Blok akwizycji sygnałów pomiarowych

Wielkość: px
Rozpocząć pokaz od strony:

Download "Blok akwizycji sygnałów pomiarowych"

Transkrypt

1 Blok akwizycji sygałów pomiarowych C1 C UK UK Muliplekser aalogowy C UK PP US A C C1-C czujiki, UK układ kodycjoowaia, PP - układ próbkująco pamięajacy, A/C - przeworik aalogowo-cyrowy, US - układ serujący Kodycjoowaie sygału - wsępa ormalizacja sygału aalogowego - dososowaie posaci i zakresu zmieości sygału do ormy wymagaej a wejściu przeworika A/C. Zadaia układów kodycjoowaia: wyworzeie odpowiediego poziomu sygału wyjściowego dopasowaego do zakresu wejściowego przeworika A/C, izolacja galwaicza sygału wejściowego od układów pomiarowych, ograiczeie pasma częsoliwościowego sygału, usuięcie zakłóceń liearyzacja, przełączaie sygałów aalogowych z czujików pomiarowych. 61

2 Przykłady kodycjoowaia sygałów z czujików: ermopary - wzmaciaie, liearyzacja, kompesacja emperaury zimych końców, czujiki ermorezysacyje - zasilaie, liearyzacja, mosek esomeryczy - zasilaie moska, wzmaciaie, liearyzacja, rówoważeie moska, przeworiki piezoelekrycze - wzmaciaie ładuku, idukcyjościowe czujiki położeia LVDT - zasilaie prądem zmieym, liearyzacja, demodulacja. UKŁADY KONDYCJONOWANIA SYGNAŁÓW Wzmaciacze Fukcje wzmaciacza w sysemie pomiarowym wzmocieie sygału, dopasowaie impedacji, przewarzaie sygału apięciowego w prądowy i odwroie, specjale ukcje przewarzaia jak sumowaie, całkowaie, różiczkowaie sygałów, separacja źródła od obciążeia, 6

3 Paramery wzmaciacza: 1. Wzmocieie u r u 1 u u r / u r / u r u c (u 1 +u )/ u wy u wy1 u wy u r u 1 -u u wy u wy1 -u wy u wy u wy1 u wy wzmocieie różicowe: k ur u u wy r u cos wzmocieie sygału współbiezego: k uc u u wy C u r C 0. Współczyik łumieia sygału współbieżego (Commo Mode Rejecio Raio): CMRR 0log 3. Szerokość pasma. 4. Impedacja wejściowa i wyjściowa. 5. Wejściowy prąd i apięcie iezrówoważeia. 6. Wsp. emp. wejściowego apięcia iezrówow. 7. Wsp. zmia wejśc. ap. iezrów. od zmia ap. zasilaia. 8. Maksymala prędkość zmia apięcia wyjściowego 9. Maksymale apięcie wejściowe różicowe. 10. Maksymale wspóle apięcie wejściowe. 11. Napięcie zasilaia, pobór mocy, zakres emperaury pracy. k k ur uc 63

4 Wzmaciacze: 1. prądu przemieego (szerokopasmowe lub selekywe),. prądu sałego. Niedoskoałości wzmaciaczy prądu sałego: iesałość wzmocieia, szumy włase, dry apięciowy i prądowy, zależość wzmocieia od częsoliwości. Wzmaciacz pomiarowy: u we R G R 1 R 1 R R R R u wy duża impedacja wejściowa, iska wyjściowa, wysoki współczyik CMRR, u R wy 1 kur 1+ uwe RG 64

5 Wzmaciacz z izolacją galwaiczą - umożliwia galwaicze oddzieleie sygału wejściowego i wyjściowego oraz układu pomiarowego od źródła zasilającego. Ma zaczą impedację wejściową i bardzo małą impedację wyjściową Wzmaciacz z przewarzaiem zapewia iską warości wejściowego apięcia iezrówoważeia (apięcia oseu) a akże małą warości współczyika emperaurowego wejściowego apięcia iezrówoważeia. MODULATOR DETEKTOR U WE Wzmaciacz prądu zmieego U WY Geeraor ali ośej Wzmaciacz elekromeryczy charakeryzuje się bardzo małymi prądami polaryzującymi, a ogół miejszymi od 1pA używay do przewarzaia bardzo małych sygałów prądowych a duży sygał apięciowy. Wzmaciacz programowaly - programowo moża zmieiać wzmocieie (p. od 1 do 1000V/V). 65

6 Tłumiki sygałów elekryczych - sosuje się w przypadku sygałów przekraczających dopuszczaly zakres zmia a wejściu odbiorika. C 1 u we R 1 R u wy u we R 1 R C u wy Dzielik apięciowy u współczyik łumieia: a u R 1C1 RC Dzielik apięciowy skompesoway we R + 1 we R R u we R 1 R R 1 u wy R O łumik rezysorowy ypu T R 1 R O a 1 a + 1 R R O a a 1 Filry - wydzielają z całego dosępego widma - sygał użyeczy. Filry mają co ajmiej jedo: pasmo przepusowe - o małym łumieiu pasmo zaporowe - o dużym łumieiu. 66

7 Filr doloprzepusowy x 0 K() y 0 Filr góro-przepusowy x 0 K() y 0 Filr pasmowo-przepusowy x 0 K() y d?g Filr pasmowo-zaporowy x 0 K() y d?g 67

8 Filracja aalogowa pozwala a: wyselekcjoowaie użyeczych w dziedziie częsoliwości pasm sygału ilracja góro, dolo i pasmowo-przepusowa, pasmowo-zaporowa. polepszeie sosuku sygału do szumu, uikięcie aliasigu, usuięcie redu ilracja góroprzepusowa, aalizę częsoliwościową. Podsawowe zadaia sawiae ilrom w układach pomiarowych o elimiacja szumów i uikięcie zw. zjawiska aliasigu, czyli akładaia się widm przy przewarzaiu A/C. Wyróżiamy ilry: pasywe - budowae z elemeów R, C, akywe - budowae z użyciem wzmaciaczy operacyjych. R Biery ilr u we C u wy doloprzepusowy I rzędu C R 1 R u we u wy Akywy ilr góroprzepusowy I rzędu 68

9 Właściwości ajczęściej sosowaych ilrów doloprzepusowych: Filry Buerworha: ajbardziej płaska charakerysyka w paśmie przepusowym, duża sromość charakerysyki w paśmie przejściowym. Filry Czebyszewa: ajwiększa sromość charakerysyki zaalowaia w paśmie przepusowym, Filry Bessela: liiowa charakerysyki azowa w paśmie przepusowym, łagody spadek charakerysyki. 69

10 Mulipleksery - układy umożliwiający aprzemiee podłączeie wielu wielkości mierzoych - do jedego układu pomiarowego. Muliplekser składa się z kluczy, kórymi mogą być: przekaźiki koakroowe - mała szybkość przełączeń do kilkuse herców, mała rezysacja w saie zamkięcia (50 00mΩ) i bardzo duża w saie owarcia (poad 10GΩ), klucze półprzewodikowe - duża szybkość przełączeń do kilkuse MHz, duża rezysacja w saie zamkięcia (50 000Ω) i duża w saie owarcia. Koiguracje muliplekserów: we 1 we 1 we we we 3 we 4 wy we 3 we 4 wy we we jedoprzewodowe dwuprzewodowe 70

11 PRZETWARZANIE ANALOGOWO CYFROWE Przewarzaie ciągłego sygału aalogowego y() a sygał cyrowy polega a: dyskreyzacji sygału w czasie ( próbkowaie ), dyskreyzacji warości próbki ( kwaowaie ), zapisaiu skwaowaej warości próbki kodem cyrowym (kodowaie). Próbkowaie sygału aalogowego x() - pobraie i zapamięaiu chwilowej warości sygału aalogowego x(k). Próbki sygału aalogowego pobierae są a ogół w rówych odsępach czasu T p.. Orzymujemy zaem ciąg próbek x( k k T p ), dla k 1,,...,. T p - okres próbkowaia, p 1/ T p - częsoliwość próbkowaia. 71

