Metody i techniki sztucznej inteligencji / Leszek Rutkowski. wyd. 2, 3 dodr. Warszawa, Spis treści
|
|
- Ksawery Kujawa
- 7 lat temu
- Przeglądów:
Transkrypt
1 Metody i techniki sztucznej inteligencji / Leszek Rutkowski. wyd. 2, 3 dodr. Warszawa, 2012 Spis treści Przedmowa do wydania drugiego Przedmowa IX X 1. Wstęp 1 2. Wybrane zagadnienia sztucznej inteligencji Wprowadzenie Rys historyczny sztucznej inteligencji Systemy ekspertowe Robotyka Przetwarzanie mowy i języka naturalnego Heurystyki i strategie poszukiwań Kognitywistyka Inteligencja mrówek Sztuczne życie Boty Perspektywy rozwoju sztucznej inteligencji Uwagi Metody reprezentacji wiedzy z wykorzystaniem zbiorów przybliżonych Wprowadzenie Pojęcia podstawowe Aproksymacja zbioru Aproksymacja rodziny zbiorów Analiza tablic decyzyjnych Zastosowanie programu LERS Uwagi 50 Zadania Metody reprezentacji wiedzy z wykorzystaniem zbiorów rozmytych typu Wprowadzenie Podstawowe pojęcia i definicje teorii zbiorów rozmytych Operacje na zbiorach rozmytych Zasada rozszerzania Liczby rozmyte 74
2 4.6. Normy trójkątne i negacje Relacje rozmyte i ich właściwości Przybliżone wnioskowanie Podstawowe reguły wnioskowania w logice dwuwartościowej Podstawowe reguły wnioskowania w logice rozmytej Reguły wnioskowania dla modelu Mamdaniego Reguły wnioskowania dla modelu logicznego Rozmyte systemy wnioskujące Baza reguł Blok rozmywania Blok wnioskowania Blok wyostrzania Zastosowania zbiorów rozmytych Rozmyta metoda Delphi Ważona rozmyta metoda Delphi Rozmyta metoda PERT Podejmowanie decyzji w otoczeniu rozmytym Uwagi 133 Zadania Metody reprezentacji wiedzy z wykorzystaniem zbiorów rozmytych typu Wprowadzenie Podstawowe definicje Ślad niepewności Osadzone zbiory rozmyte Podstawowe operacje na zbiorach rozmytych typu Relacje rozmyte typu Redukcja typu Rozmyte systemy wnioskujące typu Blok rozmywania Baza reguł Blok wnioskowania Uwagi 163 Zadania Sieci neuronowe i algorytmy ich uczenia Wprowadzenie Neuron i jego modele Budowa i działanie pojedynczego neuronu Perceptron Model Adaline Model neuronu sigmoidalnego Model neuronu Hebba Sieci jednokierunkowe wielowarstwowe 185
3 Budowa i działanie sieci Algorytm wstecznej propagacji błędów Algorytm wstecznej propagacji błędów z członem momentum Algorytm zmiennej metryki Algorytm Levenberga-Marquardta Rekurencyjna metoda najmniejszych kwadratów Dobór architektury sieci Sieci rekurencyjne Sieć Hopfielda Sieć Hamminga Sieci wielowarstwowe ze sprzężeniem zwrotnym Sieć ВАМ Sieci samoorganizujące sie z konkurencją Sieci typu WTA Sieci typu WTM Sieci typu ART Sieci radialne Probabilistyczne sieci neuronowe Uwagi 234 Zadania Algorytmy ewolucyjne Wprowadzenie Problemy optymalizacji a algorytmy ewolucyjne Rodzaje algorytmów zaliczanych do algorytmów ewolucyjnych Klasyczny algorytm genetyczny Strategie ewolucyjne Programowanie ewolucyjne Programowanie genetyczne Zaawansowane techniki w algorytmach ewolucyjnych Eksploracja i eksploatacja Metody selekcji Skalowanie funkcji przystosowania Szczególne procedury reprodukcji Metody kodowania Rodzaje krzyżowań Rodzaje mutacji Inwersja Algorytmy ewolucyjne w projektowaniu sieci neuronowych Algorytmy ewolucyjne do uczenia wag sieci neuronowych Algorytmy ewolucyjne do określania topologii sieci neuronowej Algorytmy ewolucyjne do uczenia wag i określania topologii sieci neuronowej Algorytmy ewolucyjne a systemy rozmyte Systemy rozmyte do kontroli ewolucji 296
4 Ewolucja systemów rozmytych Uwagi 305 Zadania Metody grupowania danych Wprowadzenie Podziały ostre i rozmyte Miary odległości Algorytm HCM Algorytm FCM Algorytm PCM Algorytm Gustafsona-Kessela Algorytm FMLE Kryteria jakości grupowania Ilustracja działania algorytmów grupowania danych Uwagi 328 Zadania Systemy neuronowo-rozmyte typu Mamdaniego, logicznego i Takagi-Sugeno Wprowadzenie Opis wykorzystywanych problemów symulacyjnych Polimeryzacja Modelowanie statycznej funkcji nieliniowej Modelowanie nieliniowego obiektu dynamicznego Modelowanie smaku ryżu Rozpoznawanie gatunku wina Klasyfikacja kwiatu irysa Systemy neuronowo-rozmyte typu Mamdaniego Systemy typu A Systemy typu В Systemy typu Mamdaniego w zadaniach modelowania Systemy neuronowo-rozmyte typu logicznego Systemy typu M Systemy typu M Systemy typu M Systemy neuronowo-rozmyte typu Takagi-Sugeno Systemy typu M Systemy typu M Systemy typu M Algorytmy uczenia systemów neuronowo-rozmytych Ocena działania systemów neuronowo-rozmytych Kryteria oceny modeli z uwzględnieniem ich złożoności Metoda linii izokryterialnych Uwagi 395
5 Zadania Elastyczne systemy neuronowo-rozmyte Wprowadzenie Miękkie normy trójkątne Parametryzowane normy trójkątne Przełączane normy trójkątne Systemy elastyczne Algorytmy uczenia Operatory podstawowe Funkcje przynależności Funkcje zakresowe H-funkcje Przykłady symulacyjne Polimeryzacja Modelowanie smaku ryżu Klasyfikacja kwiatu irysa Rozpoznawanie gatunku wina Uwagi 431 Zadania 432 Literatura 433 Skorowidz 449 oprac. BPK
Sieci neuronowe do przetwarzania informacji / Stanisław Osowski. wyd. 3. Warszawa, Spis treści
Sieci neuronowe do przetwarzania informacji / Stanisław Osowski. wyd. 3. Warszawa, 2013 Spis treści Przedmowa 7 1. Wstęp 9 1.1. Podstawy biologiczne działania neuronu 9 1.2. Pierwsze modele sieci neuronowej
Bardziej szczegółowoSylabus modułu kształcenia na studiach wyższych. Nazwa Wydziału. Nazwa jednostki prowadzącej moduł Nazwa modułu kształcenia
Załącznik nr 4 do zarządzenia nr 12 Rektora UJ z 15 lutego 2012 r. Sylabus modułu kształcenia na studiach wyższych Nazwa Wydziału Nazwa jednostki prowadzącej moduł Nazwa modułu kształcenia Wydział Matematyki
Bardziej szczegółowoKARTA MODUŁU KSZTAŁCENIA
KARTA MODUŁU KSZTAŁCENIA I. Informacje ogólne 1 Nazwa modułu kształcenia Sztuczna inteligencja 2 Nazwa jednostki prowadzącej moduł Instytut Informatyki, Zakład Informatyki Stosowanej 3 Kod modułu (wypełnia
Bardziej szczegółowoSieci neuronowe i algorytmy uczenia Czyli co i jak andrzej.rusiecki.staff.iiar.pwr.wroc.pl s.
