 2 2. Rozstęp:... 2 3. Kwantyle:... 2 4. Wariancja:... 2 5. Odchylenie standardowe:...

Bardziej szczegółowo

Idea. θ = θ 0, Hipoteza statystyczna Obszary krytyczne Błąd pierwszego i drugiego rodzaju p-wartość

Idea. θ = θ 0, Hipoteza statystyczna Obszary krytyczne Błąd pierwszego i drugiego rodzaju p-wartość Idea Niech θ oznacza parametr modelu statystycznego. Dotychczasowe rozważania dotyczyły metod estymacji tego parametru. Teraz zamiast szacować nieznaną wartość parametru będziemy weryfikowali hipotezę

Bardziej szczegółowo

Zadanie 1 1. Czy wykresy zmiennych sugerują, że zmienne są stacjonarne. Czy występuje sezonowość?

Zadanie 1 1. Czy wykresy zmiennych sugerują, że zmienne są stacjonarne. Czy występuje sezonowość? Zadanie 1 1. Czy wykresy zmiennych sugerują, że zmienne są stacjonarne. Czy występuje sezonowość? Wykres stopy bezrobocia rejestrowanego w okresie 01.1998 12.2008, dane Polskie 22 20 18 16 stopa 14 12

Bardziej szczegółowo

Statystyka matematyczna Testowanie hipotez i estymacja parametrów. Wrocław, r

Statystyka matematyczna Testowanie hipotez i estymacja parametrów. Wrocław, r Statystyka matematyczna Testowanie hipotez i estymacja parametrów Wrocław, 18.03.2016r Plan wykładu: 1. Testowanie hipotez 2. Etapy testowania hipotez 3. Błędy 4. Testowanie wielokrotne 5. Estymacja parametrów

Bardziej szczegółowo

Testy własności składnika losowego Testy formy funkcyjnej. Diagnostyka modelu. Część 2. Diagnostyka modelu

Testy własności składnika losowego Testy formy funkcyjnej. Diagnostyka modelu. Część 2. Diagnostyka modelu Część 2 Test Durbina-Watsona Test Durbina-Watsona Weryfikowana hipoteza H 0 : cov(ε t, ε t 1 ) = 0 H 1 : cov(ε t, ε t 1 ) 0 Test Durbina-Watsona Weryfikowana hipoteza H 0 : cov(ε t, ε t 1 ) = 0 H 1 : cov(ε

Bardziej szczegółowo

Losowe zmienne objaśniające. Rozszerzenia KMRL. Rozszerzenia KMRL

Losowe zmienne objaśniające. Rozszerzenia KMRL. Rozszerzenia KMRL MNK z losową macierzą obserwacji Równanie modelu y = X β + ε Jeżeli X zawiera elementy losowe to należy sprawdzić czy E(b β) = E[(X X ) 1 X ε]? = E[(X X ) 1 X ]E(ε) Przypomnienie: Nieskorelowane zmienne

Bardziej szczegółowo

Stanisław Cichocki. Natalia Nehrebecka. Wykład 9

Stanisław Cichocki. Natalia Nehrebecka. Wykład 9 Stanisław Cichocki Natalia Nehrebecka Wykład 9 1 1. Dodatkowe założenie KMRL 2. Testowanie hipotez prostych Rozkład estymatora b Testowanie hipotez prostych przy użyciu statystyki t 3. Przedziały ufności

Bardziej szczegółowo

Stosowana Analiza Regresji

Stosowana Analiza Regresji prostej Stosowana Wykład I 5 Października 2011 1 / 29 prostej Przykład Dane trees - wyniki pomiarów objętości (Volume), średnicy (Girth) i wysokości (Height) pni drzew. Interesuje nas zależność (o ile

Bardziej szczegółowo

5. Model sezonowości i autoregresji zmiennej prognozowanej

5. Model sezonowości i autoregresji zmiennej prognozowanej 5. Model sezonowości i autoregresji zmiennej prognozowanej 1. Model Sezonowości kwartalnej i autoregresji zmiennej prognozowanej (rząd istotnej autokorelacji K = 1) Szacowana postać: y = c Q + ρ y, t =

