Zadania półfinałowe Regionalnego Konkursu Fizycznego 2008/9 prowadzonego przez Politechnikę Radomską
|
|
- Robert Szymczak
- 8 lat temu
- Przeglądów:
Transkrypt
1 Konkurs Fizyczny XXVI Komisja Konkursu Fizycznego organizowanego da uczniów szkół ponadgimnazjanych egionu adomskiego informuje, że w dniu 3 utego 009 odbyły zawody półfinałowe. Do tego etapu konkursu zakwaifikowano 66 uczniów z następujących szkół: Zespół Szkół nr 1 im. Legionów Poskich w Kozienicach Liceum Ogónokształcące im. M.Kopernika w Iłży VI Liceum Ogónokształcące im. J.Kochanowskiego w adomiu Liceum Ogónokształcące im. Armii Krajowej w Białobrzegach Zespół Szkół Eektronicznych im. Bohaterów Westerpatte w adomiu. Wyniki tego etapu konkursu opubikujemy niezwłocznie. Poniżej przedstawiamy treści zadań półfinałowych oraz treści zadań etapu wstępnego wraz z rozwiązaniami. Zadania półfinałowe egionanego Konkursu Fizycznego 008/9 prowadzonego przez Poitechnikę adomską 1. Astronauta, odbywający spacer kosmiczny w warunkach nieważkości, posługuje się urządzeniem napędowym, działającym na zasadzie wypływu gazu ze zbiornika z ustaoną prędkością u (wzgędem dyszy urządzenia) oraz z okreśoną wydajnością w (zdefiniowaną jako stosunek masy m wypływającego gazu do czasu t jego wypływu). Masa astronauty wraz z urządzeniem napędowym wynosi M. Zakładając, że masa gazu w buti jest do pominięcia w porównaniu z masą astronauty, znajdź przyspieszenie astronauty wzgędem rakiety, prędkość oddaania się astronauty od rakiety w funkcji czasu, a także odegłość astronauty od rakiety w funkcji czasu. Odp. wu wu wu a, v( t) t, s( t) t M M M. W ceu wyznaczenia nieznanego oporu wykonano pomiar natężenia prądu oraz napięcia w układzie przedstawionym na rysunku. Przyjmując za wynik pomiaru stosunek U / I, gdzie U oraz I oznaczają (odpowiednio) wskazania wotomierza i amperomierza, znajdź wzgędną niepewność (wzgędny błąd) wyznaczenia oporu, wynikający z zastosowania takiego układu. Czy wynik pomiaru będzie zawyżony, czy zaniżony? Uzasadnij odpowiedź. Da jakiego oporu można wykonywać pomiar tą metodą? Wykonaj obiczenia da następujących danych: =10, opór wewnętrzny amperomierza 1 = 0,5, opór wewnętrzny wotomierza =1000. A Odp. Wynik pomiaru będzie zaniżony, niepewność wzgędna 100% 3. Trzy soczewki (pokazane na rysunku), wykonane z tego samego gatunku szkła o współczynniku załamania n =, po złożeniu razem w koejności A, B, C tworzą płytkę płaskorównoegłą. Ogniskowa układu soczewek A i B, przyegających ściśe do siebie, jest równa f 1 = 10 cm, zaś V A B C
2 ogniskowa układu soczewek B i C, przyegających do siebie, wynosi f = -15 cm. Zakładając, że soczewki są cienkie, wyznacz ogniskową oraz promienie krzywizny każdej z trzech soczewek. Odp. f A = 15cm, f B = 30cm, f C = -10cm. Zadania eiminacyjne egionanego Konkursu Fizycznego 008/9 1. Pionowa ściana oświetona jest światłem daekiej atarni, padającym prostopade do ściany. Między ścianą a atarnią przeatuje ćma, poruszająca się z prędkością 0,8 m/s po łuku poziomego okręgu o promieniu m. Jakim ruchem porusza się cień rzucany przez ćmę na ścianę? Znajdź położenie i prędkość cienia po czasie s od chwii, gdy ćma znajdowała się najbiżej ściany.. W ceu wyznaczenia prędkości pocisku można posłużyć się tzw. wahadłem baistycznym. Składa się ono z ciała o dużej masie (może to być pojemnik wypełniony piaskiem) zawieszonego na sztywnym, ekkim pręcie tak, że układ ten może obracać się w płaszczyźnie pionowej. Gdy kua po wystrzeeniu trafi w środek pojemnika i utkwi w nim, spowoduje to odchyenie wahadła o okreśony kąt. Znając kąt wychyenia wahadła α =30 o, odegłość od punktu zawieszenia do środka pojemnika = 90 cm, masę kui m =10g, masę pojemnika M = 4 kg i moment bezwładności pojemnika wzgędem jego środka masy I 0 =,5 kg m, obicz prędkość kui. Pomiń masę pręta. Przyjmij, że kua zatrzymuje się w centranym punkcie pojemnika. 3. Jaką pracę trzeba wykonać, aby sateitę o masie m =1000 kg, spoczywającego początkowo na powierzchni Ziemi, umieścić na stacjonarnej orbicie okołoziemskiej? 