W narzędziu typu Excel, Calc czy Gnumeric napisz formułę logiczną która wyznaczy wartośd przynależności dla podanej temperatury do zbioru gorąco.
|
|
- Bogdan Nowicki
- 8 lat temu
- Przeglądów:
Transkrypt
1 Zadanie 0 Wyobraźmy sobie, że chcemy oceniad czy dana temperatura świadczy o tym, że jest gorąco czy raczej zimno. A więc znając wartośd liczbową temperatury chcemy oceniad wartośd funkcji przynależności do klasy gorąco. Operując na własności logiki klasycznej, która przypomnijmy pozwoli nam jedynie korzystad z dwóch wartości logicznych: prawdy (1) i fałszu (0), wartośd funkcji przynależności do klasy GORĄCO określilibyśmy następująco: Czyli jeśli temperatura w danym dniu wyniesie 49 stopni stwierdzimy, że nieprawda, że jest gorąco. Jeśli zaś będzie 50 stopni, powiemy, że jest gorąco. Niezbyt nam się podoba taka klasyfikacja zgodnie z którą jak jest 49 stopni to jeszcze gorąco nie jest, a jak już jest o 1 stopieo więcej zaledwie, a więc 50 stopni to już jest gorąco. Niestety takie ograniczenia stawia nam właśnie logika klasyczna. Aby było możliwe określanie bardziej rozmyte takich granic klasyfikacji, możemy użyd logiki rozmytej. W narzędziu typu Excel, Calc czy Gnumeric napisz formułę logiczną która wyznaczy wartośd przynależności dla podanej temperatury do zbioru gorąco. Zadanie 1 Załóżmy, że mniej lub bardziej gorąco jest mniej więcej w przedziale od 20 do 100 stopni. A więc chcemy mówid, że zdecydowanie jest gorąco gdy temperatura jest większa niż 100stopni, zdecydowanie nie jest gorąco gdy temperatura jest mniejsza niż 20 stopni, zaś jeśli temperatura jest między 20 a 100 stopniami wartośd powinna byd odpowiednio proporcjonalna i w zakresie od 0 do 1. Zaproponujmy więc następującą definicję tzw. Funkcji przynależności do klasy gorąco : Funkcje przynależności Temperatura( F) Stopieo gorąca Stopieo zimna Rysunek. Funkcje przynależności do klasy gorąco / zimno
2 Zatem dla temperatury np. 30 stopni: Stopieo przynależności do klasy gorąco wynosi wówczas: 0.13 Stopieo przynależności do klasy zimno wynosi Możemy też powiedzied, że po prostu gdy temperatura wynosi 30 stopni, w 13% jest gorąco a w 87% jest zimno. Dlaczego 0,13? Bo podstawiając wartośd 30 do wzoru: Która jak widad pasuje tylko do środkowego warunku: bo wartośd 30 jest między 20 a 100 stopni, zatem podstawiamy ją do wzoru: =10/80 = 1/8 = 0.125=0.13 Proszę wyznaczyd wartośd funkcji przynależności do klasy gorąco dla temperatury: 20,35,40,50,60,70,80,90,100 Zadanie 3 Dla dowolnych danych dotyczących wzrostu zaproponuj reprezentację funkcji przynależności, zgodnie z którą będziemy typowad ludzi wysokich. Zrób to tak, aby w przypadku gdy ktoś ma wzrost mniejszy niż 170 cm funkcja przynależności wynosiła 0, gdy większy niż 190 cm wartośd 1, a gdy wzrost jest między 170 a 190 to funkcja niech będzie obliczana jako: (wzrost 170 ) / 20 Zadanie 4 Dwa zbiory rozmyte reprezentują obraz samochodu i ciężarówki, i są zdefiniowane następująco: Car = {0.5 / truck, 0.4 / motor, 0.3 / boat, 0.9 / car, 0.1 / house} Truck = {1 / truck, 0.1 / motor, 0.4 / boat, 0.4 / car, 0.2 / house} Znajdź: 1. Car Truck 3. not(car) 5. Car not(car) 2. Car Truck 4. Car not(truck) 6. Car not(car) Zadanie 5 Następująca funkcja rozmyta ma byd użyta do obliczania funkcji przynależności da zbioru osób zdrowych. 1 zdrowy, 0 nie zdrowy. Wartośd między 0 a 1 ma określad stopieo przynależności do klasy zdrowych. BMI z przedziału między 20 a 25 to przesłanka do tego by uznad kogoś za zdrowego. BMI większe niż 27 albo mniejsze niż 18 na pewno nie świadczy o stanie zdrowym. Wartości BMI bliskie zakresowi wartości dla osób zdrowych a więc z od 20 do 25, to wartości z przedziału 0 a 1. Np. BMI = 19.6 to Narysuj graficznie reprezentację funkcji rozmytej health(x) reprezentującą zarówno klasę zdrowy i niezdrowy. 2. Jaki jest stopieo przynależności rozmytego zbioru dla osób zdrowych w przypadku Marka, którego BMI wynosi 26.2? A jaki jest stopieo jego przynależności do zbioru niezdrowych? 3. Oblicz swój własny BMI i określ jaki jest stopieo przynależności twojego BMI do klasy zdrowych?