Bardziej szczegółowo

Analiza wariancji w analizie regresji - weryfikacja prawdziwości przyjętego układu ograniczeń Problem Przykłady

Analiza wariancji w analizie regresji - weryfikacja prawdziwości przyjętego układu ograniczeń Problem Przykłady Analiza wariancji w analizie regresji - weryfikacja prawdziwości przyjętego układu ograniczeń 1. Problem ozwaŝamy zjawisko (model): Y = β 1 X 1 X +...+ β k X k +Z Ηβ = w r Hipoteza alternatywna: Ηβ w r

Bardziej szczegółowo

Ekonometria. Zajęcia

Ekonometria. Zajęcia Ekonometria Zajęcia 16.05.2018 Wstęp hipoteza itp. Model gęstości zaludnienia ( model gradientu gęstości ) zakłada, że gęstość zaludnienia zależy od odległości od okręgu centralnego: y t = Ae βx t (1)

Bardziej szczegółowo

Wnioskowanie statystyczne i weryfikacja hipotez statystycznych

Wnioskowanie statystyczne i weryfikacja hipotez statystycznych Wnioskowanie statystyczne i weryfikacja hipotez statystycznych Wnioskowanie statystyczne Wnioskowanie statystyczne obejmuje następujące czynności: Sformułowanie hipotezy zerowej i hipotezy alternatywnej.

Bardziej szczegółowo

Ekonometria Ćwiczenia 19/01/05

Ekonometria Ćwiczenia 19/01/05 Oszacowano regresję stopy bezrobocia (unemp) na wzroście realnego PKB (pkb) i stopie inflacji (cpi) oraz na zmiennych zero-jedynkowych związanymi z kwartałami (season). Regresję przeprowadzono na danych

Bardziej szczegółowo

1.3 Własności statystyczne estymatorów MNK

1.3 Własności statystyczne estymatorów MNK 1.3 Własności statystyczne estymatorów MNK 1. Estymator nazywamy estymatorem nieobciążonym, jeżeli jego wartość oczekiwana jest równa wartości szacowanego parametru. Udowodnimy, że estymator MNK wektora

Bardziej szczegółowo

Przykład 2. Stopa bezrobocia

Przykład 2. Stopa bezrobocia Przykład 2 Stopa bezrobocia Stopa bezrobocia. Komentarz: model ekonometryczny stopy bezrobocia w Polsce jest modelem nieliniowym autoregresyjnym. Podobnie jak model podaŝy pieniądza zbudowany został w

Bardziej szczegółowo

Współczynnik korelacji. Współczynnik korelacji jest miernikiem zależności między dwiema cechami Oznaczenie: ϱ

Współczynnik korelacji. Współczynnik korelacji jest miernikiem zależności między dwiema cechami Oznaczenie: ϱ Współczynnik korelacji Współczynnik korelacji jest miernikiem zależności między dwiema cechami Oznaczenie: ϱ Własności współczynnika korelacji 1. Współczynnik korelacji jest liczbą niemianowaną 2. ϱ 1,

Bardziej szczegółowo

Brunon R. Górecki. Ekonometria. podstawy teorii i praktyki. Wydawnictwo Key Text

Brunon R. Górecki. Ekonometria. podstawy teorii i praktyki. Wydawnictwo Key Text Brunon R. Górecki Ekonometria podstawy teorii i praktyki Wydawnictwo Key Text Darmowy fragment Darmowy fragment Darmowy fragment Wydawnictwo Key Text Recenzent prof. dr hab. Jan B. Gajda Opracowanie graficzne

Bardziej szczegółowo

Plan wykładu: 1) Pojęcie stacjonarności i niestacjonarności zmiennych 2) Testowanie integracji 3) Pojęcie kointegracji metoda Engle a-grangera.