Sieci neuronowe i algorytmy uczenia Czyli co i jak 2016 andrzej.rusiecki@pwr.edu.pl andrzej.rusiecki.staff.iiar.pwr.wroc.pl s. 230/C-3 O co chodzi? Celem przedmiotu jest ogólne zapoznanie się z podstawowymi
Bardziej szczegółowoSieci Neuronowe - Rok III - kierunek IS w IFAiIS UJ 2008/2009. Sieci Neuronowe. Wykład 11 Algorytmy genetyczne; Systemy rozmyte
Sieci Neuronowe Wykład 11 Algorytmy genetyczne; Systemy rozmyte wykład przygotowany na podstawie. S. Osowski, Sieci Neuronowe w ujęciu algorytmicznym, Rozdz. 4, PWNT, Warszawa 1996. W. Duch, J. Korbicz,
Bardziej szczegółowoSZTUCZNA INTELIGENCJA
SZTUCZNA INTELIGENCJA WYKŁAD 10. WNIOSKOWANIE W LOGICE ROZMYTEJ Częstochowa 2014 Dr hab. inż. Grzegorz Dudek Wydział Elektryczny Politechnika Częstochowska WNIOSKOWANIE W LOGICE DWUWARTOŚCIOWEJ W logice
Bardziej szczegółowo4.1. Wprowadzenie...70 4.2. Podstawowe definicje...71 4.3. Algorytm określania wartości parametrów w regresji logistycznej...74
3 Wykaz najważniejszych skrótów...8 Przedmowa... 10 1. Podstawowe pojęcia data mining...11 1.1. Wprowadzenie...12 1.2. Podstawowe zadania eksploracji danych...13 1.3. Główne etapy eksploracji danych...15
Bardziej szczegółowoSZTUCZNA INTELIGENCJA
SZTUCZNA INTELIGENCJA SYSTEMY ROZMYTE Adrian Horzyk Akademia Górniczo-Hutnicza Wydział Elektrotechniki, Automatyki, Informatyki i Inżynierii Biomedycznej Katedra Automatyki i Inżynierii Biomedycznej Laboratorium
Bardziej szczegółowoWstęp do teorii sztucznej inteligencji Wykład III. Modele sieci neuronowych.
Wstęp do teorii sztucznej inteligencji Wykład III Modele sieci neuronowych. 1 Perceptron model najprostzszy przypomnienie Schemat neuronu opracowany przez McCullocha i Pittsa w 1943 roku. Przykład funkcji
Bardziej szczegółowoSztuczne sieci neuronowe (SNN)
Sztuczne sieci neuronowe (SNN) Pozyskanie informacji (danych) Wstępne przetwarzanie danych przygotowanie ich do dalszej analizy Selekcja informacji Ostateczny model decyzyjny SSN - podstawy Sieci neuronowe
Bardziej szczegółowoKARTA PRZEDMIOTU. 17. Efekty kształcenia:
Z1-PU7 WYDANIE N1 Strona 1 z 4 (pieczęć wydziału) KARTA PRZEDMIOTU 1. Nazwa przedmiotu: CYBERNETYKA 2. Kod przedmiotu: CYB 3. Karta przedmiotu ważna od roku akademickiego: 2012/2013 4. Forma kształcenia:
Bardziej szczegółowoID1SII4. Informatyka I stopień (I stopień / II stopień) ogólnoakademicki (ogólno akademicki / praktyczny) stacjonarne (stacjonarne / niestacjonarne)
Załącznik nr 7 do Zarządzenia Rektora nr 10/12 z dnia 21 lutego 2012r. KARTA MODUŁU / KARTA PRZEDMIOTU Kod modułu ID1SII4 Nazwa modułu Systemy inteligentne 1 Nazwa modułu w języku angielskim Intelligent
Bardziej szczegółowo1. Historia 2. Podstawy neurobiologii 3. Definicje i inne kłamstwa 4. Sztuczny neuron i zasady działania SSN. Agenda
Sieci neuropodobne 1. Historia 2. Podstawy neurobiologii 3. Definicje i inne kłamstwa 4. Sztuczny neuron i zasady działania SSN Agenda Trochę neurobiologii System nerwowy w organizmach żywych tworzą trzy
Bardziej szczegółowoSpis treści 377 379 WSTĘP... 9
Spis treści 377 379 Spis treści WSTĘP... 9 ZADANIE OPTYMALIZACJI... 9 PRZYKŁAD 1... 9 Założenia... 10 Model matematyczny zadania... 10 PRZYKŁAD 2... 10 PRZYKŁAD 3... 11 OPTYMALIZACJA A POLIOPTYMALIZACJA...