3 Zadanie 6 Wiedząc, że dane są następujące reprezentacje Przykład: wysoki mężczyzna=(0/180, 1/190) niski mężczyzna=(1/160, 0/170) średniego wzrostu mężczyzna=(0/165, 1/175, 0/185) Wyznacz: a) Dopełnienie zbioru: wysoki mężczyzna = (0/180, 0.25/182.5, 0.5/185, 0.75/187, 1/190) NOT wysoki mężczyzna =. b) Iloczyn zbiorów: wysoki mężczyzna = (0/165, 0/175, 0/180, 0.25/182.5, 0.5/185, 1/190) średni mężczyzna = (0/165, 1/175, 0.5/180, 0.25/182.5, 0/185, 0/190) wysoki mężczyzna średni mężczyzna =. c) Zawieranie się zbiorów wysoki mężczyzna = (0/180, 0.25/182.5, 0.5/185, 0.75/187, 1/190) bardzo wysoki mężczyzna = d) Sumę zbiorów wysoki mężczyzna = (0/165, 0/175, 0/180, 0.25/182.5, 0.5/185, 1/190) średni mężczyzna = (0/165, 1/175, 0.5/180, 0.25/182.5, 0/185, 0/190) wysoki mężczyzna średni mężczyzna =.. Zadanie 7 Nie dana będzie następująca interpretacja wzrostu danej osoby: Wyznacz graficznie funkcje przynależności do zbiorów: Compute the graphical representation of the membership function of: Small Tall (Small Medium) Tall Zadanie 8 Stopniowanie zbiorów rozmytych. Najpierw wyznacz wartości przynależności poszczególnych osób, których wiek będzie podany, do zbioru stary. Zastosuj następujące kryterium dla funkcji przynależności:
4 Imię Wiek(x) µ wiek (x) Ewa 33 Ola 43 Waldek 44 Marek 51 Anna 55 Mirela 57 Grzegorz 61 Marcin 67 Karol 85 Kasia 88 Następnie wiedząc, że można stopniowad zbiory rozmyte oblicz wartośd funkcji przynależności dla każdej osoby do zbioru bardzo stary w oparciu o wartośd funkcji przynależności zbioru stary : "stary" "bardzo stary" Zadanie 9 Proszę zaproponowad funkcję przynależności, która dla podanej godziny poda odpowiednią porę dnia. Wykorzystaj poniższą ilustrację rozwiązania: Zadanie 10 Załóżmy, że mamy dane reguły: I że funkcje przynależności do poszczególych klas dane są następująco: Wyznacz ryzyko towarzystwa ubezpieczeniowego dla klienta: a) Wiek = 35 I moc samochodu = 150 KM b) Wiek = 55 I moc samochodu = 150 KM c) Wiek = 35 I moc samochodu = 190 KM
5 Zadanie 11 Załóżmy, że systemowa baza wiedzy zawiera następujące reguły: RULE1: IF temperature is hot or warm, THEN the swimming pool is crowded. RULE2: IF temperature is cold, THEN the swimming pool is quiet. Funkcje przynależności dla poszczególnych zbiorów niech będą następujące: 1. Co jest tutaj zmienną lingwistyczną a co wartością lingwistyczną? 2. Narysuj funkcje przynależności dla temperatury i liczby sprzedawców na terenie basenu. Zadanie 12. Załóżmy, że mamy system będący prostym kontrolerem stosującym błąd sygnału e i zmiana błędu sygnału de jako dane wejściowe i zadane są 4 reguły w oparciu o które działa model rozmyty: RULE 1: IF e = P AND de = P THEN x = N RULE 2: IF e = P AND de = N THEN x = 0 RULE 3: IF e = N AND de = P THEN x = 0 RULE 4: IF e = N AND de = N THEN x = P Załóżmy, że dane są dwa zbiory rozmyte jako wartości rozmytych zmiennych wejściowych e i de: P (positive) i N (negative). Rozmyta zmienna wyjściowa ma 3 wartości: P (positive), 0 (zero), N (negative) tak jak to pokazano na rysunku powyżej. Zakładając, że wejściwe zmienne mają nastpujące wartości funkcji przynależności w zbiorach wejściowych: µ N (e) = 0.4; µ P (e) = 0.6 i µ N (de) = 0.2; i µ P (de) = 0.8 a. stosując wnioskowanie typu Mamdani wykaż, że całkowita wartośd rozmyta wyjściowego zbioru jest taka jak pokazano na poniższym rysunku (czerwona linia). Narysuj odpowiednie wykresy. b. Wyostrz wartości wyjścia stosując metodę centroidu. c. Stosując metodę zero order Sugeno oblicz wartośd wyjścia. Narysuj graficznie. d. Porównaj rezyltaty dla obu metod wnioskowania.
Zadanie 0 gdy nie mamy logiki rozmytej. Zadanie 1- gdy już mamy logikę rozmytą
Zadanie 0 gdy nie mamy logiki rozmytej Wyobraźmy sobie, że chcemy oceniad czy dana temperatura świadczy o tym, że jest gorąco czy raczej zimno. A więc znając wartośd liczbową temperatury chcemy oceniad
Bardziej szczegółowoZadanie 0 gdy nie mamy logiki rozmytej
Zadanie 0 gdy nie mamy logiki rozmytej Wyobraźmy sobie, że chcemy oceniad czy dana temperatura świadczy o tym, że jest gorąco czy raczej zimno. A więc znając wartośd liczbową temperatury chcemy oceniad
Bardziej szczegółowoSztuczna inteligencja : Zbiory rozmyte cz. III
Instytut Informatyki Uniwersytetu Śląskiego lab 3 Notacja Zadeha: symboliczny zapis zbioru rozmytego dla przestrzeni dyskretnej. Dla X jest przestrzenią o skończonej liczbie elementów X = {x 1, x 2,...,
Bardziej szczegółowoSztuczna inteligencja : Zbiory rozmyte cz. 2
Sztuczna inteligencja : Zbiory rozmyte cz. 2 Przemysław Juszczuk Instytut Informatyki Uniwersytetu Śląskiego 1 marca 2012 Funkcja trójkątna: Funkcja trójkątna: Funkcja przynależności γ (gamma): Rysunek:
Bardziej szczegółowoSztuczna inteligencja: zbiory rozmyte