Plan wykładu: 1) Pojęcie stacjonarności i niestacjonarności zmiennych 2) Testowanie integracji 3) Pojęcie kointegracji metoda Engle a-grangera. 1 Plan wykładu: 1) Pojęcie stacjonarności i niestacjonarności zmiennych 2) Testowanie integracji 3) Pojęcie kointegracji metoda Engle a-grangera. Pojęcie stacjonarności i niestacjonarności zmiennych Szereg

Bardziej szczegółowo

Monte Carlo, bootstrap, jacknife

Monte Carlo, bootstrap, jacknife Monte Carlo, bootstrap, jacknife Literatura Bruce Hansen (2012 +) Econometrics, ze strony internetowej: http://www.ssc.wisc.edu/~bhansen/econometrics/ Monte Carlo: rozdział 8.8, 8.9 Bootstrap: rozdział

Bardziej szczegółowo

Value at Risk (VaR) Jerzy Mycielski WNE. Jerzy Mycielski (Institute) Value at Risk (VaR) / 16

Value at Risk (VaR) Jerzy Mycielski WNE. Jerzy Mycielski (Institute) Value at Risk (VaR) / 16 Value at Risk (VaR) Jerzy Mycielski WNE 2018 Jerzy Mycielski (Institute) Value at Risk (VaR) 2018 1 / 16 Warunkowa heteroskedastyczność O warunkowej autoregresyjnej heteroskedastyczności mówimy, gdy σ

Bardziej szczegółowo

... i statystyka testowa przyjmuje wartość..., zatem ODRZUCAMY /NIE MA POD- STAW DO ODRZUCENIA HIPOTEZY H 0 (właściwe podkreślić).

... i statystyka testowa przyjmuje wartość..., zatem ODRZUCAMY /NIE MA POD- STAW DO ODRZUCENIA HIPOTEZY H 0 (właściwe podkreślić). Egzamin ze Statystyki Matematycznej, WNE UW, wrzesień 016, zestaw B Odpowiedzi i szkice rozwiązań 1. Zbadano koszt 7 noclegów dla 4-osobowej rodziny (kwatery) nad morzem w sezonie letnim 014 i 015. Wylosowano

Bardziej szczegółowo

Ekonometria. wiczenia 5 i 6 Modelowanie szeregów czasowych. Andrzej Torój. Instytut Ekonometrii Zakªad Ekonometrii Stosowanej

Ekonometria. wiczenia 5 i 6 Modelowanie szeregów czasowych. Andrzej Torój. Instytut Ekonometrii Zakªad Ekonometrii Stosowanej Ekonometria wiczenia 5 i 6 Modelowanie szeregów czasowych (5-6) Ekonometria 1 / 30 Plan prezentacji 1 Regresja pozorna 2 Testowanie stopnia zintegrowania szeregu 3 Kointegracja 4 Modele dynamiczne (5-6)

Bardziej szczegółowo

Uwaga. Decyzje brzmią różnie! Testy parametryczne dotyczące nieznanej wartości

Uwaga. Decyzje brzmią różnie! Testy parametryczne dotyczące nieznanej wartości TESTOWANIE HIPOTEZ Przez hipotezę statystyczną rozumiemy, najogólniej mówiąc, pewną wypowiedź na temat rozkładu, z którego pochodzi próbka. Hipotezy dzielimy na parametryczne i nieparametryczne. Parametrycznymi

Bardziej szczegółowo

Metody Ekonometryczne

Metody Ekonometryczne Metody Ekonometryczne Jakub Mućk Katedra Ekonomii Ilościowej Jakub Mućk Metody Ekonometyczne Wykład 4 Uogólniona Metoda Najmniejszych Kwadratów (GLS) 1 / 19 Outline 1 2 3 Jakub Mućk Metody Ekonometyczne

Bardziej szczegółowo

Weryfikacja hipotez statystycznych, parametryczne testy istotności w populacji

Weryfikacja hipotez statystycznych, parametryczne testy istotności w populacji Weryfikacja hipotez statystycznych, parametryczne testy istotności w populacji Dr Joanna Banaś Zakład Badań Systemowych Instytut Sztucznej Inteligencji i Metod Matematycznych Wydział Informatyki Politechniki

Bardziej szczegółowo

Weryfikacja hipotez statystycznych

Weryfikacja hipotez statystycznych Weryfikacja hipotez statystycznych Hipoteza Test statystyczny Poziom istotności Testy jednostronne i dwustronne Testowanie równości wariancji test F-Fishera Testowanie równości wartości średnich test t-studenta