12 y() a y Dla sygału: y()a si(π ) Skończoy czas a, w kórym wykoywae jes próbkowaie sygału y(), azyway czasem aperury powoduje iepewość ampliudową y pomiaru, gdy w ym czasie zachodzi zmiaa sygału. moża określić jaki powiie być czas aperury a, aby zachować założoą dokładość przewarzaia. Błąd ampliudowy przy maksymalej szybkości zmia ego sygału wyosi: dy y a d max Poieważ prędkość zmia y() jes rówa: dy d π A cos(π ) π więc, przyjmując, że błąd odiesioy do pełego zakresu zmia sygału ma być miejszy od ε dop : ε dop y A π A A a π moża określić miimaly czas aperury: π Np.: Jeżeli 1kHz i ε dop 0,1%, o wymagay czas aperury a 310s. a ε dop a A 7

13 Reprezeacja częsoliwościowa sygałów Sygał okresowy x()x(+t) moża przedsawić w posaci szeregu składowych rygoomeryczych, kórych częsoliwości są wielokroościami pulsacji podsawowej ω π π / T : gdzie: c + x( ) a 0 + c cos( ω0 + ϕ ) 1 a b widmo ampliudowe sygału x(), b ϕ arcg widmo azowe sygału x(), a x() c T ϕ Współczyiki a, b wyzacza się ze wzorów: α Τ/ x() cos(ω0)d Τ Τ/ b T/ T T/ 01,,,..., Sygał okresowy ma widmo dyskree. x() si (ω )d 0 73

14 Bardzo ważą rolę w prakyce odgrywa w posać zespoloa szeregu Fouriera: x j A e ω 0 ( ) kórego współczyiki A oblicza się z zależości: A 1 T / j ω T T / x( ) e Obie posacie szeregu Fouriera są ze sobą związae zależościami: arg( A a ) arg c A jb 0 d b arcg a ϕ Wielkości A azywae ampliudami zespoloymi -ej harmoiczej moża zapisać w posaci: A A e jϕ A x() ϕ T 74

15 W przypadku sygału ieokresowego x() rakuje się go sygał okresowy, kórego okres T dąży do ieskończoości, i orzymuje się w rozwiięciu Fouriera zamias dyskreej sumy, sumę ciągłą (całkę) ieskończeie małych składowych harmoiczych: x( ) 1 j ω ω X ( ) e dω π jω x( e d X ( ω ) ) X(ω) - widmo częsoliwościowe ukcji x() x() X(ω) ω x() X(ω) - przekszałceie Fouriera X(ω) x() - odwroe przekszałceie Fouriera Przedsawieie ukcji w dziedziie czasu lub w dziedziie częsoliwości określa daą ukcję jedozaczie. Dlaego ie ma zaczeia czy day sygał jes mierzoy w dziedziie czasu czy częsoliwości. Sygał ieokresowy ma widmo ciągłe. 75

16 Zmiay częsoliwościowe sygału a skuek zby małej częsoliwości próbkowaia 76

17 Rozważmy sygał ciągły : x( ) si(π 0) W wyiku próbkowaia ego sygału z częsoliwością p 1/ T p orzymujemy ciąg próbek: x Poieważ: x( T ) si( 0 T ) p π p 0,1, Κ si( ϕ ) si( ϕ + πm) m 0, ± 1, ± Κ więc możemy zapisać: x si( π Tp + πm) si(π ( 0 + m ) T 0 p Tp Jeżeli m jes wielokroością, z m k o: x si( π Tp) si(π ( 0 + k ) T 0 p p Ozacza o, że orzymay ciąg próbek x może reprezeować ieskończeie wiele sygałów siusoidalych o częsoliwościach określoych wzorem: k ( 0 + k ) k 0, ± 1, ± Κ p ) ) p6 Hz 1 Hz 7 Hz -5 Hz 77

18 Wyika sąd, że widmo dowolego ciągu próbek sygału zawiera okresowe powieleia orygialego widma sygału próbkowaego. Okres między powieleiami jes rówy p. X() Widmo sygału x() X() Widmo ciągu próbek x p p p Twierdzeie Shaoa-Koielikowa o próbkowaiu: Jeżeli widmo sygału x() jes ograiczoe od góry do częsoliwości max, o x() może być jedozaczie odworzoy z ciągu swoich próbek x jeżeli: p max Jeśli sygał wejściowy ie ma ograiczoego pasma częsoliwości do p / o próbkowaie sygału ciągłego ze sałym okresem Tp jes źródłem aliasigu, czyli akładaia się a siebie powórzeń jego widma. X() Aliasig -3/ p - p / p / 3/ p 78

19 Zapobiec aliasigowi moża poprzez ilrację sygału aalogowego przed próbkowaiem ak, aby ograiczyć jego widmo do częsoliwości ie większej iż p /. X() K() X 1 () - p / p / - p / p / Filr ayaliasigowy - p / p / X 1D () -3/ p - p / p / 3/ p Filracji ayaliasigowej igdy ie ależy zaiedbywać, poieważ awe sosując częsoliwość próbkowaia, spełiającą waruek Shaoa- Koielikowa, ie możemy mieć 100% pewości, że sygałowi ie owarzyszą zakłóceia o częsoliwości przekraczającej p /. Należy wyraźie zazaczyć, że zasosowaie ilracji cyrowej ie może zapobiec aliasigowi, poieważ eek e powsaje wcześiej - a eapie próbkowaia. 79

Sygnały pojęcie i klasyfikacja, metody opisu.

Sygnały pojęcie i klasyfikacja, metody opisu. Sygały pojęcie i klasyfikacja, meody opisu. Iformacja przekazywaa jes za pośredicwem sygałów, kóre przeoszą eergię. Sygał jes o fukcja czasowa dowolej wielkości o charakerze eergeyczym, w kórym moża wyróżić

Bardziej szczegółowo

Przetwarzanie analogowocyfrowe

Przetwarzanie analogowocyfrowe Przewarzanie analogowocyfrowe Z. Serweciński 05-03-2011 Przewarzanie u analogowego na cyfrowy Proces przewarzania u analogowego (ciągłego) na cyfrowy składa się z rzech podsawowych operacji: 1. Próbkowanie

Bardziej szczegółowo

TRANZYSTORY POLOWE Z IZOLOWANĄ BRAMKĄ

TRANZYSTORY POLOWE Z IZOLOWANĄ BRAMKĄ 4-3-9 TANZYSTOY POLOW TANZYSTOY POLOW ZŁĄCZOW (Jucio Field ffec Trasisors) ezysacja wejściowa (GAT SOC) razysora sięga 9 TANZYSTOY POLOW Z ZOLOWANĄ BAMKĄ solaed Gae Field ffec Trasisors Meal Oxide Semicoducor

Bardziej szczegółowo

Zasilacz przetwarza energię elektryczną pobieraną z sieci. Standardowy schemat blokowy zasilacza: filtr. prostownik

Zasilacz przetwarza energię elektryczną pobieraną z sieci. Standardowy schemat blokowy zasilacza: filtr. prostownik Zasilacze Źródło eergii elekryczej dla układu wykoawczego: źródło apięciowe, źródło prądowe (ograiczik prądu), zabezpieczeie przed przegrzaiem, zapaleiem, porażeiem ip. Zasilacz przewarza eergię elekryczą

Bardziej szczegółowo

TRANZYSTORY POLOWE JFET I MOSFET

TRANZYSTORY POLOWE JFET I MOSFET POLTECHNKA RZEZOWKA Kaedra Podsaw Elekroiki srukcja Nr5 F 00/003 sem. lei TRANZYTORY POLOWE JFET MOFET Cel ćwiczeia: Pomiar podsawowych charakerysyk i wyzaczeie paramerów określających właściwości razysora

Bardziej szczegółowo

1. Rezonans w obwodach elektrycznych 2. Filtry częstotliwościowe 3. Sprzężenia magnetyczne 4. Sygnały odkształcone

1. Rezonans w obwodach elektrycznych 2. Filtry częstotliwościowe 3. Sprzężenia magnetyczne 4. Sygnały odkształcone Wyład 6 - wersja srócona. ezonans w obwodach elerycznych. Filry częsoliwościowe. Sprzężenia magneyczne 4. Sygnały odszałcone AMD ezonans w obwodach elerycznych Zależności impedancji dwójnia C od pulsacji

Bardziej szczegółowo

FILTRY FILTR. - dziedzina pracy filtru = { t, f, ω } Filtr przekształca w sposób poŝądany sygnał wejściowy w sygnał wyjściowy: Filtr: x( ) => y( ).