Instytut Informatyki Uniwersytetu Śląskiego lab 1 1 Klasyczna teoria zbiorów 2 Teoria zbiorów rozmytych 3 Zmienne lingwistyczne i funkcje przynależności 4 System rozmyty 5 Preprocesing danych Każdy element
Bardziej szczegółowoJeśli X jest przestrzenią o nieskończonej liczbie elementów:
Logika rozmyta 2 Zbiór rozmyty może być formalnie zapisany na dwa sposoby w zależności od tego z jakim typem przestrzeni elementów mamy do czynienia: Jeśli X jest przestrzenią o skończonej liczbie elementów
Bardziej szczegółowoRozmyte systemy doradcze
Systemy ekspertowe Rozmyte systemy doradcze Plan. Co to jest myślenie rozmyte? 2. Teoria zbiorów rozmytych. 3. Zmienne lingwistyczne. 4. Reguły rozmyte. 5. Wnioskowanie rozmyte (systemy doradcze). typu
Bardziej szczegółowoINŻYNIERIA WIEDZY I SYSTEMY EKSPERTOWE
Temat: Podstawowe pojęcia z logiki rozmytej Instrukcja do ćwiczeń przedmiotu INŻYNIERIA WIEDZY I SYSTEMY EKSPERTOWE Dr inż. Barbara Mrzygłód KISiM, WIMiIP, AGH mrzyglod@ agh.edu.pl 1 Wprowadzenie Sterowanie
Bardziej szczegółowoCel projektu: Wymogi dotyczące sprawozdania:
W ramach zajęć proszę wykonać sprawozdanie z logiki rozmytej. Sprawozdanie powinno realizować zadanie wnioskowania rozmytego. Cel projektu: Student projektuje bazę wiedzy wnioskowania rozmytego (kilka,
Bardziej szczegółowoSZTUCZNA INTELIGENCJA
SZTUCZNA INTELIGENCJA WYKŁAD 10. WNIOSKOWANIE W LOGICE ROZMYTEJ Częstochowa 2014 Dr hab. inż. Grzegorz Dudek Wydział Elektryczny Politechnika Częstochowska WNIOSKOWANIE W LOGICE DWUWARTOŚCIOWEJ W logice
Bardziej szczegółowoTemat: Model SUGENO. Instrukcja do ćwiczeń przedmiotu INŻYNIERIA WIEDZY I SYSTEMY EKSPERTOWE
Temat: Model SUGENO Instrukcja do ćwiczeń przedmiotu INŻYNIERIA WIEDZY I SYSTEMY EKSPERTOWE Dr inż. Barbara Mrzygłód KISiM, WIMiIP, AGH mrzyglod@ agh.edu.pl 1 Wprowadzenie Pierwszym rodzajem modelowania
Bardziej szczegółowoInżynieria Wiedzy i Systemy Ekspertowe. Logika rozmyta. dr inż. Michał Bereta Politechnika Krakowska
Inżynieria Wiedzy i Systemy Ekspertowe Logika rozmyta dr inż. Michał Bereta Politechnika Krakowska http://torus.uck.pk.edu.pl/~beretam/ beretam@torus.uck.pk.edu.pl 1 Wyostrzanie Ostateczna, ostra wartość
Bardziej szczegółowoZasada rozszerzania. A U A jest zbiorem rozmytym, B jest obrazem zbioru A Przeniesienie rozmytości A w odwzorowaniu f na zbiór B. sup.
Zasada rozszerzania f U V U jest zbiorem rozmytym V = f( ), jest obrazem zbioru Przeniesienie rozmytości w odwzorowaniu f na zbiór v) = ( v)? ( f ( ) = sup ( u) gdy ( v) 0 1 = 1 u f ( v) f( ) ( v) 1 0
Bardziej szczegółowo6. Zagadnienie parkowania ciężarówki.
6. Zagadnienie parkowania ciężarówki. Sterowniki rozmyte Aby móc sterować przebiegiem pewnych procesów lub też pracą urządzeń niezbędne jest stworzenie odpowiedniego modelu, na podstawie którego można
Bardziej szczegółowoLogika rozmyta. Agnieszka Nowak - Brzezioska
Logika rozmyta Agnieszka Nowak - Brzezioska Geneza Logiki rozmytej Za twórcę teorii zbiorów rozmytych i logiki rozmytej uważa się Lotfiego A. Zadeha, który w 1965 roku opublikował artykuł Fuzzy Sets (Information
Bardziej szczegółowoSTANDARDOWE FUNKCJE PRZYNALEŻNOŚCI. METODY HEURYSTYCZNE wykład 6. (alternatywa dla s) (zdef. poprzez klasę s) GAUSSOWSKA F.
METODY HEURYSTYCZNE wykład 6 STANDARDOWE FUNKCJE PRZYNALEŻNOŚCI 2 GAUSSOWSKA F. PRZYNALEŻNOŚCI F. PRZYNALEŻNOŚCI KLASY s środek; a określa szerokość krzywej 3 4 F. PRZYNALEŻNOŚCI KLASY π F. PRZYNALEŻNOŚCI
Bardziej szczegółowoPiotr Sobolewski Krzysztof Skorupski
Plan prezentacji Logika rodzaje Logika klasyczna Logika wielowartościowa Logika rozmyta Historia powstania Definicje Zbiory rozmyte Relacje rozmyte Systemy rozmyte Modele Zastosowanie w optymalizacji przykłady
Bardziej szczegółowoPodstawy sztucznej inteligencji
wykład 4 (Fuzzy logic) 23 listopad 2011 Plan wykładu 1 Systemy wnioskowania z danymi niepewnymi 2 3 Inteligentne systemy z wiedzą Systemy z wiedzą składają się z dwóch części: 1 Baza wiedzy (KB): zbioru
Bardziej szczegółowoZBIORY ROZMYTE I WNIOSKOWANIE PRZYBLIŻONE
SYSTEMY ROZMYTE ZBIORY ROZMYTE I WNIOSKOWANIE PRZYBLIŻONE 2 965 Lotfi A. Zadeh: Fuzzy sets Metoda reprezentacji wiedzy wyrażonej w języku naturalnym: Temperatura wynosi 29 o C informacja liczbowa - naturalna
Bardziej szczegółowoSZTUCZNA INTELIGENCJA
SZTUCZNA INTELIGENCJA SYSTEMY ROZMYTE Adrian Horzyk Akademia Górniczo-Hutnicza Wydział Elektrotechniki, Automatyki, Informatyki i Inżynierii Biomedycznej Katedra Automatyki i Inżynierii Biomedycznej Laboratorium
Bardziej szczegółowoLogika rozmyta. Agnieszka Nowak - Brzezioska
Logika rozmyta Agnieszka Nowak - Brzezioska Geneza Logiki rozmytej Za twórcę teorii zbiorów rozmytych i logiki rozmytej uważa się Lotfiego A. Zadeha, który w 1965 roku opublikował artykuł Fuzzy Sets (Information
Bardziej szczegółowoLista 2 logika i zbiory. Zad 1. Dane są zbiory A i B. Sprawdź, czy zachodzi któraś z relacji:. Wyznacz.