Bardziej szczegółowo

Ekonometria. Własności składnika losowego. Jakub Mućk. Katedra Ekonomii Ilościowej

Ekonometria. Własności składnika losowego. Jakub Mućk. Katedra Ekonomii Ilościowej Ekonometria Własności składnika losowego Jakub Mućk Katedra Ekonomii Ilościowej Jakub Mućk Ekonometria Wykład 3 Własności składnika losowego 1 / 31 Agenda KMNK przypomnienie 1 KMNK przypomnienie 2 3 4

Bardziej szczegółowo

LABORATORIUM 8 WERYFIKACJA HIPOTEZ STATYSTYCZNYCH PARAMETRYCZNE TESTY ISTOTNOŚCI

LABORATORIUM 8 WERYFIKACJA HIPOTEZ STATYSTYCZNYCH PARAMETRYCZNE TESTY ISTOTNOŚCI LABORATORIUM 8 WERYFIKACJA HIPOTEZ STATYSTYCZNYCH PARAMETRYCZNE TESTY ISTOTNOŚCI WERYFIKACJA HIPOTEZ Hipoteza statystyczna jakiekolwiek przypuszczenie dotyczące populacji generalnej- jej poszczególnych

Bardziej szczegółowo

Stanisław Cichocki. Natalia Nehrebecka. Wykład 13

Stanisław Cichocki. Natalia Nehrebecka. Wykład 13 Stanisław Cichocki Natalia Nehrebecka Wykład 13 1 1. Autokorelacja Konsekwencje Testowanie autokorelacji 2. Metody radzenia sobie z heteroskedastycznością i autokorelacją Uogólniona Metoda Najmniejszych

Bardziej szczegółowo

Testowanie hipotez statystycznych.

Testowanie hipotez statystycznych. Statystyka Wykład 10 Wrocław, 22 grudnia 2011 Testowanie hipotez statystycznych Definicja. Hipotezą statystyczną nazywamy stwierdzenie dotyczące parametrów populacji. Definicja. Dwie komplementarne w problemie

Bardziej szczegółowo

Statystyka w pracy badawczej nauczyciela Wykład 4: Analiza współzależności. dr inż. Walery Susłow walery.suslow@ie.tu.koszalin.pl

Statystyka w pracy badawczej nauczyciela Wykład 4: Analiza współzależności. dr inż. Walery Susłow walery.suslow@ie.tu.koszalin.pl Statystyka w pracy badawczej nauczyciela Wykład 4: Analiza współzależności dr inż. Walery Susłow walery.suslow@ie.tu.koszalin.pl Statystyczna teoria korelacji i regresji (1) Jest to dział statystyki zajmujący

Bardziej szczegółowo

Ekonometria egzamin 31/01/ W trakcie egzaminu wolno używać jedynie długopisu o innym kolorze atramentu niż czerwony oraz kalkulatora.

Ekonometria egzamin 31/01/ W trakcie egzaminu wolno używać jedynie długopisu o innym kolorze atramentu niż czerwony oraz kalkulatora. imię, nazwisko, nr indeksu: Ekonometria egzamin 31/01/2018 1. Egzamin trwa 90 minut. 2. Rozwiązywanie zadań należy rozpocząć po ogłoszeniu początku egzaminu a skończyć wraz z ogłoszeniem końca egzaminu.

Bardziej szczegółowo

Rozdział 8. Regresja. Definiowanie modelu

Rozdział 8. Regresja. Definiowanie modelu Rozdział 8 Regresja Definiowanie modelu Analizę korelacji można traktować jako wstęp do analizy regresji. Jeżeli wykresy rozrzutu oraz wartości współczynników korelacji wskazują na istniejąca współzmienność

Bardziej szczegółowo

Kolokwium ze statystyki matematycznej

Kolokwium ze statystyki matematycznej Kolokwium ze statystyki matematycznej 28.05.2011 Zadanie 1 Niech X będzie zmienną losową z rozkładu o gęstości dla, gdzie 0 jest nieznanym parametrem. Na podstawie pojedynczej obserwacji weryfikujemy hipotezę