Bardziej szczegółowoSztuczna Inteligencja Tematy projektów Sieci Neuronowe
PB, 2009 2010 Sztuczna Inteligencja Tematy projektów Sieci Neuronowe Projekt 1 Stwórz projekt implementujący jednokierunkową sztuczną neuronową złożoną z neuronów typu sigmoidalnego z algorytmem uczenia
Bardziej szczegółowoInteligencja. Władysław Kopaliśki, Słownik wyrazów obcych i zwrotów obcojęzycznych
Wstęp Inteligencja Władysław Kopaliśki, Słownik wyrazów obcych i zwrotów obcojęzycznych inteligencja psych. zdolność rozumienia, kojarzenia; pojętność, bystrość; zdolność znajdowania właściwych, celowych
Bardziej szczegółowo1.7. Eksploracja danych: pogłębianie, przeszukiwanie i wyławianie
Wykaz tabel Wykaz rysunków Przedmowa 1. Wprowadzenie 1.1. Wprowadzenie do eksploracji danych 1.2. Natura zbiorów danych 1.3. Rodzaje struktur: modele i wzorce 1.4. Zadania eksploracji danych 1.5. Komponenty
Bardziej szczegółowoInżynieria Wiedzy i Systemy Ekspertowe. Logika rozmyta. dr inż. Michał Bereta Politechnika Krakowska
Inżynieria Wiedzy i Systemy Ekspertowe Logika rozmyta dr inż. Michał Bereta Politechnika Krakowska http://torus.uck.pk.edu.pl/~beretam/ beretam@torus.uck.pk.edu.pl 1 Wyostrzanie Ostateczna, ostra wartość
Bardziej szczegółowoInteligentne systemy informacyjne
Inteligentne systemy informacyjne Moduł 10 Mieczysław Muraszkiewicz www.icie.com.pl/lect_pw.htm M. Muraszkiewicz strona 1 Sieci neuronowe szkic Moduł 10 M. Muraszkiewicz strona 2 Dwa nurty M. Muraszkiewicz
Bardziej szczegółowoPRZEWODNIK PO PRZEDMIOCIE
Nazwa przedmiotu: Kierunek: Informatyka Rodzaj przedmiotu: obowiązkowy w ramach treści kierunkowych, moduł kierunkowy oólny Rodzaj zajęć: wykład, laboratorium I KARTA PRZEDMIOTU CEL PRZEDMIOTU PRZEWODNIK
Bardziej szczegółowoSztuczna inteligencja i logika. Podsumowanie przedsięwzięcia naukowego Kisielewicz Andrzej WNT 20011
Sztuczna inteligencja i logika. Podsumowanie przedsięwzięcia naukowego Kisielewicz Andrzej WNT 20011 Przedmowa. CZĘŚĆ I: WPROWADZENIE 1. Komputer 1.1. Kółko i krzyżyk 1.2. Kodowanie 1.3. Odrobina fantazji
Bardziej szczegółowoWstęp do teorii sztucznej inteligencji Wykład II. Uczenie sztucznych neuronów.
Wstęp do teorii sztucznej inteligencji Wykład II Uczenie sztucznych neuronów. 1 - powtórzyć o klasyfikacji: Sieci liniowe I nieliniowe Sieci rekurencyjne Uczenie z nauczycielem lub bez Jednowarstwowe I
Bardziej szczegółowoMetody Sztucznej Inteligencji Methods of Artificial Intelligence. Elektrotechnika II stopień ogólno akademicki. niestacjonarne. przedmiot kierunkowy
Załącznik nr 7 do Zarządzenia Rektora nr 10/12 z dnia 21 lutego 2012r. KARTA MODUŁU / KARTA PRZEDMIOTU Kod modułu Nazwa modułu Nazwa modułu w języku angielskim Obowiązuje od roku akademickiego 2012/2013
Bardziej szczegółowoO badaniach nad SZTUCZNĄ INTELIGENCJĄ
O badaniach nad SZTUCZNĄ INTELIGENCJĄ Wykład 7. O badaniach nad sztuczną inteligencją Co nazywamy SZTUCZNĄ INTELIGENCJĄ? szczególny rodzaj programów komputerowych, a niekiedy maszyn. SI szczególną własność
Bardziej szczegółowoO badaniach nad SZTUCZNĄ INTELIGENCJĄ
O badaniach nad SZTUCZNĄ INTELIGENCJĄ Jak określa się inteligencję naturalną? Jak określa się inteligencję naturalną? Inteligencja wg psychologów to: Przyrodzona, choć rozwijana w toku dojrzewania i uczenia
Bardziej szczegółowoPODSTAWY BAZ DANYCH. 19. Perspektywy baz danych. 2009/2010 Notatki do wykładu "Podstawy baz danych"
PODSTAWY BAZ DANYCH 19. Perspektywy baz danych 1 Perspektywy baz danych Temporalna baza danych Temporalna baza danych - baza danych posiadająca informację o czasie wprowadzenia lub czasie ważności zawartych
Bardziej szczegółowoPodstawy Sztucznej Inteligencji (PSZT)
Podstawy Sztucznej Inteligencji (PSZT) Paweł Wawrzyński Uczenie maszynowe Sztuczne sieci neuronowe Plan na dziś Uczenie maszynowe Problem aproksymacji funkcji Sieci neuronowe PSZT, zima 2013, wykład 12
Bardziej szczegółowoZastosowanie sztucznych sieci neuronowych w prognozowaniu szeregów czasowych (prezentacja 2)