Lista 2 logika i zbiory. Zad 1. Dane są zbiory A i B. Sprawdź, czy zachodzi któraś z relacji:. Wyznacz. Na początek wypiszmy elementy obu zbiorów: A jest zbiorem wszystkich liczb całkowitych, które podniesione
Bardziej szczegółowoWYKŁAD 10 Rozmyta reprezentacja danych (modelowanie i wnioskowanie rozmyte)
WYKŁAD 10 Rozmyta reprezentacja danych (modelowanie i wnioskowanie rozmyte) Motywacje:! przezwyciężenie wad tradycyjnych algorytmów komputerowych, które zawodzą zwłaszcza w sytuacjach, w których człowiek
Bardziej szczegółowoTworzenie rozmytego systemu wnioskowania
Tworzenie rozmytego systemu wnioskowania Wstęp W odróżnieniu od klasycznych systemów regałowych modele rozmyte pozwalają budowad modele wnioskujące oparte o język naturalny, dzieki czemu inżynierom wiedzy
Bardziej szczegółowo7. Zagadnienie parkowania ciężarówki.
7. Zagadnienie parkowania ciężarówki. Sterowniki rozmyte Aby móc sterować przebiegiem pewnych procesów lub też pracą urządzeń niezbędne jest stworzenie odpowiedniego modelu, na podstawie którego można
Bardziej szczegółowoĆWICZENIE 4 ZASTOSOWANIE METOD I NARZĘDZI LOGIKI ROZMYTEJ DO KLASYFIKACJI DANYCH I APROKSYMACJI ODWZOROWAŃ STATYCZNYCH
Politechnika Białostocka Wydział Elektryczny Katedra Automatyki i Elektroniki ĆWICZENIE 4 ZASTOSOWANIE METOD I NARZĘDZI LOGIKI ROZMYTEJ DO KLASYFIKACJI DANYCH I APROKSYMACJI ODWZOROWAŃ STATYCZNYCH Pracownia
Bardziej szczegółowoKrok 1.Chcemy napisać dowolny tekst na ekranie, np. Witaj świecie
Laboratorium nr 1 programowanie Pythonie Krok 1.Chcemy napisać dowolny tekst na ekranie, np. Witaj świecie Efekt kompilacji (klawisz F5) będzie następujący: Krok 2. A teraz chcemy zapytać użytkownika o
Bardziej szczegółowoLogika Stosowana. Wykład 7 - Zbiory i logiki rozmyte Część 3 Prawdziwościowa logika rozmyta. Marcin Szczuka. Instytut Informatyki UW
Logika Stosowana Wykład 7 - Zbiory i logiki rozmyte Część 3 Prawdziwościowa logika rozmyta Marcin Szczuka Instytut Informatyki UW Wykład monograficzny, semestr letni 2016/2017 Marcin Szczuka (MIMUW) Logika
Bardziej szczegółowoInteligencja obliczeniowa
Ćwiczenie nr 1 Zbiory rozmyte logika rozmyta Tworzenie: termów zmiennej lingwistycznej o różnych kształtach, modyfikatorów, zmiennych o wielu termach; operacje przecięcia, połączenia i dopełnienia 1. Wprowadzenie
Bardziej szczegółowoImplementacja rozmytych systemów wnioskujących w zdaniach regulacji
Metody Sztucznej Inteligencji w Sterowaniu Ćwiczenie 5 Implementacja rozmytych systemów wnioskujących w zdaniach regulacji Przygotował: mgr inż. Marcin Pelic Instytut Technologii Mechanicznej Politechnika
Bardziej szczegółowoTemat: Model TS + ANFIS. Instrukcja do ćwiczeń przedmiotu INŻYNIERIA WIEDZY I SYSTEMY EKSPERTOWE
Temat: Model TS + ANFIS Instrukcja do ćwiczeń przedmiotu INŻYNIERIA WIEDZY I SYSTEMY EKSPERTOWE Dr inż. Barbara Mrzygłód KISiM, WIMiIP, AGH mrzyglod@ agh.edu.pl 1 Wprowadzenie Pierwszym rodzajem modelowania
Bardziej szczegółowoInżynieria Wiedzy i Systemy Ekspertowe. Niepewność wiedzy. dr inż. Michał Bereta Politechnika Krakowska
Inżynieria Wiedzy i Systemy Ekspertowe Niepewność wiedzy dr inż. Michał Bereta Politechnika Krakowska http://torus.uck.pk.edu.pl/~beretam/ beretam@torus.uck.pk.edu.pl 1 Logika Rozmyta (Fuzzy Logic) Mimo
Bardziej szczegółowoLogika Stosowana. Wykład 5 - Zbiory i logiki rozmyte Część 1. Marcin Szczuka. Instytut Informatyki UW. Wykład monograficzny, semestr letni 2016/2017
Logika Stosowana Wykład 5 - Zbiory i logiki rozmyte Część 1 Marcin Szczuka Instytut Informatyki UW Wykład monograficzny, semestr letni 2016/2017 Marcin Szczuka (MIMUW) Logika Stosowana 2017 1 / 36 Plan
Bardziej szczegółowoELEMENTY SZTUCZNEJ INTELIGENCJI. Wstęp do logiki rozmytej
ELEMENTY SZTUCZNEJ INTELIGENCJI 1 Wstęp do logiki rozmytej PLN 1. Co to jest myślenie rozmyte? 2. Teoria zbiorów rozmytych. 3. Zmienne lingwistyczne. 4. Reguły rozmyte. 5. Wnioskowanie rozmyte: 1. typu
Bardziej szczegółowo1. Logika, funkcje logiczne, preceptron.