FILTRY FILTR. - dziedzina pracy filtru = { t, f, ω } Filtr przekształca w sposób poŝądany sygnał wejściowy w sygnał wyjściowy: Filtr: x( ) => y( ). FILTRY Sygał wejściowy FILTR y( ) F[x( )] Sygał wyjściowy - dziedzia pracy filtru { t, f, } Filtr przekształca w sposób poŝąday sygał wejściowy w sygał wyjściowy: Filtr: x( ) > y( ). Działaie filtru moŝe

Bardziej szczegółowo

POMIAR WARTOŚCI SKUTECZNEJ NAPIĘĆ OKRESOWO ZMIENNYCH METODĄ ANALOGOWEGO PRZETWARZANIA SYGNAŁU

POMIAR WARTOŚCI SKUTECZNEJ NAPIĘĆ OKRESOWO ZMIENNYCH METODĄ ANALOGOWEGO PRZETWARZANIA SYGNAŁU POMIAR WARTOŚCI SKTECZNEJ NAPIĘĆ OKRESOWO ZMIENNYCH METODĄ ANALOGOWEGO PRZETWARZANIA SYGNAŁ CEL ĆWICZENIA Celem ćwiczeia jest zwróceie uwagi a ograiczeie zakresu poprawego pomiaru apięć zmieych wyikające

Bardziej szczegółowo

PRZETWARZANIE SYGNAŁÓW ANALOGOWYCH NA SYGNAŁY CYFROWE

PRZETWARZANIE SYGNAŁÓW ANALOGOWYCH NA SYGNAŁY CYFROWE PRZETWARZANIE SYGNAŁÓW ANALOGOWYCH NA SYGNAŁY CYFROWE Si reści 1. Deiicja róbkowaia ygału. Twierdzeie Shaoa 3. Aliaig czyli uożamiaie 4. Przewarzaie obrazów aalogowych a dykree 1 Próbkowaie ygałów ag.

Bardziej szczegółowo

Układy zasilania tranzystorów. Punkt pracy tranzystora Tranzystor bipolarny. Punkt pracy tranzystora Tranzystor unipolarny

Układy zasilania tranzystorów. Punkt pracy tranzystora Tranzystor bipolarny. Punkt pracy tranzystora Tranzystor unipolarny kłady zasilania ranzysorów Wrocław 28 Punk pracy ranzysora Punk pracy ranzysora Tranzysor unipolarny SS GS p GS S S opuszczalny oszar pracy (safe operaing condiions SOA) P max Zniekszałcenia nieliniowe

Bardziej szczegółowo

Politechnika Wrocławska Wydział Elektroniki, Katedra K-4. Klucze analogowe. Wrocław 2017

Politechnika Wrocławska Wydział Elektroniki, Katedra K-4. Klucze analogowe. Wrocław 2017 Poliechnika Wrocławska Klucze analogowe Wrocław 2017 Poliechnika Wrocławska Pojęcia podsawowe Podsawą realizacji układów impulsowych oraz cyfrowych jes wykorzysanie wielkosygnałowej pacy elemenów akywnych,

Bardziej szczegółowo

Przetworniki analogowo-cyfrowe i cyfrowo- analogowe

Przetworniki analogowo-cyfrowe i cyfrowo- analogowe Przetworiki aalogowo-cyfrowe i cyfrowo- aalogowe 14.1. PRZETWORNIKI C/A Przetworik cyfrowo-aalogowy (ag. Digital-to-Aalog Coverter) jest to układ przetwarzający dyskrety sygał cyfrowy a rówowaŝy mu sygał

Bardziej szczegółowo

POMIAR PARAMETRÓW SYGNAŁOW NAPIĘCIOWYCH METODĄ PRÓKOWANIA I CYFROWEGO PRZETWARZANIA SYGNAŁU

POMIAR PARAMETRÓW SYGNAŁOW NAPIĘCIOWYCH METODĄ PRÓKOWANIA I CYFROWEGO PRZETWARZANIA SYGNAŁU Pomiar paramerów sygnałów napięciowych. POMIAR PARAMERÓW SYGNAŁOW NAPIĘCIOWYCH MEODĄ PRÓKOWANIA I CYFROWEGO PRZEWARZANIA SYGNAŁU Cel ćwiczenia Poznanie warunków prawidłowego wyznaczania elemenarnych paramerów

Bardziej szczegółowo

ANALIZA HARMONICZNA RZECZYWISTYCH PRZEBIEGÓW DRGAŃ

ANALIZA HARMONICZNA RZECZYWISTYCH PRZEBIEGÓW DRGAŃ Ćwiczenie 8 ANALIZA HARMONICZNA RZECZYWISTYCH PRZEBIEGÓW DRGAŃ. Cel ćwiczenia Analiza złożonego przebiegu drgań maszyny i wyznaczenie częsoliwości składowych harmonicznych ego przebiegu.. Wprowadzenie

Bardziej szczegółowo

Wzmacniacze operacyjne

Wzmacniacze operacyjne Wzmacniacze operacyjne Wrocław 2015 Wprowadzenie jest wzmacniaczem prądu stałego o dużym wzmocnieniu napięciom (różnicom). Wzmacniacz ten posiada wejście symetryczne (różnicowe) oraz jście niesymetryczne.

Bardziej szczegółowo

4. Modulacje kątowe: FM i PM. Układy demodulacji częstotliwości.

4. Modulacje kątowe: FM i PM. Układy demodulacji częstotliwości. EiT Vsemesr AE Układy radioelekroniczne Modulacje kąowe 1/26 4. Modulacje kąowe: FM i PM. Układy demodulacji częsoliwości. 4.1. Modulacje kąowe wprowadzenie. Cecha charakerysyczna: na wykresie wskazowym

Bardziej szczegółowo

Niepewności pomiarowe

Niepewności pomiarowe Niepewości pomiarowe Obserwacja, doświadczeie, pomiar Obserwacja zjawisk fizyczych polega a badaiu ych zjawisk w warukach auralych oraz a aalizie czyików i waruków, od kórych zjawiska e zależą. Waruki

Bardziej szczegółowo

RÓWNANIA RÓŻNICZKOWE WYKŁAD 11

RÓWNANIA RÓŻNICZKOWE WYKŁAD 11 RÓWNANIA RÓŻNICZKOWE WYKŁAD Szeregi potęgowe Defiicja Fukcja y = f () jest klasy C jeżeli jest -krotie różiczkowala i jej -ta pochoda jest fukcją ciągłą. Defiicja Fukcja y = f () jest klasy C, jeżeli jest

Bardziej szczegółowo

LABORATORIUM PODSTAWY ELEKTRONIKI Badanie Bramki X-OR

LABORATORIUM PODSTAWY ELEKTRONIKI Badanie Bramki X-OR LORTORIUM PODSTWY ELEKTRONIKI adanie ramki X-OR 1.1 Wsęp eoreyczny. ramka XOR ramka a realizuje funkcję logiczną zwaną po angielsku EXLUSIVE-OR (WYŁĄZNIE LU). Polska nazwa brzmi LO. Funkcję EX-OR zapisuje

Bardziej szczegółowo

Metrologia: miary dokładności. dr inż. Paweł Zalewski Akademia Morska w Szczecinie

Metrologia: miary dokładności. dr inż. Paweł Zalewski Akademia Morska w Szczecinie Metrologia: miary dokładości dr iż. Paweł Zalewski Akademia Morska w Szczeciie Miary dokładości: Najczęściej rozkład pomiarów w serii wokół wartości średiej X jest rozkładem Gaussa: Prawdopodobieństwem,

Bardziej szczegółowo

PRZETWARZANIE SYGNAŁÓW ANALOGOWYCH NA SYGNAŁY CYFROWE

PRZETWARZANIE SYGNAŁÓW ANALOGOWYCH NA SYGNAŁY CYFROWE PRZETWARZANIE SYGNAŁÓW ANALOGOWYCH NA SYGNAŁY CYFROWE Si reści 1. Deiicja róbkowaia ygału. Twierdzeie Shaoa 3. Aliaig czyli uożamiaie 4. Przewarzaie obrazów aalogowych a dykree 1 Próbkowaie ygałów ag.