Bardziej szczegółowo

REGRESJA LINIOWA Z UOGÓLNIONĄ MACIERZĄ KOWARIANCJI SKŁADNIKA LOSOWEGO. Aleksander Nosarzewski Ekonometria bayesowska, prowadzący: dr Andrzej Torój

REGRESJA LINIOWA Z UOGÓLNIONĄ MACIERZĄ KOWARIANCJI SKŁADNIKA LOSOWEGO. Aleksander Nosarzewski Ekonometria bayesowska, prowadzący: dr Andrzej Torój 1 REGRESJA LINIOWA Z UOGÓLNIONĄ MACIERZĄ KOWARIANCJI SKŁADNIKA LOSOWEGO Aleksander Nosarzewski Ekonometria bayesowska, prowadzący: dr Andrzej Torój 2 DOTYCHCZASOWE MODELE Regresja liniowa o postaci: y

Bardziej szczegółowo

Statystyka matematyczna. Wykład IV. Weryfikacja hipotez statystycznych

Statystyka matematyczna. Wykład IV. Weryfikacja hipotez statystycznych Statystyka matematyczna. Wykład IV. e-mail:e.kozlovski@pollub.pl Spis treści 1 2 3 Definicja 1 Hipoteza statystyczna jest to przypuszczenie dotyczące rozkładu (wielkości parametru lub rodzaju) zmiennej

Bardziej szczegółowo

STATYSTYKA MATEMATYCZNA WYKŁAD listopada 2009

STATYSTYKA MATEMATYCZNA WYKŁAD listopada 2009 STATYSTYKA MATEMATYCZNA WYKŁAD 7 23 listopada 2009 Wykład 6 (16.XI.2009) zakończył się zdefiniowaniem współczynnika korelacji: E X µ x σ x Y µ y σ y = T WSPÓŁCZYNNIK KORELACJI ρ X,Y = ρ Y,X (!) WSPÓŁCZYNNIK

Bardziej szczegółowo

Zależność. przyczynowo-skutkowa, symptomatyczna, pozorna (iluzoryczna),

Zależność. przyczynowo-skutkowa, symptomatyczna, pozorna (iluzoryczna), Zależność przyczynowo-skutkowa, symptomatyczna, pozorna (iluzoryczna), funkcyjna stochastyczna Korelacja brak korelacji korelacja krzywoliniowa korelacja dodatnia korelacja ujemna Szereg korelacyjny numer

Bardziej szczegółowo

Finansowe szeregi czasowe

Finansowe szeregi czasowe 24 kwietnia 2009 Modelem szeregu czasowego jest proces stochastyczny (X t ) t Z, czyli rodzina zmiennych losowych, indeksowanych liczbami całkowitymi i zdefiniowanych na pewnej przestrzeni probabilistycznej

Bardziej szczegółowo

x x 1. Przedmiot identyfikacji System x (1) x (2) : x (s) a 1 a 2 : a s mierzone, a = zestaw współczynników konkretyzujacych F ()

x x 1. Przedmiot identyfikacji System x (1) x (2) : x (s) a 1 a 2 : a s mierzone, a = zestaw współczynników konkretyzujacych F () . Przedmiot identyfikacji System () x (2) x * a z y ( s ) x y = F (x,z)=f(x,z,a ),gdziex = F () znane, a nieznane x () x (2) x (s) mierzone, a = a a 2 a s zestaw współczynników konkretyzujacych F () informacja

Bardziej szczegółowo

STATYSTYKA. Rafał Kucharski. Uniwersytet Ekonomiczny w Katowicach 2015/16 ROND, Finanse i Rachunkowość, rok 2

STATYSTYKA. Rafał Kucharski. Uniwersytet Ekonomiczny w Katowicach 2015/16 ROND, Finanse i Rachunkowość, rok 2 STATYSTYKA Rafał Kucharski Uniwersytet Ekonomiczny w Katowicach 2015/16 ROND, Finanse i Rachunkowość, rok 2 Zależność przyczynowo-skutkowa, symptomatyczna, pozorna (iluzoryczna), funkcyjna stochastyczna

Bardziej szczegółowo

EKONOMETRIA. Prof. dr hab. Eugeniusz Gatnar.