Sieci neuronowe 1. Logika, funkcje logiczne, preceptron. 1. (Logika) Udowodnij prawa de Morgana, prawo pochłaniania p (p q), prawo wyłączonego środka p p oraz prawo sprzeczności (p p). 2. Wyraź funkcję
Bardziej szczegółowoPolitechnika Gdańska Wydział Elektrotechniki i Automatyki Katedra Inżynierii Systemów Sterowania
Politechnika Gdańska Wydział Elektrotechniki i Automatyki Katedra Inżynierii Systemów Sterowania MODELOWANIE I IDENTYFIKACJA Logika rozmyta podstawy wnioskowania w GUI Fuzzy. Materiały pomocnicze do laboratorium
Bardziej szczegółowoWPŁYW OPÓŹNIENIA NA DYNAMIKĘ UKŁADÓW Z REGULACJĄ KLASYCZNĄ I ROZMYTĄ
Prace Naukowe Instytutu Maszyn, Napędów i Pomiarów Elektrycznych Nr 65 Politechniki Wrocławskiej Nr 65 Studia i Materiały Nr 31 2011 Kinga GÓRNIAK* układy z opóźnieniem, regulacja rozmyta, model Mamdaniego,
Bardziej szczegółowoInteligencja obliczeniowa
Ćwiczenie nr 3 Zbiory rozmyte logika rozmyta Sterowniki wielowejściowe i wielowyjściowe, relacje rozmyte, sposoby zapisu reguł, aproksymacja funkcji przy użyciu reguł rozmytych, charakterystyki przejściowe
Bardziej szczegółowoReprezentacja rozmyta - zastosowania logiki rozmytej
17.06.2009 Wrocław Bartosz Chabasinski 148384 Reprezentacja rozmyta - zastosowania logiki rozmytej 1. Wstęp Celem wprowadzenia pojęcia teorii zbiorów rozmytych była potrzeba matematycznego opisania tych
Bardziej szczegółowoWnioskowanie rozmyte. Krzysztof Patan
Wnioskowanie rozmyte Krzysztof Patan Wprowadzenie Informacja precyzyjna jest to jedyna postać informacji akceptowanej przez konwencjonalne metody matematyczne, najczęściej dostarczana jest przez precyzyjne
Bardziej szczegółowoLogika rozmyta typu 2
Logika rozmyta typu 2 Zbiory rozmyte Funkcja przynależności Interwałowe zbiory rozmyte Funkcje przynależności przedziałów Zastosowanie.9.5 Francuz Polak Niemiec Arytmetyka przedziałów Operacje zbiorowe
Bardziej szczegółowoFunkcja liniowa - podsumowanie
Funkcja liniowa - podsumowanie 1. Funkcja - wprowadzenie Założenie wyjściowe: Rozpatrywana będzie funkcja opisana w dwuwymiarowym układzie współrzędnych X. Oś X nazywana jest osią odciętych (oś zmiennych
Bardziej szczegółowoJeśli przeszkoda jest blisko to przyhamuj
Rozmyte systemy regułowe Informacja, którą przetwarzają ludzie często (prawie zawsze) jest nieprecyzyjna, a mimo to potrafimy poprawnie wnioskować i podejmować decyzję, czego klasyczne komputery nie potrafią.
Bardziej szczegółowoLogika rozmyta. Agnieszka Nowak - Brzezińska
Logika rozmyta Agnieszka Nowak - Brzezińska Geneza Logiki rozmytej Za twórcę teorii zbiorów rozmytych i logiki rozmytej uważa się Lotfiego A. Zadeha, który w 1965 roku opublikował artykuł Fuzzy Sets (Information
Bardziej szczegółowoSterowanie z wykorzystaniem logiki rozmytej
Sterowanie z wykorzystaniem logiki rozmytej konspekt seminarium Paweł Szołtysek 24 stycznia 2009 1 Wstęp 1.1 Podstawy logiki rozmytej Logika rozmyta jest rodzajem logiki wielowartościowej, stanowi uogólnienie
Bardziej szczegółowoUniwersytet Zielonogórski Wydział Elektrotechniki, Informatyki i Telekomunikacji Instytut Sterowania i Systemów Informatycznych
Uniwersytet Zielonogórski Wydział Elektrotechniki, Informatyki i Telekomunikacji Instytut Sterowania i Systemów Informatycznych ELEMENTY SZTUCZNEJ INTELIGENCJI Laboratorium nr 6 SYSTEMY ROZMYTE TYPU MAMDANIEGO
Bardziej szczegółowo4 Klasyczny rachunek zdań
4 Klasyczny rachunek zdań Elementy Logiki i Teorii Mnogości 2015/2016 Spis najważniejszych tautologii: (a) p p prawo wyłączonego środka (b) ( p) p prawo podwójnej negacji (c) p q q p (d) p q q p prawo
Bardziej szczegółowo5. OKREŚLANIE WARTOŚCI LOGICZNEJ ZDAŃ ZŁOŻONYCH
5. OKREŚLANIE WARTOŚCI LOGICZNEJ ZDAŃ ZŁOŻONYCH Temat, którym mamy się tu zająć, jest nudny i żmudny będziemy się uczyć techniki obliczania wartości logicznej zdań dowolnie złożonych. Po co? możecie zapytać.
Bardziej szczegółowoUczenie się pojedynczego neuronu. Jeśli zastosowana zostanie funkcja bipolarna s y: y=-1 gdy z<0 y=1 gdy z>=0. Wówczas: W 1 x 1 + w 2 x 2 + = 0
Uczenie się pojedynczego neuronu W0 X0=1 W1 x1 W2 s f y x2 Wp xp p x i w i=x w+wo i=0 Jeśli zastosowana zostanie funkcja bipolarna s y: y=-1 gdy z=0 Wówczas: W 1 x 1 + w 2 x 2 + = 0 Algorytm
Bardziej szczegółowoUkłady logiki rozmytej. Co to jest?