Bardziej szczegółowo

Podstawy przetwarzania sygnałów. Lesław Dereń, 239 C4

Podstawy przetwarzania sygnałów. Lesław Dereń, 239 C4 Podsawy przewarzaia sygałów Lesław Dereń, 39 C4 Kosulacje: poiedziałek, godz. 9: : worek, godz. 3: 5: zo.ia.pwr.wroc.pl/~dere Lieraura. R. Lyos, Wprowadzeie do cyfrowego przewarzaia sygałów, WKiŁ, Warszawa,

Bardziej szczegółowo

D:\materialy\Matematyka na GISIP I rok DOC\07 Pochodne\8A.DOC 2004-wrz-15, 17: Obliczanie granic funkcji w punkcie przy pomocy wzoru Taylora.

D:\materialy\Matematyka na GISIP I rok DOC\07 Pochodne\8A.DOC 2004-wrz-15, 17: Obliczanie granic funkcji w punkcie przy pomocy wzoru Taylora. D:\maerialy\Maemayka a GISIP I rok DOC\7 Pochode\8ADOC -wrz-5, 7: 89 Obliczaie graic fukcji w pukcie przy pomocy wzoru Taylora Wróćmy do wierdzeia Taylora (wzory (-( Tw Szczególie waża dla dalszych R rozważań

Bardziej szczegółowo

Wzmacniacze operacyjne

Wzmacniacze operacyjne e operacyjne Wrocław 2018 Wprowadzenie operacyjny jest wzmacniaczem prądu stałego o dużym wzmocnieniu napięciom (różnicom). ten posiada wejście symetryczne (różnicowe) oraz jście niesymetryczne. N P E

Bardziej szczegółowo

21. CAŁKA KRZYWOLINIOWA NIESKIEROWANA. x = x(t), y = y(t), a < t < b,

21. CAŁKA KRZYWOLINIOWA NIESKIEROWANA. x = x(t), y = y(t), a < t < b, CAŁA RZYWOLINIOWA NIESIEROWANA rzywą o rówaiach parameryczych: = (), y = y(), a < < b, azywamy łukiem regularym (gładkim), gdy spełioe są asępujące waruki: a) fukcje () i y() mają ciągłe pochode, kóre

Bardziej szczegółowo

Detekcja synchroniczna i PLL. Układ mnoŝący -detektor fazy!

Detekcja synchroniczna i PLL. Układ mnoŝący -detektor fazy! Deekcja synchroniczna i PLL Układ mnoŝący -deekor azy! VCC VCC U wy, średnie Deekcja synchroniczna Gdy na wejścia podamy przebiegi o różnych częsoliwościach U cosω i U cosω +φ oraz U ma dużą ampliudę o:

Bardziej szczegółowo

WYKŁAD 6 TRANZYSTORY POLOWE

WYKŁAD 6 TRANZYSTORY POLOWE WYKŁA 6 RANZYSORY POLOWE RANZYSORY POLOWE ZŁĄCZOWE (Juctio Field Effect rasistors) 55 razystor polowy złączowy zbudoway jest z półprzewodika (w tym przypadku typu p), w który wdyfudowao dwa obszary bramki

Bardziej szczegółowo

TERAZ O SYGNAŁACH. Przebieg i widmo Zniekształcenia sygnałów okresowych Miary sygnałów Zasady cyfryzacji sygnałów analogowych

TERAZ O SYGNAŁACH. Przebieg i widmo Zniekształcenia sygnałów okresowych Miary sygnałów Zasady cyfryzacji sygnałów analogowych TERAZ O SYGNAŁACH Przebieg i widmo Zniekształcenia sygnałów okresowych Miary sygnałów Zasady cyfryzacji sygnałów analogowych Sygnał sinusoidalny Sygnał sinusoidalny (także cosinusoidalny) należy do podstawowych

Bardziej szczegółowo

LABORATORIUM PODSTAW ELEKTRONIKI PROSTOWNIKI

LABORATORIUM PODSTAW ELEKTRONIKI PROSTOWNIKI ZESPÓŁ LABORATORIÓW TELEMATYKI TRANSPORTU ZAKŁAD TELEKOMUNIKJI W TRANSPORCIE WYDZIAŁ TRANSPORTU POLITECHNIKI WARSZAWSKIEJ LABORATORIUM PODSTAW ELEKTRONIKI INSTRUKCJA DO ĆWICZENIA NR 5 PROSTOWNIKI DO UŻYTKU

Bardziej szczegółowo

Wykład FIZYKA I. 2. Kinematyka punktu materialnego. Dr hab. inż. Władysław Artur Woźniak

Wykład FIZYKA I. 2. Kinematyka punktu materialnego.  Dr hab. inż. Władysław Artur Woźniak Dr hab. iż. Władysław Arur Woźiak Wykład FIZYKA I. Kiemayka puku maerialego Dr hab. iż. Władysław Arur Woźiak Isyu Fizyki Poliechiki Wrocławskiej hp://www.if.pwr.wroc.pl/~woziak/fizyka1.hml Dr hab. iż.

Bardziej szczegółowo

Jarosław Wróblewski Analiza Matematyczna A1, zima 2011/12. Kresy zbiorów. x Z M R

Jarosław Wróblewski Analiza Matematyczna A1, zima 2011/12. Kresy zbiorów. x Z M R Kresy zbiorów. Ćwiczeia 21.11.2011: zad. 197-229 Kolokwium r 7, 22.11.2011: materiał z zad. 1-249 Defiicja: Zbiór Z R azywamy ograiczoym z góry, jeżeli M R x Z x M. Każdą liczbę rzeczywistą M R spełiającą

Bardziej szczegółowo

13. Optyczne łącza analogowe

13. Optyczne łącza analogowe TELEKOMUNIKACJA OPTOFALOWA 13. Opyczne łącza analogowe Spis reści: 13.1. Wprowadzenie 13.. Łącza analogowe z bezpośrednią modulacją mocy 13.3. Łącza analogowe z modulacją zewnęrzną 13.4. Paramery łącz

Bardziej szczegółowo

10. Demodulatory asynchroniczne

10. Demodulatory asynchroniczne 56 0. Deodulaory asychroicze Cele ćwiczeia Badaie właściwości asychroiczej i sychroiczej deodulacji AM. Zapozaie z właściwościai odulacji cyrowych FSK i PSK. Badaie deodulaora FSK i BPSK. Zapozaie z przykładai

Bardziej szczegółowo

Zadania z algebry liniowej - sem. I Liczby zespolone

Zadania z algebry liniowej - sem. I Liczby zespolone Zadaia z algebry liiowej - sem. I Liczby zespoloe Defiicja 1. Parę uporządkowaą liczb rzeczywistych x, y azywamy liczbą zespoloą i ozaczamy z = x, y. Zbiór wszystkich liczb zespoloych ozaczamy przez C

Bardziej szczegółowo

Gr.A, Zad.1. Gr.A, Zad.2 U CC R C1 R C2. U wy T 1 T 2. U we T 3 T 4 U EE

Gr.A, Zad.1. Gr.A, Zad.2 U CC R C1 R C2. U wy T 1 T 2. U we T 3 T 4 U EE Niekóre z zadań dają się rozwiązać niemal w pamięci, pamięaj jednak, że warunkiem uzyskania różnej od zera liczby punków za każde zadanie, jes przedsawienie, oprócz samego wyniku, akże rozwiązania, wyjaśniającego

Bardziej szczegółowo

Znikanie sumy napięć ïród»owych i sumy prądów w wielofazowym układzie symetrycznym

Znikanie sumy napięć ïród»owych i sumy prądów w wielofazowym układzie symetrycznym Obwody trójfazowe... / OBWODY TRÓJFAZOWE Zikaie sumy apięć ïród»owych i sumy prądów w wielofazowym układzie symetryczym liczba faz układu, α 2π / - kąt pomiędzy kolejymi apięciami fazowymi, e jα, e -jα

Bardziej szczegółowo

C d u. Po podstawieniu prądu z pierwszego równania do równania drugiego i uporządkowaniu składników lewej strony uzyskuje się:

C d u. Po podstawieniu prądu z pierwszego równania do równania drugiego i uporządkowaniu składników lewej strony uzyskuje się: Zadanie. Obliczyć przebieg napięcia na pojemności C w sanie przejściowym przebiegającym przy nasępującej sekwencji działania łączników: ) łączniki Si S są oware dla < 0, ) łącznik S zamyka się w chwili

Bardziej szczegółowo

Jarosław Wróblewski Analiza Matematyczna 1A, zima 2012/13. Ciągi.