Zastosowanie sztucznych sieci neuronowych w prognozowaniu szeregów czasowych (prezentacja 2) Ewa Wołoszko Praca pisana pod kierunkiem Pani dr hab. Małgorzaty Doman Plan tego wystąpienia Teoria Narzędzia
Bardziej szczegółowoDiagnostyka procesów przemysłowych Kod przedmiotu
Diagnostyka procesów przemysłowych - opis przedmiotu Informacje ogólne Nazwa przedmiotu Diagnostyka procesów przemysłowych Kod przedmiotu 06.0-WE-AiRP-DPP Wydział Kierunek Wydział Informatyki, Elektrotechniki
Bardziej szczegółowoAlgorytmy analizy skupień / Sławomir Wierzchoń, Mieczysław Kłopotek. wyd. 1, 1. dodr. (PWN). Warszawa, Spis treści
Algorytmy analizy skupień / Sławomir Wierzchoń, Mieczysław Kłopotek. wyd. 1, 1. dodr. (PWN). Warszawa, 2017 Spis treści Lista ważniejszych oznaczeń 5 Przedmowa 7 1. Analiza skupień 19 1.1. Formalizacja
Bardziej szczegółowoUniwersytet Zielonogórski Wydział Elektrotechniki, Informatyki i Telekomunikacji Instytut Sterowania i Systemów Informatycznych
Uniwersytet Zielonogórski Wydział Elektrotechniki, Informatyki i Telekomunikacji Instytut Sterowania i Systemów Informatycznych ELEMENTY SZTUCZNEJ INTELIGENCJI Laboratorium nr 6 SYSTEMY ROZMYTE TYPU MAMDANIEGO
Bardziej szczegółowoWprowadzenie do teorii systemów ekspertowych
Myślące komputery przyszłość czy utopia? Wprowadzenie do teorii systemów ekspertowych Roman Simiński siminski@us.edu.pl Wizja inteligentnych maszyn jest od wielu lat obecna w literaturze oraz filmach z
Bardziej szczegółowoTemat: Model TS + ANFIS. Instrukcja do ćwiczeń przedmiotu INŻYNIERIA WIEDZY I SYSTEMY EKSPERTOWE
Temat: Model TS + ANFIS Instrukcja do ćwiczeń przedmiotu INŻYNIERIA WIEDZY I SYSTEMY EKSPERTOWE Dr inż. Barbara Mrzygłód KISiM, WIMiIP, AGH mrzyglod@ agh.edu.pl 1 Wprowadzenie Pierwszym rodzajem modelowania
Bardziej szczegółowoSTANDARDOWE FUNKCJE PRZYNALEŻNOŚCI. METODY HEURYSTYCZNE wykład 6. (alternatywa dla s) (zdef. poprzez klasę s) GAUSSOWSKA F.
METODY HEURYSTYCZNE wykład 6 STANDARDOWE FUNKCJE PRZYNALEŻNOŚCI 2 GAUSSOWSKA F. PRZYNALEŻNOŚCI F. PRZYNALEŻNOŚCI KLASY s środek; a określa szerokość krzywej 3 4 F. PRZYNALEŻNOŚCI KLASY π F. PRZYNALEŻNOŚCI
Bardziej szczegółowoUniwersytet w Białymstoku Wydział Ekonomiczno-Informatyczny w Wilnie SYLLABUS na rok akademicki 2012/2013 http://www.wilno.uwb.edu.
SYLLABUS na rok akademicki 01/013 Tryb studiów Studia stacjonarne Kierunek studiów Informatyka Poziom studiów Pierwszego stopnia Rok studiów/ semestr /3 Specjalność Bez specjalności Kod katedry/zakładu
Bardziej szczegółowoUczenie sieci neuronowych i bayesowskich
Wstęp do metod sztucznej inteligencji www.mat.uni.torun.pl/~piersaj 2009-01-22 Co to jest neuron? Komputer, a mózg komputer mózg Jednostki obliczeniowe 1-4 CPU 10 11 neuronów Pojemność 10 9 b RAM, 10 10
Bardziej szczegółowoPodstawy sztucznej inteligencji
wykład 4 (Fuzzy logic) 23 listopad 2011 Plan wykładu 1 Systemy wnioskowania z danymi niepewnymi 2 3 Inteligentne systemy z wiedzą Systemy z wiedzą składają się z dwóch części: 1 Baza wiedzy (KB): zbioru
Bardziej szczegółowoZagadnienia optymalizacji i aproksymacji. Sieci neuronowe.
Zagadnienia optymalizacji i aproksymacji. Sieci neuronowe. zajecia.jakubw.pl/nai Literatura: S. Osowski, Sieci neuronowe w ujęciu algorytmicznym. WNT, Warszawa 997. PODSTAWOWE ZAGADNIENIA TECHNICZNE AI
Bardziej szczegółowoTomasz Pawlak. Zastosowania Metod Inteligencji Obliczeniowej
1 Zastosowania Metod Inteligencji Obliczeniowej Tomasz Pawlak 2 Plan prezentacji Sprawy organizacyjne Wprowadzenie do metod inteligencji obliczeniowej Studium wybranych przypadków zastosowań IO 3 Dane
Bardziej szczegółowoLiteratura. Sztuczne sieci neuronowe. Przepływ informacji w systemie nerwowym. Budowa i działanie mózgu
Literatura Wykład : Wprowadzenie do sztucznych sieci neuronowych Małgorzata Krętowska Wydział Informatyki Politechnika Białostocka Tadeusiewicz R: Sieci neuronowe, Akademicka Oficyna Wydawnicza RM, Warszawa