PUAV Wykład 14 Co to jest? Co to jest? Logika rozmyta (fuzzy logic) jest to dział matematyki precyzyjnie formalizujący nieprecyzyjne, nieformalne ludzkie rozumowanie. Co to jest? Logika rozmyta (fuzzy
Bardziej szczegółowo3. Instrukcje warunkowe
. Instrukcje warunkowe Przykłady.1. Napisz program, który pobierze od użytkownika liczbę i wypisze na ekran słowo ujemna lub nieujemna, w zależności od tego czy dana liczba jest ujemna czy nie. 1 #include
Bardziej szczegółowoSystemy ekspertowe - wiedza niepewna
Instytut Informatyki Uniwersytetu Śląskiego lab 8 Rozpatrzmy następujący przykład: Miażdżyca powoduje często zwężenie tętnic wieńcowych. Prowadzi to zazwyczaj do zmniejszenia przepływu krwi w tych naczyniach,
Bardziej szczegółowolim Np. lim jest wyrażeniem typu /, a
Wykład 3 Pochodna funkcji złożonej, pochodne wyższych rzędów, reguła de l Hospitala, różniczka funkcji i jej zastosowanie, pochodna jako prędkość zmian 3. Pochodna funkcji złożonej. Jeżeli funkcja złożona
Bardziej szczegółowoStatystyka matematyczna dla leśników
Statystyka matematyczna dla leśników Wydział Leśny Kierunek leśnictwo Studia Stacjonarne I Stopnia Rok akademicki 03/04 Wykład 5 Testy statystyczne Ogólne zasady testowania hipotez statystycznych, rodzaje
Bardziej szczegółowoFUNKCJA LINIOWA - WYKRES. y = ax + b. a i b to współczynniki funkcji, które mają wartości liczbowe
FUNKCJA LINIOWA - WYKRES Wzór funkcji liniowej (postać kierunkowa) Funkcja liniowa to funkcja o wzorze: y = ax + b a i b to współczynniki funkcji, które mają wartości liczbowe Szczególnie ważny w postaci
Bardziej szczegółowoZakres materiału obowiązujący do egzaminu poprawkowego z matematyki klasa 1 d LO
Zakres materiału obowiązujący do egzaminu poprawkowego z matematyki klasa 1 d LO Dział programowy. Zakres realizacji 1. Liczby, działania i procenty Liczby wymierne i liczby niewymierne-działania, kolejność
Bardziej szczegółowoALGORYTM PROJEKTOWANIA ROZMYTYCH SYSTEMÓW EKSPERCKICH TYPU MAMDANI ZADEH OCENIAJĄCYCH EFEKTYWNOŚĆ WYKONANIA ZADANIA BOJOWEGO
Szybkobieżne Pojazdy Gąsienicowe (2) Nr 2, 24 Mirosław ADAMSKI Norbert GRZESIK ALGORYTM PROJEKTOWANIA CH SYSTEMÓW EKSPERCKICH TYPU MAMDANI ZADEH OCENIAJĄCYCH EFEKTYWNOŚĆ WYKONANIA ZADANIA BOJOWEGO. WSTĘP
Bardziej szczegółowoOutlier to dana (punkt, obiekt, wartośd w zbiorze) znacznie odstająca od reszty. prezentacji punktów odstających jest rysunek poniżej.
Temat: WYKRYWANIE ODCHYLEO W DANYCH Outlier to dana (punkt, obiekt, wartośd w zbiorze) znacznie odstająca od reszty. prezentacji punktów odstających jest rysunek poniżej. Przykładem Box Plot wygodną metodą
Bardziej szczegółowoTemat: ANFIS + TS w zadaniach. Instrukcja do ćwiczeń przedmiotu INŻYNIERIA WIEDZY I SYSTEMY EKSPERTOWE
Temat: ANFIS + TS w zadaniach Instrukcja do ćwiczeń przedmiotu INŻYNIERIA WIEDZY I SYSTEMY EKSPERTOWE Dr inż. Barbara Mrzygłód KISiM, WIMiIP, AGH mrzyglod@ agh.edu.pl 1. Systemy neuronowo - rozmyte Systemy
Bardziej szczegółowoMetoda zaburz-obserwuj oraz metoda wspinania
Metoda zaburz-obserwuj oraz metoda wspinania Algorytm zaburz-obserwuj mierzy się moc (zwykle modułu) przed i po zmianie na tej podstawie podejmuje się decyzję o kierunku następnej zmiany Metoda wspinania
Bardziej szczegółowoFUNKCJA LINIOWA - WYKRES
FUNKCJA LINIOWA - WYKRES Wzór funkcji liniowej (Postać kierunkowa) Funkcja liniowa jest podstawowym typem funkcji. Jest to funkcja o wzorze: y = ax + b a i b to współczynniki funkcji, które mają wartości
Bardziej szczegółowoFUNKCJA LINIOWA, RÓWNANIA I UKŁADY RÓWNAŃ LINIOWYCH
FUNKCJA LINIOWA, RÓWNANIA I UKŁADY RÓWNAŃ LINIOWYCH PROPORCJONALNOŚĆ PROSTA Proporcjonalnością prostą nazywamy zależność między dwoma wielkościami zmiennymi x i y, określoną wzorem: y = a x Gdzie a jest
Bardziej szczegółowoLista zadań nr 15 TERMIN ODDANIA ROZWIĄZANYCH ZADAŃ 9 marca 2015
Lista zadań nr 5 TERMIN ODDANIA ROZWIĄZANYCH ZADAŃ 9 marca 05 Liczby rzeczywiste a) planuję i wykonuję obliczenia na liczbach rzeczywistych; w szczególności obliczam pierwiastki, w tym pierwiastki nieparzystego
Bardziej szczegółowoTechnologie i systemy oparte na logice rozmytej
Zagadnienia I Technologie i systemy oparte na logice rozmytej Mają zastosowania w sytuacjach kiedy nie posiadamy wystarczającej wiedzy o modelu matematycznym rządzącym danym zjawiskiem oraz tam gdzie zbudowanie
Bardziej szczegółowozaznaczymy na osi liczbowej w ten sposób:
1. Zagadnienia teoretyczne. 1.1. Przedział domknięty Przykład 1. Pisząc mamy na myśli wszystkie liczby rzeczywiste od -4 do 7, razem z -4 i 7. Jeśli napiszemy, będziemy mówić o zbiorze wszystkich liczb
Bardziej szczegółowoPrawdopodobieństwo czerwonych = = 0.33
Temat zajęć: Naiwny klasyfikator Bayesa a algorytm KNN Część I: Naiwny klasyfikator Bayesa Naiwny klasyfikator bayerowski jest prostym probabilistycznym klasyfikatorem. Naiwne klasyfikatory bayesowskie
Bardziej szczegółowoLogika Stosowana Ćwiczenia