Jarosław Wróblewski Analiza Matematyczna 1A, zima 2012/13. Ciągi. Jarosław Wróblewski Aaliza Matematycza 1A, zima 2012/13 Ciągi. Ćwiczeia 5.11.2012: zad. 140-173 Kolokwium r 5, 6.11.2012: materiał z zad. 1-173 Ćwiczeia 12.11.2012: zad. 174-190 13.11.2012: zajęcia czwartkowe

Bardziej szczegółowo

{ x n } = {,1.1, 0.2,2.1,3.0, 1.2, }

{ x n } = {,1.1, 0.2,2.1,3.0, 1.2, } CPS 6/7 Defiicje: SYGNAŁY DYSKRETNE USygały dyskree w czasieu rerezeowae są rzez ciągi liczb i ozaczae jako {x[]} Elemey ych ciągów azywa się UróbkamiU, warości róbek sygałów ozacza się jako x[] dla całkowiych

Bardziej szczegółowo

G:\AA_Wyklad 2000\FIN\DOC\Fourier.doc. Drgania i fale II rok Fizyki BC. zawierają fazy i amplitudy.

G:\AA_Wyklad 2000\FIN\DOC\Fourier.doc. Drgania i fale II rok Fizyki BC. zawierają fazy i amplitudy. Elemety aalizy ourierowskiej: W przypadku drgań było: () t A + A ( ω t + φ ) + A os( 2ω t + φ ) gdzie + A ω 0 os 2 2 os( ω t + φ ) +... 2π Moża zapisać jako: [ ] () t A + C exp( iω t) + C ( iω t) gdzie

Bardziej szczegółowo

Liniowe układy scalone. Wykład 4 Parametry wzmacniaczy operacyjnych

Liniowe układy scalone. Wykład 4 Parametry wzmacniaczy operacyjnych Liniowe układy scalone Wykład 4 Parametry wzmacniaczy operacyjnych 1. Wzmocnienie napięciowe z otwartą pętlą ang. open loop voltage gain Stosunek zmiany napięcia wyjściowego do wywołującej ją zmiany różnicowego

Bardziej szczegółowo

2. Cyfrowe reprezentacje sygnału fonicznego

2. Cyfrowe reprezentacje sygnału fonicznego 3. Cyrowe reprezenacje sygnału onicznego Treść niniejszego rozdziału zosała opracowana przy założeniu, że Czyelnik jes zaznajomiony z podsawami eorii sygnałów dyskrenych. Podsawowe zagadnienia, związane

Bardziej szczegółowo

Termoanemometr wzorcowanie sondy. Pomiar rozkładu prędkości termoanemometrem.

Termoanemometr wzorcowanie sondy. Pomiar rozkładu prędkości termoanemometrem. Termoaemomer wzorcowaie sody. Pomiar rozkładu prędkości ermoaemomerem.. Cel ćwiczeia Celem ćwiczeia jes pozaie podsawowych właściwości merologiczych ermoaemomeru sałoemperaurowego, sposobu jego wzorcowaia

Bardziej szczegółowo

8. Realizacja projektowanie i pomiary filtrów IIR

8. Realizacja projektowanie i pomiary filtrów IIR 53 8. Realizacja projektowanie i pomiary filtrów IIR Cele ćwiczenia Realizacja na zestawie TMX320C5515 ezdsp prostych liniowych filtrów cyfrowych. Pomiary charakterystyk amplitudowych zrealizowanych filtrów

Bardziej szczegółowo

Podstawowe funkcje przetwornika C/A

Podstawowe funkcje przetwornika C/A ELEKTRONIKA CYFROWA PRZETWORNIKI CYFROWO-ANALOGOWE I ANALOGOWO-CYFROWE Literatura: 1. Rudy van de Plassche: Scalone przetworniki analogowo-cyfrowe i cyfrowo-analogowe, WKŁ 1997 2. Marian Łakomy, Jan Zabrodzki:

Bardziej szczegółowo

PL B1. Sposób i układ pomiaru całkowitego współczynnika odkształcenia THD sygnałów elektrycznych w systemach zasilających

PL B1. Sposób i układ pomiaru całkowitego współczynnika odkształcenia THD sygnałów elektrycznych w systemach zasilających RZECZPOSPOLITA POLSKA (12) OPIS PATENTOWY (19) PL (11) 210969 (13) B1 (21) Numer zgłoszenia: 383047 (51) Int.Cl. G01R 23/16 (2006.01) G01R 23/20 (2006.01) Urząd Patentowy Rzeczypospolitej Polskiej (22)

Bardziej szczegółowo

POLITECHNIKA ŚLĄSKA, WYDZIAŁ ELEKTRYCZNY, INSTYTUT ELEKTROTECHNIKI I INFORMATYKI. Wykresy w Excelu TOMASZ ADRIKOWSKI GLIWICE,

POLITECHNIKA ŚLĄSKA, WYDZIAŁ ELEKTRYCZNY, INSTYTUT ELEKTROTECHNIKI I INFORMATYKI. Wykresy w Excelu TOMASZ ADRIKOWSKI GLIWICE, POLITECHNIKA ŚLĄSKA, WYDZIAŁ ELEKTRYCZNY, INSTYTUT ELEKTROTECHNIKI I INFORMATYKI Wykresy w Excelu TOMASZ ADRIKOWSKI GLIWICE, -- EXCEL Wykresy. Kolumę A, B wypełić serią daych: miesiąc, średia temperatura.

Bardziej szczegółowo

ANALIZA CZĘSTOTLIWOŚCIOWA SYGNAŁÓW. Spis treści

ANALIZA CZĘSTOTLIWOŚCIOWA SYGNAŁÓW. Spis treści ANALIZA CZĘSOLIWOŚCIOWA SYGNAŁÓW Spi reści. Dykree widmo ygałów okreowych. Związek między zeregiem i raormacją Fouriera 3. Waruki iieia i odwracalości raormacji Fouriera 4. Widma ygałów 5. Właości raormacji

Bardziej szczegółowo

19. Zasilacze impulsowe

19. Zasilacze impulsowe 19. Zasilacze impulsowe 19.1. Wsęp Sieć energeyczna (np. 230V, 50 Hz Prosownik sieciowy Rys. 19.1.1. Zasilacz o działaniu ciągłym Sabilizaor napięcia Napięcie sałe R 0 Napięcie sałe E A Zasilacz impulsowy

Bardziej szczegółowo

f = 2 śr MODULACJE

f = 2 śr MODULACJE 5. MODULACJE 5.1. Wstęp Modulacja polega na odzwierciedleniu przebiegu sygnału oryginalnego przez zmianę jednego z parametrów fali nośnej. Przyczyny stosowania modulacji: 1. Umożliwienie wydajnego wypromieniowania

Bardziej szczegółowo

( 3 ) Kondensator o pojemności C naładowany do różnicy potencjałów U posiada ładunek: q = C U. ( 4 ) Eliminując U z równania (3) i (4) otrzymamy: =

( 3 ) Kondensator o pojemności C naładowany do różnicy potencjałów U posiada ładunek: q = C U. ( 4 ) Eliminując U z równania (3) i (4) otrzymamy: = ROZŁADOWANIE KONDENSATORA I. el ćwiczenia: wyznaczenie zależności napięcia (i/lub prądu I ) rozładowania kondensaora w funkcji czasu : = (), wyznaczanie sałej czasowej τ =. II. Przyrządy: III. Lieraura:

Bardziej szczegółowo

Czas trwania obligacji (duration)

Czas trwania obligacji (duration) Czas rwaia obligacji (duraio) Do aalizy ryzyka wyikającego ze zmia sóp proceowych (szczególie ryzyka zmiay cey) wykorzysuje się pojęcie zw. średiego ermiu wykupu obligacji, zwaego rówież czasem rwaia obligacji

Bardziej szczegółowo

Rys.1. Podstawowa klasyfikacja sygnałów

Rys.1. Podstawowa klasyfikacja sygnałów Kaedra Podsaw Sysemów echnicznych - Podsawy merologii - Ćwiczenie 1. Podsawowe rodzaje i ocena sygnałów Srona: 1 1. CEL ĆWICZENIA Celem ćwiczenia jes zapoznanie się z podsawowymi rodzajami sygnałów, ich

Bardziej szczegółowo

Informatyka Stosowana-egzamin z Analizy Matematycznej Każde zadanie należy rozwiązać na oddzielnej, podpisanej kartce!