Bardziej szczegółowoMETODY INŻYNIERII WIEDZY
METODY INŻYNIERII WIEDZY SZTUCZNE SIECI NEURONOWE MLP Adrian Horzyk Akademia Górniczo-Hutnicza Wydział Elektrotechniki, Automatyki, Informatyki i Inżynierii Biomedycznej Katedra Automatyki i Inżynierii
Bardziej szczegółowoPRZEWODNIK PO PRZEDMIOCIE
Nazwa przedmiotu: Kierunek: Mechatronika Rodzaj przedmiotu: obowiązkowy Rodzaj zajęć: wykład, laboratorium I KARTA PRZEDMIOTU CEL PRZEDMIOTU PRZEWODNIK PO PRZEDMIOCIE C1. Zapoznanie studentów z inteligentnymi
Bardziej szczegółowoInżynieria danych I stopień Praktyczny Studia stacjonarne Wszystkie specjalności Katedra Inżynierii Produkcji Dr Małgorzata Lucińska
KARTA MODUŁU / KARTA PRZEDMIOTU Kod modułu Nazwa modułu Nazwa modułu w języku angielskim Obowiązuje od roku akademickiego 205/206 Z-ID-602 Wprowadzenie do uczenia maszynowego Introduction to Machine Learning
Bardziej szczegółowoNowoczesne techniki informatyczne Program: 1. Sztuczna inteligencja. a) definicja; b) podział: Systemy ekspertowe Algorytmy ewolucyjne Logika rozmyta Sztuczne sieci neuronowe c) historia; 2. Systemy eksperckie
Bardziej szczegółowoAutomatyczna predykcja. Materiały/konsultacje. Co to jest uczenie maszynowe? Przykład 6/10/2013. Google Prediction API, maj 2010
Materiały/konsultacje Automatyczna predykcja http://www.ibp.pwr.wroc.pl/kotulskalab Konsultacje wtorek, piątek 9-11 (uprzedzić) D1-115 malgorzata.kotulska@pwr.wroc.pl Co to jest uczenie maszynowe? Uczenie
Bardziej szczegółowoO badaniach nad SZTUCZNĄ INTELIGENCJĄ
O badaniach nad SZTUCZNĄ INTELIGENCJĄ SZTUCZNA INTELIGENCJA dwa podstawowe znaczenia Co nazywamy sztuczną inteligencją? zaawansowane systemy informatyczne (np. uczące się), pewną dyscyplinę badawczą (dział
Bardziej szczegółowoAUTOMATYKA INFORMATYKA
AUTOMATYKA INFORMATYKA Technologie Informacyjne Sieć Semantyczna Przetwarzanie Języka Naturalnego Internet Edytor Serii: Zdzisław Kowalczuk Inteligentne wydobywanie informacji z internetowych serwisów
Bardziej szczegółowoSztuczne Sieci Neuronowe. Wiktor Tracz Katedra Urządzania Lasu, Geomatyki i Ekonomiki Leśnictwa, Wydział Leśny SGGW
Sztuczne Sieci Neuronowe Wiktor Tracz Katedra Urządzania Lasu, Geomatyki i Ekonomiki Leśnictwa, Wydział Leśny SGGW SN są częścią dziedziny Sztucznej Inteligencji Sztuczna Inteligencja (SI) zajmuje się
Bardziej szczegółowoINŻYNIERIA WIEDZY I SYSTEMY EKSPERTOWE
Temat: Podstawowe pojęcia z logiki rozmytej Instrukcja do ćwiczeń przedmiotu INŻYNIERIA WIEDZY I SYSTEMY EKSPERTOWE Dr inż. Barbara Mrzygłód KISiM, WIMiIP, AGH mrzyglod@ agh.edu.pl 1 Wprowadzenie Sterowanie
Bardziej szczegółowoSieci neuronowe jako sposób na optymalizacje podejmowanych decyzji. Tomasz Karczyoski Wydział W-08 IZ
optymalizacje podejmowanych decyzji Tomasz Karczyoski Wydział W-08 IZ Czym są sieci neuronowe Struktura matematycznych oraz programowy lub sprzętowy model, realizujących obliczenia lub przetwarzanie sygnałów
Bardziej szczegółowoInformatyka I stopień (I stopień / II stopień) ogólno akademicki (ogólno akademicki / praktyczny) kierunkowy (podstawowy / kierunkowy / inny HES)
Załącznik nr 7 do Zarządzenia Rektora nr 10/12 z dnia 21 lutego 2012r. KARTA MODUŁU / KARTA PRZEDMIOTU Kod modułu Zastosowanie sztucznych sieci neuronowych Nazwa modułu w informatyce Application of artificial
Bardziej szczegółowoInżynieria Wiedzy i Systemy Ekspertowe. Niepewność wiedzy. dr inż. Michał Bereta Politechnika Krakowska
Inżynieria Wiedzy i Systemy Ekspertowe Niepewność wiedzy dr inż. Michał Bereta Politechnika Krakowska http://torus.uck.pk.edu.pl/~beretam/ beretam@torus.uck.pk.edu.pl 1 Logika Rozmyta (Fuzzy Logic) Mimo
Bardziej szczegółowoAlgorytm genetyczny (genetic algorithm)-
Optymalizacja W praktyce inżynierskiej często zachodzi potrzeba znalezienia parametrów, dla których system/urządzenie będzie działać w sposób optymalny. Klasyczne podejście do optymalizacji: sformułowanie
Bardziej szczegółowo1. Logika, funkcje logiczne, preceptron.