Logika Stosowana Ćwiczenia Systemy sterowania wykorzystujące zbiory rozmyte Marcin Szczuka Instytut Matematyki, Uniwersytet Warszawski Semestr letni 2014/15 Marcin Szczuka (MIMUW) Logika Stosowana 2014/15
Bardziej szczegółowoAlgebra Boole a i jej zastosowania
lgebra oole a i jej zastosowania Wprowadzenie Niech dany będzie zbiór dwuelementowy, którego elementy oznaczymy symbolami 0 oraz 1, tj. {0, 1}. W zbiorze tym określamy działania sumy :, iloczynu : _ oraz
Bardziej szczegółowoSystemy ekspertowe i ich zastosowania. Katarzyna Karp Marek Grabowski
Systemy ekspertowe i ich zastosowania Katarzyna Karp Marek Grabowski Plan prezentacji Wstęp Własności systemów ekspertowych Rodzaje baz wiedzy Metody reprezentacji wiedzy Metody wnioskowania Języki do
Bardziej szczegółowoWYDZIAŁ ELEKTROTECHNIKI, AUTOMATYKI I INFORMATYKI INSTYTUT AUTOMATYKI I INFORMATYKI KIERUNEK AUTOMATYKA I ROBOTYKA STUDIA STACJONARNE I STOPNIA
WYDZIAŁ ELEKTROTECHNIKI, AUTOMATYKI I INFORMATYKI INSTYTUT AUTOMATYKI I INFORMATYKI KIERUNEK AUTOMATYKA I ROBOTYKA STUDIA STACJONARNE I STOPNIA PRZEDMIOT : : LABORATORIUM PODSTAW AUTOMATYKI 9. Dobór nastaw
Bardziej szczegółowo13. Równania różniczkowe - portrety fazowe
13. Równania różniczkowe - portrety fazowe Grzegorz Kosiorowski Uniwersytet Ekonomiczny w Krakowie rzegorz Kosiorowski (Uniwersytet Ekonomiczny 13. wrównania Krakowie) różniczkowe - portrety fazowe 1 /
Bardziej szczegółowoZadanie 3 Oblicz jeżeli wiadomo, że liczby 8 2,, 1, , tworzą ciąg arytmetyczny. Wyznacz różnicę ciągu. Rozwiązanie:
Zadanie 3 Oblicz jeżeli wiadomo, że liczby 8 2,, 1, 6 11 6 11, tworzą ciąg arytmetyczny. Wyznacz różnicę ciągu. Uprośćmy najpierw liczby dane w treści zadania: 8 2, 2 2 2 2 2 2 6 11 6 11 6 11 26 11 6 11
Bardziej szczegółowoBramki logiczne V MAX V MIN
Bramki logiczne W układach fizycznych napięcie elektryczne może reprezentować stany logiczne. Bramką nazywamy prosty obwód elektroniczny realizujący funkcję logiczną. Pewien zakres napięcia odpowiada stanowi
Bardziej szczegółowoKurs logiki rozmytej - zadania. Wojciech Szybisty
Kurs logiki rozmytej - zadania Wojciech Szybisty 2009 Spis treści 1 Zadania - zbiory rozmyte 3 2 Zadania - relacje rozmyte 6 3 Zadania - logika rozmyta 11 1 Zadania - zbiory rozmyte 3 Przykłady rozwiązywania
Bardziej szczegółowoKOMPUTERY W STEROWANIU. Ćwiczenie 6 Projektowanie układu regulacji rozmytej
Wydział Elektryczny Zespół Automatyki (ZTMAiPC) KOMPUTERY W STEROWANIU Ćwiczenie 6 Projektowanie układu regulacji rozmytej 1. Cel ćwiczenia Celem ćwiczenia jest zapoznanie się z procedurą projektowania
Bardziej szczegółowoSystemy uczące się wykład 2
Systemy uczące się wykład 2 dr Przemysław Juszczuk Katedra Inżynierii Wiedzy, Uniwersytet Ekonomiczny 19 X 2018 Podstawowe definicje Fakt; Przesłanka; Konkluzja; Reguła; Wnioskowanie. Typy wnioskowania
Bardziej szczegółowoSTATYSTYKA 2. Katarzyna Abramczuk
STATYSTYKA 2 Katarzyna Abramczuk Zadanie 1 W malutkiej wiosce Malutkowo są tylko 4 domy. Mieszkają w nich: DOM 1 DOM 2 DOM 3 DOM 4 Matka (35) Matka (32) Matka (32) Pan Stefan (40) Ojciec (40) Ojciec (35)
Bardziej szczegółowoLogika intuicjonistyczna
Logika intuicjonistyczna Logika klasyczna oparta jest na pojęciu wartości logicznej zdania. Poprawnie zbudowane i jednoznaczne stwierdzenie jest w tej logice klasyfikowane jako prawdziwe lub fałszywe.
Bardziej szczegółowoTab. 1 Tab. 2 t t+1 Q 2 Q 1 Q 0 Q 2 Q 1 Q 0
Synteza liczników synchronicznych Załóżmy, że chcemy zaprojektować licznik synchroniczny o następującej sekwencji: 0 1 2 3 6 5 4 [0 sekwencja jest powtarzana] Ponieważ licznik ma 7 stanów, więc do ich
Bardziej szczegółowoZBIÓR ZADAŃ - ROZUMOWANIE I ARGUMENTACJA
ZIÓR ZŃ - ROZUMOWNIE I RGUMENTJ 0--30 Strona ZIÓR ZO O WYMGNI EGZMINYJNEGO - ROZUMOWNIE I RGUMENTJ. Zapisz sumę trzech kolejnych liczb naturalnych, z których najmniejsza jest liczba n. zy suma ta jest
Bardziej szczegółowoLista 3 Funkcje. Środkowa częśd podanej funkcji, to funkcja stała. Jej wykresem będzie poziomy odcinek na wysokości 4.
Lista 3 Funkcje. Zad 1. Narysuj wykres funkcji. Przykład 1:. Zacznijmy od sporządzenia tabelki dla każdej części podanej funkcji, uwzględniając podany zakres argumentów (dziedzinę): Weźmy na początek funkcję,
Bardziej szczegółowoInstrukcja warunkowa i złoŝona.
Instrukcja warunkowa i złoŝona. Budowa pętli warunkowej. JeŜeli mielibyśmy przetłumaczyć instrukcję warunkową to brzmiałoby to mniej więcej tak: jeŝeli warunek jest spełniony, to wykonaj jakąś operację
Bardziej szczegółowoIndukcja matematyczna
Indukcja matematyczna 1 Zasada indukcji Rozpatrzmy najpierw następujący przykład. Przykład 1 Oblicz sumę 1 + + 5 +... + (n 1). Dyskusja. Widzimy że dla n = 1 ostatnim składnikiem powyższej sumy jest n
Bardziej szczegółowoSztuczna Inteligencja Projekt
Sztuczna Inteligencja Projekt Temat: Algorytm F-LEM1 Liczba osób realizujących projekt: 2 1. Zaimplementować algorytm F LEM 1. 2. Zaimplementować klasyfikator Classif ier. 3. Za pomocą algorytmu F LEM1
Bardziej szczegółowoPodstawą w systemie dwójkowym jest liczba 2 a w systemie dziesiętnym liczba 10.