Informatyka Stosowana-egzamin z Analizy Matematycznej Każde zadanie należy rozwiązać na oddzielnej, podpisanej kartce! Iformatyka Stosowaa-egzami z Aalizy Matematyczej Każde zadaie ależy rozwiązać a oddzielej, podpisaej kartce! y, Daa jest fukcja f (, + y, a) zbadać ciągłość tej fukcji f b) obliczyć (,) (, (, (,) c) zbadać,

Bardziej szczegółowo

CHARAKTERYSTYKI CZĘSTOTLIWOŚCIOWE PODSTAWOWYCH CZŁONÓW LINIOWYCH UKŁADÓW AUTOMATYKI

CHARAKTERYSTYKI CZĘSTOTLIWOŚCIOWE PODSTAWOWYCH CZŁONÓW LINIOWYCH UKŁADÓW AUTOMATYKI CHARAKERYSYKI CZĘSOLIWOŚCIOWE PODSAWOWYCH CZŁONÓW LINIOWYCH UKŁADÓW AUOMAYKI Do podstawowych form opisu dyamii elemetów automatyi (oprócz rówań różiczowych zaliczamy trasmitację operatorową s oraz trasmitację

Bardziej szczegółowo

Filtracja. Krzysztof Patan

Filtracja. Krzysztof Patan Filtracja Krzysztof Patan Wprowadzenie Działanie systemu polega na przetwarzaniu sygnału wejściowego x(t) na sygnał wyjściowy y(t) Równoważnie, system przetwarza widmo sygnału wejściowego X(jω) na widmo

Bardziej szczegółowo

POMIAR WSPÓŁCZYNNIKÓW CHARAKTERYZUJĄCYCH KSZTAŁT SYGNAŁÓW ELEKTRYCZNYCH

POMIAR WSPÓŁCZYNNIKÓW CHARAKTERYZUJĄCYCH KSZTAŁT SYGNAŁÓW ELEKTRYCZNYCH ĆWICZENIE NR POMIAR WSPÓŁCZYNNIKÓW CHARAKTERYZUJĄCYCH KSZTAŁT SYGNAŁÓW ELEKTRYCZNYCH.. Cel ćwiczeia Celem ćwiczeia jest pozaie metod pomiaru współczyików charakteryzujących kształt sygałów apięciowych

Bardziej szczegółowo

ANALIZA CZĘSTOTLIWOŚCIOWA SYGNAŁÓW. Spis treści

ANALIZA CZĘSTOTLIWOŚCIOWA SYGNAŁÓW. Spis treści ANALIZA CZĘSOLIWOŚCIOWA SYGNAŁÓW Spi reści. Dykree widmo ygałów okreowych. Związek między zeregiem i raormacją Fouriera 3. Waruki iieia i odwracalości raormacji Fouriera 4. Widma ygałów 5. Właości raormacji

Bardziej szczegółowo

Układy akwizycji danych. Komparatory napięcia Przykłady układów

Układy akwizycji danych. Komparatory napięcia Przykłady układów Układy akwizycji danych Komparatory napięcia Przykłady układów Komparatory napięcia 2 Po co komparator napięcia? 3 Po co komparator napięcia? Układy pomiarowe, automatyki 3 Po co komparator napięcia? Układy

Bardziej szczegółowo

Wykład 4 Metoda Klasyczna część III

Wykład 4 Metoda Klasyczna część III Teoria Obwodów Wykład 4 Meoda Klasyczna część III Prowadzący: dr inż. Tomasz Sikorski Insyu Podsaw Elekroechniki i Elekroechnologii Wydział Elekryczny Poliechnika Wrocławska D-, 5/8 el: (7) 3 6 fax: (7)

Bardziej szczegółowo

WYBRANE DZIAŁY ANALIZY MATEMATYCZNEJ. Wykład VII Przekształcenie Fouriera.

WYBRANE DZIAŁY ANALIZY MATEMATYCZNEJ. Wykład VII Przekształcenie Fouriera. 7. Całka Fouriera w posaci rzeczywisej. Wykład VII Przekszałcenie Fouriera. Doychczas rozparywaliśmy szeregi Fouriera funkcji w ograniczonym przedziale [ l, l] lub [ ] Teraz pokażemy analogicznie przedsawienie

Bardziej szczegółowo

2 n < 2n + 2 n. 2 n = 2. 2 n 2 +3n+2 > 2 0 = 1 = 2. n+2 n 1 n+1 = 2. n+1

2 n < 2n + 2 n. 2 n = 2. 2 n 2 +3n+2 > 2 0 = 1 = 2. n+2 n 1 n+1 = 2. n+1 Tekst a iebiesko jest kometarzem lub treścią zadaia. Zadaie 1. Zbadaj mootoiczość i ograiczoość ciągów. a = + 3 + 1 Ciąg jest mootoiczie rosący i ieograiczoy poieważ różica kolejych wyrazów jest dodatia.

Bardziej szczegółowo

Liniowe układy scalone w technice cyfrowej

Liniowe układy scalone w technice cyfrowej Liniowe układy scalone w technice cyfrowej Dr inż. Adam Klimowicz konsultacje: wtorek, 9:15 12:00 czwartek, 9:15 10:00 pok. 132 aklim@wi.pb.edu.pl Literatura Łakomy M. Zabrodzki J. : Liniowe układy scalone

Bardziej szczegółowo

Politechnika Wrocławska Instytut Telekomunikacji, Teleinformatyki i Akustyki. Klucze analogowe. Wrocław 2010

Politechnika Wrocławska Instytut Telekomunikacji, Teleinformatyki i Akustyki. Klucze analogowe. Wrocław 2010 Poliechnika Wrocławska nsyu elekomunikacji, eleinformayki i Akusyki Klucze analogowe Wrocław 200 Poliechnika Wrocławska nsyu elekomunikacji, eleinformayki i Akusyki Pojęcia podsawowe Podsawą realizacji

Bardziej szczegółowo

Zadania z analizy matematycznej - sem. I Szeregi liczbowe

Zadania z analizy matematycznej - sem. I Szeregi liczbowe Zadaia z aalizy matematyczej - sem. I Szeregi liczbowe Defiicja szereg ciąg sum częściowyc. Szeregiem azywamy parę uporządkowaą a ) S ) ) ciągów gdzie: ciąg a ) ciąg S ) jest day jest ciągiem sum częściowych

Bardziej szczegółowo

Matematyka ubezpieczeń majątkowych 9.10.2006 r. Zadanie 1. Rozważamy proces nadwyżki ubezpieczyciela z czasem dyskretnym postaci: n

Matematyka ubezpieczeń majątkowych 9.10.2006 r. Zadanie 1. Rozważamy proces nadwyżki ubezpieczyciela z czasem dyskretnym postaci: n Maemayka ubezpieczeń mająkowych 9.0.006 r. Zadaie. Rozważamy proces adwyżki ubezpieczyciela z czasem dyskreym posaci: U = u + c S = 0... S = W + W +... + W W W W gdzie zmiee... są iezależe i mają e sam

Bardziej szczegółowo

b n y k n T s Filtr cyfrowy opisuje się również za pomocą splotu dyskretnego przedstawionego poniżej:

b n y k n T s Filtr cyfrowy opisuje się również za pomocą splotu dyskretnego przedstawionego poniżej: 1. FILTRY CYFROWE 1.1 DEFIICJA FILTRU W sytuacji, kiedy chcemy przekształcić dany sygnał, w inny sygnał niezawierający pewnych składowych np.: szumów mówi się wtedy o filtracji sygnału. Ogólnie Filtracją