Sieci neuronowe 1. Logika, funkcje logiczne, preceptron. 1. (Logika) Udowodnij prawa de Morgana, prawo pochłaniania p (p q), prawo wyłączonego środka p p oraz prawo sprzeczności (p p). 2. Wyraź funkcję
Bardziej szczegółowokierunkowy (podstawowy / kierunkowy / inny HES) nieobowiązkowy (obowiązkowy / nieobowiązkowy) polski drugi semestr letni (semestr zimowy / letni)
Załącznik nr 7 do Zarządzenia Rektora nr 10/12 z dnia 21 lutego 2012r. KARTA MODUŁU / KARTA PRZEDMIOTU Kod modułu Nazwa modułu Nazwa modułu w języku angielskim Obowiązuje od roku akademickiego 2012/2013
Bardziej szczegółowoTemat: ANFIS + TS w zadaniach. Instrukcja do ćwiczeń przedmiotu INŻYNIERIA WIEDZY I SYSTEMY EKSPERTOWE
Temat: ANFIS + TS w zadaniach Instrukcja do ćwiczeń przedmiotu INŻYNIERIA WIEDZY I SYSTEMY EKSPERTOWE Dr inż. Barbara Mrzygłód KISiM, WIMiIP, AGH mrzyglod@ agh.edu.pl 1. Systemy neuronowo - rozmyte Systemy
Bardziej szczegółowoTemat: Sieci neuronowe oraz technologia CUDA
Elbląg, 27.03.2010 Temat: Sieci neuronowe oraz technologia CUDA Przygotował: Mateusz Górny VIII semestr ASiSK Wstęp Sieci neuronowe są to specyficzne struktury danych odzwierciedlające sieć neuronów w
Bardziej szczegółowoPodstawowe systemy wnioskowania sztucznej inteligencji
POLITECHNIKA RZESZOWSKA im. Ignacego Łukasiewicza Wydział Budowy Maszyn i Lotnictwa Katedra Awioniki i Sterowania Podstawowe systemy wnioskowania sztucznej inteligencji Urszula SOWA Seminarium Dyplomowe
Bardziej szczegółowoZagadnienia na egzamin dyplomowy. Studia jednolite magisterskie WFMiI rok akad. 2010/11
Zagadnienia na egzamin dyplomowy Studia jednolite magisterskie WFMiI rok akad. 2010/11 Lp PRZEDMIOT PYTANIE 1 2 3 4 Jakie jest główne zastosowanie mechanizmu Samba? Proszę omówić możliwości ochrony serwerów
Bardziej szczegółowoObliczenia równoległe i rozproszone. Praca zbiorowa pod redakcją Andrzeja Karbowskiego i Ewy Niewiadomskiej-Szynkiewicz
Obliczenia równoległe i rozproszone Praca zbiorowa pod redakcją Andrzeja Karbowskiego i Ewy Niewiadomskiej-Szynkiewicz 15 czerwca 2001 Spis treści Przedmowa............................................
Bardziej szczegółowoOntogeniczne sieci neuronowe. O sieciach zmieniających swoją strukturę
Norbert Jankowski Ontogeniczne sieci neuronowe O sieciach zmieniających swoją strukturę Warszawa 2003 Opracowanie książki było wspierane stypendium Uniwersytetu Mikołaja Kopernika Spis treści Wprowadzenie
Bardziej szczegółowoIMPLEMENTACJA SIECI NEURONOWYCH MLP Z WALIDACJĄ KRZYŻOWĄ
IMPLEMENTACJA SIECI NEURONOWYCH MLP Z WALIDACJĄ KRZYŻOWĄ Celem ćwiczenia jest zapoznanie się ze sposobem działania sieci neuronowych typu MLP (multi-layer perceptron) uczonych nadzorowaną (z nauczycielem,
Bardziej szczegółowoPODSTAWY INŻYNIERI WIEDZY
Z1-PU7 WYDANIE N1 Strona 1 z 4 (pieczęć wydziału) KARTA PRZEDMIOTU 1. Nazwa przedmiotu: PODSTAWY INŻYNIERI WIEDZY 2. Kod przedmiotu: PIW 3. Karta przedmiotu ważna od roku akademickiego: 2012/2013 4. Forma
Bardziej szczegółowoTemat: Model SUGENO. Instrukcja do ćwiczeń przedmiotu INŻYNIERIA WIEDZY I SYSTEMY EKSPERTOWE
Temat: Model SUGENO Instrukcja do ćwiczeń przedmiotu INŻYNIERIA WIEDZY I SYSTEMY EKSPERTOWE Dr inż. Barbara Mrzygłód KISiM, WIMiIP, AGH mrzyglod@ agh.edu.pl 1 Wprowadzenie Pierwszym rodzajem modelowania
Bardziej szczegółowoSztuczne sieci neuronowe i sztuczna immunologia jako klasyfikatory danych. Dariusz Badura Letnia Szkoła Instytutu Matematyki 2010
Sztuczne sieci neuronowe i sztuczna immunologia jako klasyfikatory danych Dariusz Badura Letnia Szkoła Instytutu Matematyki 2010 Sieci neuronowe jednokierunkowa wielowarstwowa sieć neuronowa sieci Kohonena
Bardziej szczegółowoSystemy Inteligentnego Przetwarzania wykład 7: Sieci RBF
Systemy Inteligentnego Przetwarzania wykład 7: Sieci RBF Dr inż. Jacek Mazurkiewicz Katedra Informatyki Technicznej e-mail: Jacek.Mazurkiewicz@pwr.edu.pl Bazowe funkcje radialne (1) Sieci neuronowe wielowarstwowe
Bardziej szczegółowoJacek Skorupski pok. 251 tel konsultacje: poniedziałek , sobota zjazdowa
Jacek Skorupski pok. 251 tel. 234-7339 jsk@wt.pw.edu.pl http://skorupski.waw.pl/mmt prezentacje ogłoszenia konsultacje: poniedziałek 16 15-18, sobota zjazdowa 9 40-10 25 Udział w zajęciach Kontrola wyników
Bardziej szczegółowoMetody Rozmyte i Algorytmy Ewolucyjne
mgr inż. Wydział Matematyczno-Przyrodniczy Szkoła Nauk Ścisłych Uniwersytet Kardynała Stefana Wyszyńskiego Wykład wstępny Plan prezentacji 1 Wprowadzenie Kontakt Tematyka wykładu Zasady zaliczenia 2 3
Bardziej szczegółowoAlgorytmy wspomagania decyzji Czyli co i jak andrzej.rusiecki.staff.iiar.pwr.wroc.pl s. 230/C-3
Algorytmy wspomagania decyzji Czyli co i jak 2018 andrzej.rusiecki@pwr.edu.pl andrzej.rusiecki.staff.iiar.pwr.wroc.pl s. 230/C-3 O co chodzi? Celem przedmiotu jest ogólne zapoznanie się z podstawowymi
Bardziej szczegółowoReprezentacja rozmyta - zastosowania logiki rozmytej
17.06.2009 Wrocław Bartosz Chabasinski 148384 Reprezentacja rozmyta - zastosowania logiki rozmytej 1. Wstęp Celem wprowadzenia pojęcia teorii zbiorów rozmytych była potrzeba matematycznego opisania tych
Bardziej szczegółowo1. W jaki sposób radzimy sobie z problemem zatrzymywania się w lokalnym minimum błędu podczas procesu uczenia?