ZAMIANA LICZB MIĘDZY SYSTEMAMI DWÓJKOWYM I DZIESIĘTNYM Aby zamienić liczbę z systemu dwójkowego (binarnego) na dziesiętny (decymalny) należy najpierw przypomnieć sobie jak są tworzone liczby w ww systemach
Bardziej szczegółowoInterwałowe zbiory rozmyte
Interwałowe zbiory rozmyte 1. Wprowadzenie. Od momentu przedstawienia koncepcji klasycznych zbiorów rozmytych (typu 1), były one krytykowane za postać jaką przybiera funkcja przynależności. W przypadku
Bardziej szczegółowo8. Neuron z ciągłą funkcją aktywacji.
8. Neuron z ciągłą funkcją aktywacji. W tym ćwiczeniu zapoznamy się z modelem sztucznego neuronu oraz przykładem jego wykorzystania do rozwiązywanie prostego zadania klasyfikacji. Neuron biologiczny i
Bardziej szczegółowoBAZA ZADAŃ KLASA 2 TECHNIKUM FUNKCJA KWADRATOWA
BAZA ZADAŃ KLASA 2 TECHNIKUM FUNKCJA KWADRATOWA 1. Podaj zbiór wartości i monotoniczność funkcji: b) c) j) k) l) wskazówka: - oblicz wierzchołek (bez miejsc zerowych!) i naszkicuj wykres (zwróć uwagę na
Bardziej szczegółowoOperatory AND, OR, NOT, XOR Opracował: Andrzej Nowak Bibliografia:
Operatory logiczne Komputery i ich logika AND - && Podstawy programowania w C++ Operatory AND, OR, NOT, XOR Opracował: Andrzej Nowak Bibliografia: CPA: PROGRAMMING ESSENTIALS IN C++ https://www.netacad.com
Bardziej szczegółowoLekcja 3: Elementy logiki - Rachunek zdań
Lekcja 3: Elementy logiki - Rachunek zdań S. Hoa Nguyen 1 Materiał a) Zdanie proste, złożone b) Spójniki logiczne (funktory zdaniotwórcze):,,,,, (alternatywa wykluczająca - XOR). c) Tautologia, zdanie
Bardziej szczegółowo3. FUNKCJA LINIOWA. gdzie ; ół,.
1 WYKŁAD 3 3. FUNKCJA LINIOWA FUNKCJĄ LINIOWĄ nazywamy funkcję typu : dla, gdzie ; ół,. Załóżmy na początek, że wyraz wolny. Wtedy mamy do czynienia z funkcją typu :.. Wykresem tej funkcji jest prosta
Bardziej szczegółowoMETODY INTELIGENCJI OBLICZENIOWEJ wykład 6
METODY INTELIGENCJI OBLICZENIOWEJ wykład 6 2 ZBIORY ROZMYTE I WNIOSKOWANIE PRZYBLIŻONE 965 Lotfi A. Zadeh: : Fuzzy sets In almost every case you can build the same product without fuzzy logic, but fuzzy
Bardziej szczegółowoAnaliza korespondencji
Analiza korespondencji Kiedy stosujemy? 2 W wielu badaniach mamy do czynienia ze zmiennymi jakościowymi (nominalne i porządkowe) typu np.: płeć, wykształcenie, status palenia. Punktem wyjścia do analizy
Bardziej szczegółowoMetody wypełniania braków w danych ang. Missing values in data
Analiza danych wydobywanie wiedzy z danych III Metody wypełniania braków w danych ang. Missing values in data W rzeczywistych zbiorach danych dane są często nieczyste: - niekompletne (brakujące ważne atrybuty,
Bardziej szczegółowoNastępnie przypominamy (dla części studentów wprowadzamy) podstawowe pojęcia opisujące funkcje na poziomie rysunków i objaśnień.
Zadanie Należy zacząć od sprawdzenia, co studenci pamiętają ze szkoły średniej na temat funkcji jednej zmiennej. Na początek można narysować kilka krzywych na tle układu współrzędnych (funkcja gładka,
Bardziej szczegółowoFunkcja jest różnowartościowa w zbiorze A wtedy i tylko wtedy, gdy różnym argumentom funkcja ta przyporządkowuje różne wartości.
Gdy mamy daną funkcję, poza określeniem jej dziedziny i miejsca zerowego możemy badad szczególne własności, takie jak: monotonicznośd, różnowartościowośd, parzystośd, nieparzystośd. Na temat monotoniczności
Bardziej szczegółowo2 Dana jest funkcja logiczna w następującej postaci: f(a,b,c,d) = Σ(0,2,5,8,10,13): a) zminimalizuj tę funkcję korzystając z tablic Karnaugh,
EUROELEKTRA Ogólnopolska Olimpiada Wiedzy Elektrycznej i Elektronicznej Rok szkolny 2010/2011 Zadania dla grupy elektronicznej na zawody II. stopnia (okręgowe) 1 Na rysunku przedstawiono przebieg prądu
Bardziej szczegółowoWymagania edukacyjne z matematyki klasa II technikum
Wymagania edukacyjne z matematyki klasa II technikum Poziom rozszerzony Obowiązują wymagania z zakresu podstawowego oraz dodatkowo: 1. JĘZYK MATEMATYKI I FUNKCJE LICZBOWE Uczeń otrzymuje ocenę dopuszczającą
Bardziej szczegółowoSID Wykład 7 Zbiory rozmyte
SID Wykład 7 Zbiory rozmyte Wydział Matematyki, Informatyki i Mechaniki UW slezak@mimuw.edu.pl Wstęp Language Ontological Commitment Epistemological Commitment (What exists in the world) (What an agent
Bardziej szczegółowoFUNKCJA WYMIERNA. Poziom podstawowy
FUNKCJA WYMIERNA Poziom podstawowy Zadanie Wykonaj działania i podaj niezbędne założenia: a+ a) + ; ( pkt.) a+ a a b) + + ; ( pkt.) + m m m c) :. ( pkt.) m m+ Zadanie ( pkt.) Oblicz wartość liczbową wyrażenia
Bardziej szczegółowo