EKONOMETRIA. Prof. dr hab. Eugeniusz Gatnar. EKONOMETRIA Prof. dr hab. Eugeniusz Gatnar egatnar@mail.wz.uw.edu.pl Sprawy organizacyjne Wykłady - prezentacja zagadnień dotyczących: budowy i weryfikacji modelu ekonometrycznego, doboru zmiennych, estymacji

Bardziej szczegółowo

Modele wielorównaniowe (forma strukturalna)

Modele wielorównaniowe (forma strukturalna) Modele wielorównaniowe (forma strukturalna) Formę strukturalna modelu o G równaniach AY t = BX t + u t, gdzie Y t = [y 1t,..., y Gt ] X t = [x 1t,..., x Kt ] u t = [u 1t,..., u Gt ] E (u t ) = 0 Var (u

Bardziej szczegółowo

WYKŁAD 6. Witold Bednorz, Paweł Wolff. Rachunek Prawdopodobieństwa, WNE, Uniwersytet Warszawski. 1 Instytut Matematyki

WYKŁAD 6. Witold Bednorz, Paweł Wolff. Rachunek Prawdopodobieństwa, WNE, Uniwersytet Warszawski. 1 Instytut Matematyki WYKŁAD 6 Witold Bednorz, Paweł Wolff 1 Instytut Matematyki Uniwersytet Warszawski Rachunek Prawdopodobieństwa, WNE, 2010-2011 Własności Wariancji Przypomnijmy, że VarX = E(X EX) 2 = EX 2 (EX) 2. Własności

Bardziej szczegółowo

Metoda największej wiarogodności

Metoda największej wiarogodności Wprowadzenie Założenia Logarytm funkcji wiarogodności Metoda Największej Wiarogodności (MNW) jest bardziej uniwersalną niż MNK metodą szacowania wartości nieznanych parametrów Wprowadzenie Założenia Logarytm

Bardziej szczegółowo

ZASTOSOWANIE DYNAMICZNEGO MODELU ZGODNEGO W ANALIZIE GOSPODARKI GÓRNEGO ŚLĄSKA

ZASTOSOWANIE DYNAMICZNEGO MODELU ZGODNEGO W ANALIZIE GOSPODARKI GÓRNEGO ŚLĄSKA Uniwersytet Ekonomiczny w Katowicach ZASTOSOWANIE DYNAMICZNEGO MODELU ZGODNEGO W ANALIZIE GOSPODARKI GÓRNEGO ŚLĄSKA Wprowadzenie W opracowaniu podjęto próbę porównania jakości modelu ekonometrycznego gospodarki

Bardziej szczegółowo

SIMR 2017/18, Statystyka, Przykładowe zadania do kolokwium - Rozwiązania

SIMR 2017/18, Statystyka, Przykładowe zadania do kolokwium - Rozwiązania SIMR 7/8, Statystyka, Przykładowe zadania do kolokwium - Rozwiązania. Dana jest gęstość prawdopodobieństwa zmiennej losowej ciągłej X : { a( x) dla x [, ] f(x) = dla pozostałych x Znaleźć: i) Wartość parametru

Bardziej szczegółowo

K wartość kapitału zaangażowanego w proces produkcji, w tys. jp.

K wartość kapitału zaangażowanego w proces produkcji, w tys. jp. Sprawdzian 2. Zadanie 1. Za pomocą KMNK oszacowano następującą funkcję produkcji: Gdzie: P wartość produkcji, w tys. jp (jednostek pieniężnych) K wartość kapitału zaangażowanego w proces produkcji, w tys.

Bardziej szczegółowo

Statystyka opisowa. Wykład V. Regresja liniowa wieloraka

Statystyka opisowa. Wykład V. Regresja liniowa wieloraka Statystyka opisowa. Wykład V. e-mail:e.kozlovski@pollub.pl Spis treści 1 Prosta regresji cechy Y względem cech X 1,..., X k. 2 3 Wyznaczamy zależność cechy Y od cech X 1, X 2,..., X k postaci Y = α 0 +

Bardziej szczegółowo