. W jaki sposób radzimy sobie z problemem zatrzymywania się w lokalnym minimum błędu podczas procesu uczenia? Stosujemy technikę momentum. w(k = η*δ*f (φ*u + α* w(k-, α współczynnik momentum [0;] Kiedy
Bardziej szczegółowoZagadnienia na egzamin dyplomowy
Zagadnienia na egzamin dyplomowy Zagadnienia podstawowe i kierunkowe 1. Wyjaśnij budowę i działanie pojedynczego neuronu w sztucznej sieci neuronowej. 2. Definicja złożoności czasowej i obliczeniowej algorytmów.
Bardziej szczegółowoSystemy uczące się wykład 1
Systemy uczące się wykład 1 dr Przemysław Juszczuk Katedra Inżynierii Wiedzy, Uniwersytet Ekonomiczny 5 X 2018 e-mail: przemyslaw.juszczuk@ue.katowice.pl Konsultacje: na stronie katedry + na stronie domowej
Bardziej szczegółowoAlgorytmy sztucznej inteligencji
Algorytmy sztucznej inteligencji Dynamiczne sieci neuronowe 1 Zapis macierzowy sieci neuronowych Poniżej omówione zostaną części składowe sieci neuronowych i metoda ich zapisu za pomocą macierzy. Obliczenia
Bardziej szczegółowoTemat: Sztuczne Sieci Neuronowe. Instrukcja do ćwiczeń przedmiotu INŻYNIERIA WIEDZY I SYSTEMY EKSPERTOWE
Temat: Sztuczne Sieci Neuronowe Instrukcja do ćwiczeń przedmiotu INŻYNIERIA WIEDZY I SYSTEMY EKSPERTOWE Dr inż. Barbara Mrzygłód KISiM, WIMiIP, AGH mrzyglod@ agh.edu.pl 1 Wprowadzenie Sztuczne sieci neuronowe
Bardziej szczegółowo1. Architektury, algorytmy uczenia i projektowanie sieci neuronowych
Sztuczne sieci neuronowe i algorytmy genetyczne Artykuł pobrano ze strony eioba.pl SPIS TREŚCI 1. ARCHITEKTURY, ALGORYTMY UCZENIA I PROJEKTOWANIE SIECI NEURONOWYCH 1.1. HISTORIA ROZWOJU SZTUCZNYCH SIECI
Bardziej szczegółowoZBIORY ROZMYTE I WNIOSKOWANIE PRZYBLIŻONE
SYSTEMY ROZMYTE ZBIORY ROZMYTE I WNIOSKOWANIE PRZYBLIŻONE 2 965 Lotfi A. Zadeh: Fuzzy sets Metoda reprezentacji wiedzy wyrażonej w języku naturalnym: Temperatura wynosi 29 o C informacja liczbowa - naturalna
Bardziej szczegółowoInteligentne wydobywanie informacji z internetowych serwisów społecznościowych
Inteligentne wydobywanie informacji z internetowych serwisów społecznościowych AUTOMATYKA INFORMATYKA Technologie Informacyjne Sieć Semantyczna Przetwarzanie Języka Naturalnego Internet Edytor Serii: Zdzisław
Bardziej szczegółowosynaptycznych wszystko to waży 1.5 kg i zajmuje objętość około 1.5 litra. A zużywa mniej energii niż lampka nocna.
Sieci neuronowe model konekcjonistyczny Plan wykładu Mózg ludzki a komputer Modele konekcjonistycze Perceptron Sieć neuronowa Uczenie sieci Sieci Hopfielda Mózg ludzki a komputer Twój mózg to 00 000 000
Bardziej szczegółowo1. POJĘCIA PODSTAWOWE I RODZAJE UKŁADÓW AUTOMATYKI
Podstawy automatyki / Józef Lisowski. Gdynia, 2015 Spis treści PRZEDMOWA 9 WSTĘP 11 1. POJĘCIA PODSTAWOWE I RODZAJE UKŁADÓW AUTOMATYKI 17 1.1. Automatyka, sterowanie i regulacja 17 1.2. Obiekt regulacji
Bardziej szczegółowoAlgorytmy wspomagania decyzji Czyli co i jak andrzej.rusiecki.staff.iiar.pwr.wroc.pl s.
Algorytmy wspomagania decyzji Czyli co i jak 2013 andrzej.rusiecki@pwr.wroc.pl andrzej.rusiecki.staff.iiar.pwr.wroc.pl s. 911/D-20 O co chodzi? Celem przedmiotu jest ogólne zapoznanie się z podstawowymi
Bardziej szczegółowoProf. Stanisław Jankowski
Prof. Stanisław Jankowski Zakład Sztucznej Inteligencji Zespół Statystycznych Systemów Uczących się p. 228 sjank@ise.pw.edu.pl Zakres badań: Sztuczne sieci neuronowe Maszyny wektorów nośnych SVM Maszyny
Bardziej szczegółowoSTUDIA I MONOGRAFIE NR
STUDIA I MONOGRAFIE NR 21 WYBRANE ZAGADNIENIA INŻYNIERII WIEDZY Redakcja naukowa: Andrzej Cader Jacek M. Żurada Krzysztof Przybyszewski Łódź 2008 3 SPIS TREŚCI WPROWADZENIE 7 SYSTEMY AGENTOWE W E-LEARNINGU
Bardziej szczegółowoI EKSPLORACJA DANYCH
I EKSPLORACJA DANYCH Zadania eksploracji danych: przewidywanie Przewidywanie jest podobne do klasyfikacji i szacowania, z wyjątkiem faktu, że w przewidywaniu wynik dotyczy przyszłości. Typowe zadania przewidywania
Bardziej szczegółowoSztuczne sieci neuronowe. Krzysztof A. Cyran POLITECHNIKA ŚLĄSKA Instytut Informatyki, p. 311
Sztuczne sieci neuronowe Krzysztof A. Cyran POLITECHNIKA ŚLĄSKA Instytut Informatyki, p. 311 Wykład 7 PLAN: - Repetitio (brevis) -Algorytmy miękkiej selekcji: algorytmy ewolucyjne symulowane wyżarzanie