Bardziej szczegółowo

Teoria Sygnałów. III rok Informatyki Stosowanej. Wykład 8

Teoria Sygnałów. III rok Informatyki Stosowanej. Wykład 8 Teoria Synałów rok nformatyki Stosowanej Wykład 8 Analiza częstotliwościowa dyskretnych synałów cyfrowych okna widmowe (cd poprzednieo wykładu) N = 52; T =.24; %czas trwania synału w sekundach dt = T/N;

Bardziej szczegółowo

Regulatory. Zadania regulatorów. Regulator

Regulatory. Zadania regulatorów. Regulator Regulaory Regulaor Urządzenie, kórego podsawowym zadaniem jes na podsawie sygnału uchybu (odchyłki regulacji) ukszałowanie sygnału serującego umożliwiającego uzyskanie pożądanego przebiegu wielkości regulowanej

Bardziej szczegółowo

PODSTAWY OPRACOWANIA WYNIKÓW POMIARÓW Z ELEMENTAMI ANALIZY NIEPEWNOŚCI POMIAROWYCH

PODSTAWY OPRACOWANIA WYNIKÓW POMIARÓW Z ELEMENTAMI ANALIZY NIEPEWNOŚCI POMIAROWYCH PODSTAWY OPRACOWANIA WYNIKÓW POMIARÓW Z ELEMENTAMI ANALIZY NIEPEWNOŚCI POMIAROWYCH POMIAR FIZYCZNY Pomiar bezpośredi to doświadczeie, w którym przy pomocy odpowiedich przyrządów mierzymy (tj. porówujemy

Bardziej szczegółowo

ĆWICZENIE nr 2 CYFROWY POMIAR MOCY I ENERGII

ĆWICZENIE nr 2 CYFROWY POMIAR MOCY I ENERGII Politechika Łódzka Katedra Przyrządów Półprzewodikowych i Optoelektroiczych WWW.DSOD.PL LABORATORIUM METROLOGII ELEKTROICZEJ ĆWICZEIE r CYFROWY POMIAR MOCY I EERGII Łódź 009 CEL ĆWICZEIA: Ćwiczeie ma a

Bardziej szczegółowo

4. MODELE ZALEŻNE OD ZDARZEŃ

4. MODELE ZALEŻNE OD ZDARZEŃ 4. MODELE ZALEŻNE OD ZDARZEŃ 4.. Wrowadzeie W sysemach zależych od zdarzeń wyzwalaie określoego zachowaia się układu jes iicjowae rzez dyskree zdarzeia. Modelowaie akich syuacji ma a celu symulacyją aalizę

Bardziej szczegółowo

POLITECHNIKA OPOLSKA

POLITECHNIKA OPOLSKA POLITECHNIK OPOLSK INSTYTT TOMTYKI I INFORMTYKI LBORTORIM METROLOGII ELEKTRONICZNEJ. ROZKŁD SYGNŁÓW N HRMONICZNE oraz POMIR WSPÓŁCZYNNIK ZNIEKSZTŁCEŃ NIELINIOWYCH 8. WIDMO FORIER I POMIRY NPIĘĆ NIESINSOIODLNYCH.

Bardziej szczegółowo

Badanie funktorów logicznych TTL - ćwiczenie 1

Badanie funktorów logicznych TTL - ćwiczenie 1 adanie funkorów logicznych TTL - ćwiczenie 1 1. Cel ćwiczenia Zapoznanie się z podsawowymi srukurami funkorów logicznych realizowanych w echnice TTL (Transisor Transisor Logic), ich podsawowymi paramerami

Bardziej szczegółowo

MIANO ROZTWORU TITRANTA. Analiza statystyczna wyników oznaczeń

MIANO ROZTWORU TITRANTA. Analiza statystyczna wyników oznaczeń MIANO ROZTWORU TITRANTA Aaliza saysycza wyików ozaczeń Esymaory pukowe Średia arymeycza x jes o suma wyików w serii podzieloa przez ich liczbę: gdzie: x i - wyik poszczególego ozaczeia - liczba pomiarów

Bardziej szczegółowo

Wzmacniacze, wzmacniacze operacyjne

Wzmacniacze, wzmacniacze operacyjne Wzmacniacze, wzmacniacze operacyjne Schemat ideowy wzmacniacza Współczynniki wzmocnienia: - napięciowy - k u =U wy /U we - prądowy - k i = I wy /I we - mocy - k p = P wy /P we >1 Wzmacniacz w układzie

Bardziej szczegółowo

Przykładowe pytania 1/11

Przykładowe pytania 1/11 Parametry sygnałów Przykładowe pytania /. Dla okresowego przebiegu sinusoidalnego sterowanego fazowo (jak na rys) o kącie przewodzenia θ wyprowadzić zależność wartości skutecznej od kąta przewodzenia θ.

Bardziej szczegółowo

Przetwarzanie analogowo-cyfrowe sygnałów

Przetwarzanie analogowo-cyfrowe sygnałów Przetwarzanie analogowo-cyfrowe sygnałów A/C 111111 1 Po co przekształcać sygnał do postaci cyfrowej? Można stosować komputerowe metody rejestracji, przetwarzania i analizy sygnałów parametry systemów

Bardziej szczegółowo

WSTĘP DO ELEKTRONIKI

WSTĘP DO ELEKTRONIKI WSTĘP DO ELEKTRONIKI Część I Napięcie, naężenie i moc prądu elekrycznego Sygnały elekryczne i ich klasyfikacja Rodzaje układów elekronicznych Janusz Brzychczyk IF UJ Elekronika Dziedzina nauki i echniki

Bardziej szczegółowo

LOKALNA ANALIZA CZĘSTOTLIWOŚCIOWA SYGNAŁÓW. 1. Definicja 2. Okna 3. Transformacja Gabora. Spis treści

LOKALNA ANALIZA CZĘSTOTLIWOŚCIOWA SYGNAŁÓW. 1. Definicja 2. Okna 3. Transformacja Gabora. Spis treści LOKALNA ANALIZA CZĘSOLIWOŚCIOWA SYGNAŁÓW. Deinicja. Okna 3. ransormacja Gabora Spis reści Analiza czasoo-częsoliościoa sygnału moy Ampliuda.. andrzej 35_m.av -. 3 4 5 6 7 8 9 D 4. 3.5 D 3. DW D3 D4.5..5

Bardziej szczegółowo

, gdzie b 4c 0 oraz n, m ( 2). 2 2 b b b b b c b x bx c x x c x x

, gdzie b 4c 0 oraz n, m ( 2). 2 2 b b b b b c b x bx c x x c x x Meody aeaycze w echologii aeriałów Uwaga: Proszę paięać, że a zajęciach obowiązuje akże zajoość oówioych w aeriałach przykładów!!! CAŁKOWANIE FUNKCJI WYMIERNYCH Fukcją wyierą azyway fukcję posaci P ( )

Bardziej szczegółowo

Szeregi Fouriera. Powyższe współczynniki można wyznaczyć analitycznie z następujących zależności:

Szeregi Fouriera. Powyższe współczynniki można wyznaczyć analitycznie z następujących zależności: Trygonomeryczny szereg Fouriera Szeregi Fouriera Każdy okresowy sygnał x() o pulsacji podsawowej ω, spełniający warunki Dirichlea:. całkowalny w okresie: gdzie T jes okresem funkcji x(), 2. posiadający

Bardziej szczegółowo

Temat: Wzmacniacze operacyjne wprowadzenie

Temat: Wzmacniacze operacyjne wprowadzenie Temat: Wzmacniacze operacyjne wprowadzenie.wzmacniacz operacyjny schemat. Charakterystyka wzmacniacza operacyjnego 3. Podstawowe właściwości wzmacniacza operacyjnego bardzo dużym wzmocnieniem napięciowym

Bardziej szczegółowo

Wybrane wiadomości o sygnałach. Przebieg i widmo Zniekształcenia sygnałów okresowych Miary sygnałów Zasady cyfryzacji sygnałów analogowych

Wybrane wiadomości o sygnałach. Przebieg i widmo Zniekształcenia sygnałów okresowych Miary sygnałów Zasady cyfryzacji sygnałów analogowych Wybrane wiadomości o sygnałach Przebieg i widmo Zniekszałcenia sygnałów okresowych Miary sygnałów Zasady cyfryzacji sygnałów analogowych Przebieg i widmo analogowego. Sygnał sinsoidalny A ϕ sygnał okresowego