Bardziej szczegółowoKOMPUTERY W STEROWANIU. Ćwiczenie 6 Projektowanie układu regulacji rozmytej
Wydział Elektryczny Zespół Automatyki (ZTMAiPC) KOMPUTERY W STEROWANIU Ćwiczenie 6 Projektowanie układu regulacji rozmytej 1. Cel ćwiczenia Celem ćwiczenia jest zapoznanie się z procedurą projektowania
Bardziej szczegółowoSystemy ekspertowe. dr inż.marcin Blachnik. marcin.blachnik@polsl.pl http://mblachnik.pl
Systemy ekspertowe dr inż.marcin Blachnik marcin.blachnik@polsl.pl http://mblachnik.pl Literatura A. Niederliński Regułowo - modelowe systemy ekspertowe rmse, Wyd. SKALMIERSKI P. Cichosz, Systemy uczące
Bardziej szczegółowoTechnologia informacyjna Sztuczna Inteligencja Janusz Uriasz
Technologia informacyjna Sztuczna Inteligencja Janusz Uriasz 4. Sztuczna inteligencja Sztuczna inteligencja (SI) - dziedzina informatyki związana z koncepcjami i metodami wnioskowania symbolicznego, wykonywanego
Bardziej szczegółowoInteligencja obliczeniowa
Ćwiczenie nr 1 Zbiory rozmyte logika rozmyta Tworzenie: termów zmiennej lingwistycznej o różnych kształtach, modyfikatorów, zmiennych o wielu termach; operacje przecięcia, połączenia i dopełnienia 1. Wprowadzenie
Bardziej szczegółowoALGORYTM PROJEKTOWANIA ROZMYTYCH SYSTEMÓW EKSPERCKICH TYPU MAMDANI ZADEH OCENIAJĄCYCH EFEKTYWNOŚĆ WYKONANIA ZADANIA BOJOWEGO
Szybkobieżne Pojazdy Gąsienicowe (2) Nr 2, 24 Mirosław ADAMSKI Norbert GRZESIK ALGORYTM PROJEKTOWANIA CH SYSTEMÓW EKSPERCKICH TYPU MAMDANI ZADEH OCENIAJĄCYCH EFEKTYWNOŚĆ WYKONANIA ZADANIA BOJOWEGO. WSTĘP
Bardziej szczegółowoWnioskowanie rozmyte. Krzysztof Patan
Wnioskowanie rozmyte Krzysztof Patan Wprowadzenie Informacja precyzyjna jest to jedyna postać informacji akceptowanej przez konwencjonalne metody matematyczne, najczęściej dostarczana jest przez precyzyjne
Bardziej szczegółowoUczenie sieci typu MLP
Uczenie sieci typu MLP Przypomnienie budowa sieci typu MLP Przypomnienie budowy neuronu Neuron ze skokową funkcją aktywacji jest zły!!! Powszechnie stosuje -> modele z sigmoidalną funkcją aktywacji - współczynnik
Bardziej szczegółowoSztuczne sieci neuronowe
Wydział Zarządzania AGH Katedra Informatyki Stosowanej Sztuczne sieci neuronowe Sztuczne sieci neuronowe Wprowadzenie Trochę historii Podstawy działania Funkcja aktywacji Typy sieci 2 Wprowadzenie Zainteresowanie
Bardziej szczegółowoLiczba godzin w semestrze Ogółem Semestr 1 Semestr 2 Semestr 3 E Z Sh W C L S P W C L S P ECTS W C L S P ECTS W C L S P ECTS W C L S P ECTS
Specjalność: Bezpieczeństwo sieciowych systemów informatycznych, Informatyka techniczna, Technologie internetowe i techniki multimedialne Ogółem Semestr 1 Semestr 2 Semestr Semestr 4 E Z Sh W C L S P W
Bardziej szczegółowoSztuczna inteligencja
Sztuczna inteligencja Wykład 7. Architektury sztucznych sieci neuronowych. Metody uczenia sieci. źródła informacji: S. Osowski, Sieci neuronowe w ujęciu algorytmicznym, WNT 1996 Podstawowe architektury
Bardziej szczegółowoSpis treści. Przedmowa 11
Podstawy konstrukcji maszyn. T. 1 / autorzy: Marek Dietrich, Stanisław Kocańda, Bohdan Korytkowski, Włodzimierz Ozimowski, Jacek Stupnicki, Tadeusz Szopa ; pod redakcją Marka Dietricha. wyd. 3, 2 dodr.
Bardziej szczegółowoMETODY INTELIGENCJI OBLICZENIOWEJ wykład 5
METODY INTELIGENCJI OBLICZENIOWEJ wykład 5 1 2 SZTUCZNE SIECI NEURONOWE cd 3 UCZENIE PERCEPTRONU: Pojedynczy neuron (lub 1 warstwa neuronów) typu percep- tronowego jest w stanie rozdzielić przestrzeń obsza-
Bardziej szczegółowoZastosowania metod odkrywania wiedzy do diagnostyki maszyn i procesów
Zastosowania metod odkrywania wiedzy do diagnostyki maszyn i procesów Wojciech Moczulski Politechnika Śląska Katedra Podstaw Konstrukcji Maszyn Sztuczna inteligencja w automatyce i robotyce Zielona Góra,
Bardziej szczegółowoSystemy ekspertowe i ich zastosowania. Katarzyna Karp Marek Grabowski
Systemy ekspertowe i ich zastosowania Katarzyna Karp Marek Grabowski Plan prezentacji Wstęp Własności systemów ekspertowych Rodzaje baz wiedzy Metody reprezentacji wiedzy Metody wnioskowania Języki do
Bardziej szczegółowoOptymalizacja optymalizacji
7 maja 2008 Wstęp Optymalizacja lokalna Optymalizacja globalna Algorytmy genetyczne Badane czasteczki Wykorzystane oprogramowanie (Algorytm genetyczny) 2 Sieć neuronowa Pochodne met-enkefaliny Optymalizacja
Bardziej szczegółowo