Bardziej szczegółowo

PRZETWORNIKI C/A 1. STRUKTURA PRZETWORNIKA C/A

PRZETWORNIKI C/A 1. STRUKTURA PRZETWORNIKA C/A PZETWON C/A. STTA PZETWONA C/A. PZETWON C/A NAPĘCOWE.. PZETWON NAPĘCOWE Z DZELNEM NAPĘCOWYM WYJŚCEM NAPĘCOWYM... Przetwori C/A z drabią rówoległą Deoder z N N N wy stawieia przełącziów dla sytuacji, gdy

Bardziej szczegółowo

Filtry aktywne filtr środkowoprzepustowy

Filtry aktywne filtr środkowoprzepustowy Filtry aktywne iltr środkowoprzepustowy. Cel ćwiczenia. Celem ćwiczenia jest praktyczne poznanie właściwości iltrów aktywnych, metod ich projektowania oraz pomiaru podstawowych parametrów iltru.. Budowa

Bardziej szczegółowo

MATURA 2014 z WSiP. Zasady oceniania zadań

MATURA 2014 z WSiP. Zasady oceniania zadań MATURA 0 z WSiP Matematyka Poziom rozszerzoy Zasady oceiaia zadań Copyright by Wydawictwa Szkole i Pedagogicze sp z oo, Warszawa 0 Matematyka Poziom rozszerzoy Kartoteka testu Numer zadaia Sprawdzaa umiejętość

Bardziej szczegółowo

KOMPUTEROWE SYSTEMY POMIAROWE

KOMPUTEROWE SYSTEMY POMIAROWE KOMPUTEROWE SYSTEMY POMIAROWE Dr inż. Eligiusz PAWŁOWSKI Politechnika Lubelska Wydział Elektrotechniki i Informatyki Prezentacja do wykładu dla EMST - ITwE Semestr zimowy Wykład nr 12 Prawo autorskie Niniejsze

Bardziej szczegółowo

Metody oceny efektywności projektów inwestycyjnych

Metody oceny efektywności projektów inwestycyjnych Opracował: Leszek Jug Wydział Ekoomiczy, ALMAMER Szkoła Wyższa Meody ocey efekywości projeków iwesycyjych Niezbędym warukiem urzymywaia się firmy a ryku jes zarówo skuecze bieżące zarządzaie jak i podejmowaie

Bardziej szczegółowo

MODULACJE ANALOGOWE. Funkcja modulująca zależna od sygnału modulującego: m(t) = m(t) e

MODULACJE ANALOGOWE. Funkcja modulująca zależna od sygnału modulującego: m(t) = m(t) e Nośna: MODULACJE ANALOGOWE c(t) = Y 0 cos(ωt + ϕ 0 ) Sygnał analityczny sygnału zmodulowanego y(t): z y (t) = m(t)z c (t), z c (t) = Y 0 e jωt Funkcja modulująca zależna od sygnału modulującego: j arg

Bardziej szczegółowo

ZASTOSOWANIE WZMACNIACZY OPERACYJNYCH DO LINIOWEGO PRZEKSZTAŁCANIA SYGNAŁÓW. Politechnika Wrocławska

ZASTOSOWANIE WZMACNIACZY OPERACYJNYCH DO LINIOWEGO PRZEKSZTAŁCANIA SYGNAŁÓW. Politechnika Wrocławska Poliechnika Wrocławska Insyu elekomunikacji, eleinformayki i Akusyki Zakład kładów Elekronicznych Insrukcja do ćwiczenia laboraoryjnego ZASOSOWANIE WZMACNIACZY OPEACYJNYCH DO LINIOWEGO PZEKSZAŁCANIA SYGNAŁÓW

Bardziej szczegółowo

Wzmacniacz operacyjny

Wzmacniacz operacyjny parametry i zastosowania Ryszard J. Barczyński, 2016 Politechnika Gdańska, Wydział FTiMS, Katedra Fizyki Ciała Stałego Materiały dydaktyczne do użytku wewnętrznego (klasyka: Fairchild ua702) 1965 Wzmacniacze

Bardziej szczegółowo

(1.1) gdzie: - f = f 2 f 1 - bezwzględna szerokość pasma, f śr = (f 2 + f 1 )/2 częstotliwość środkowa.

(1.1) gdzie: - f = f 2 f 1 - bezwzględna szerokość pasma, f śr = (f 2 + f 1 )/2 częstotliwość środkowa. MODULACJE ANALOGOWE 1. Wstęp Do przesyłania sygnału drogą radiową stosuje się modulację. Modulacja polega na odzwierciedleniu przebiegu sygnału oryginalnego przez zmianę jednego z parametrów fali nośnej.

Bardziej szczegółowo

MULTIMETR CYFROWY. 1. CEL ĆWICZENIA: Celem ćwiczenia jest zapoznanie się z zasadą działania, obsługą i możliwościami multimetru cyfrowego

MULTIMETR CYFROWY. 1. CEL ĆWICZENIA: Celem ćwiczenia jest zapoznanie się z zasadą działania, obsługą i możliwościami multimetru cyfrowego 1 MLIMER CYFROWY 1. CEL ĆWICZEIA: Celem ćwiczenia jes zapoznanie się z zasadą działania, obsługą i możliwościami mulimeru cyfrowego 2. WPROWADZEIE: Współczesna echnologia elekroniczna pozwala na budowę

Bardziej szczegółowo

1. Nadajnik światłowodowy

1. Nadajnik światłowodowy 1. Nadajnik światłowodowy Nadajnik światłowodowy jest jednym z bloków światłowodowego systemu transmisyjnego. Przetwarza sygnał elektryczny na sygnał optyczny. Jakość transmisji w dużej mierze zależy od

Bardziej szczegółowo

Analiza obwodów elektrycznych z przebiegami stochastycznymi. Dariusz Grabowski

Analiza obwodów elektrycznych z przebiegami stochastycznymi. Dariusz Grabowski Aliz obwodów elekryczych z przebiegmi sochsyczymi Driusz Grbowski Pl wysąpiei Sochsycze modele sygłów Procesy sochsycze Przekszłcei procesów sochsyczych przez ukłdy liiowe Ciągłość i różiczkowlość sochsycz

Bardziej szczegółowo

Wykład 2 Projektowanie cyfrowych układów elektronicznych

Wykład 2 Projektowanie cyfrowych układów elektronicznych Wykład 2 Projektowanie cyfrowych układów elektronicznych Mgr inż. Łukasz Kirchner Lukasz.kirchner@cs.put.poznan.pl http://www.cs.put.poznan.pl/lkirchner Sztuka Elektroniki - P. Horowitz, W.Hill kłady półprzewodnikowe.tietze,

Bardziej szczegółowo

Podstawowe człony dynamiczne

Podstawowe człony dynamiczne Podsawowe człony dynamiczne charakerysyki czasowe. Człon proporcjonalny = 2. Człony całkujący idealny 3. Człon inercyjny = = + 4. Człony całkujący rzeczywisy () = + 5. Człon różniczkujący rzeczywisy ()

Bardziej szczegółowo

AKADEMIA MORSKA KATEDRA NAWIGACJI TECHNICZEJ

AKADEMIA MORSKA KATEDRA NAWIGACJI TECHNICZEJ AKADEMIA MORSKA KATEDRA NAWIGACJI TECHNICZEJ ELEMETY ELEKTRONIKI LABORATORIUM Kierunek NAWIGACJA Specjalność Transport morski Semestr II Ćw. 2 Filtry analogowe układy całkujące i różniczkujące Wersja opracowania

Bardziej szczegółowo

ZAAWANSOWANE TECHNIKI PRZETWARZANIA SYGNAŁÓW W TELEKOMUNIKACJI LABORATORIUM

ZAAWANSOWANE TECHNIKI PRZETWARZANIA SYGNAŁÓW W TELEKOMUNIKACJI LABORATORIUM POLITCHNIKA WARSZAWSKA WYDZIAŁ LKTRONIKI I TCHNIK INFORMACYJNYCH INSTYTUT TLKOMUNIKACJI ZAAWANSOWAN TCHNIKI PRZTWARZANIA SYGNAŁÓW W TLKOMUNIKACJI LABORATORIUM ĆWICZNI NR RPRZNTACJA ORTOGONALNA SYGNAŁÓW.

Bardziej szczegółowo