4. Pośredni pomiar nieznanego oporu można wykonać przy użyciu układu przedstawionego na rysunku. Przyjmując za wynik pomiaru stosunek U / I, gdzie U oraz I oznaczają (odpowiednio) wskazania wotomierza i amperomierza, znajdź wzgędną niepewność (wzgędny błąd) wyznaczenia oporu, zdefiniowaną jako: (- ) /. Jaki warunek musi spełniać opór, aby wynik pomiaru był dokładny? Wykonaj obiczenia da następujących danych: =10, opór wewnętrzny amperomierza 1 = 0,5, opór wewnętrzny wotomierza = Gaz dwuatomowy o masie 0,15 kg znajduje się w zbiorniku o stałej objętości 0,5 m 3. Do ogrzania gazu o 3 o C zużyto 340 J ciepła. Obicz masę moową tego gazu. O ie zmieniło się ciśnienie gazu i jego energia wewnętrzna? Gaz można potraktować jako gaz doskonały. V 6. Znajdź stosunek zdoności skupiających (w powietrzu) dwóch soczewek o tym samym kształcie i rozmiarach, jeśi jedna jest wykonana ze szkła, a druga z diamentu. Współczynniki załamania światła w szke i w diamencie (wzgędem powietrza) wynoszą: n s = 1,5 oraz n d =,4. A
3 7. Według teorii wzgędności, foton (mimo, że jego masa spoczynkowa jest równa zero) ma masę reatywistyczną równą m = E/c = hν/c (E - energia fotonu, ν jego częstotiwość, h stała Pancka, c prędkość światła w próżni). Masa reatywistyczna podega oddziaływaniu grawitacyjnemu zgodnie z prawem grawitacji Newtona (tak, jak zwykła masa). Korzystając z zasady zachowania energii obicz, jaki powinien być promień Słońca, aby stało się ono czarną dziurą, tzn. aby żaden obiekt, nawet foton, nie mógł opuścić jego powierzchni? Masa Słońca wynosi M = kg. Uwaga: stałe fizyczne oraz inne wiekości, potrzebne do rozwiązania zadań, znajdź w tabicach fizycznych. Zadania eiminacyjne - rozwiązania 1. Z rysunku wynika, że współrzędna położenia cienia na ścianie wyraża się wzorem: v 1 sin sin( t), gdzie 0,4 s jest prędkością kątową ruchu ćmy. Cień porusza się więc ruchem harmonicznym o ampitudzie, z częstością kołową. Jego prędkość na v ścianie jest równa v v cos v v cos( t). Wstawiając czas t = s dostajemy: 1,44 m, v 0,56 m/s. v v α. Zderzenie kui z pojemnikiem jest niesprężyste, nie jest więc zachowana energia mechaniczna. Stosujemy zasadę zachowania momentu pędu: u m v ( m M I 0 ), gdzie M I 0 jest momentem bezwładności pojemnika wzgędem osi obrotu, u jest prędkością pojemnika po wbiciu się do niego kui ( u jest prędkością kątową). I 0 m M Stąd otrzymujemy: v u. Po zderzeniu, w daszym ruchu wahadła, aż do chwii m mu Mu I 0u zatrzymania, energia mechaniczna jest stała, zatem: ( m M ) gh, gdzie H ( 1 cos) jest maksymaną wysokością, zaś α oznacza maksymany kąt wychyenia. Stąd dostajemy: ( m M ) gh 1 I 0 u oraz v ( m M ) gh( m M ) 8m/s. I 0 m m M
4 3. Wykonana praca równa jest przyrostowi energii sateity. W E B EA. Energia początkowa GMm E A, gdzie G oznacza stałą grawitacji, m masę sateity, zaś M, z masę i promień z GMm mv Ziemi. Energia na orbicie: E B ( v oraz oznaczają prędkość sateity na orbicie oraz jej promień). Przyjmując, że orbita jest kołowa, możemy zapisać reacje: GMm mv π oraz v, gdzie T jest okresem obiegu sateity równym okresowi obrotu T Ziemi T = 4 h = s (ponieważ sateita jest stacjonarny). Stąd dostajemy: GMT 3. 4 GM Uwzgędniając, że przyspieszenie grawitacyjne Ziemi na jej powierzchni g, możemy wyznaczyć stąd ioczyn GM=g z i zapisać w prostszej postaci: z T 3 ) g( z, EA gzm gz m z EB, W gzm(1 ). Podstawiając dane iczbowe: g = 9.81m/s oraz z = m otrzymujemy: 4,10 6 m oraz W 57,810 9 J=57,8 GJ. 4. Niech I oznacza natężenie prądu płynącego przez opór oraz amperomierz. Napięcie U mierzone przez wotomierz U = I (+ 1 ), zatem 1. Wyznaczony opór jest zatem I większy od rzeczywistego o wartość oporu amperomierza. Stąd wzgędny błąd: 1 0,05 5%. Pomiar wykonywany tą metodą będzie dokładny, jeśi wartość oporu mierzonego będzie duża w porównaniu z oporem amperomierza. i 5. Ciepło moowe gazu przy stałej objętości wynosi C V, gdzie =8,31 J/K jest stałą gazową, a iczba stopni swobody cząsteczki dwuatomowej i =5. Ciepło dostarczone do gazu Q ncv T. Liczbę moi n możemy wyrazić przez masę gazu m i masę moową μ: n m. 5mT 5mT Stąd dostajemy: Q oraz. Uwzgędniając, że T t 3K, Q otrzymujemy: 0,08kg. Ciśnienie można wyznaczyć, stosując dwukrotnie równanie m( T T Capeyrona: p1v nt1 oraz pv nt, skąd dostajemy: p 1) 67 Pa. W V przemianie izochorycznej praca sił zewnętrznych jest równa zero i przyrost energii wewnętrznej jest równy dostarczonemu ciepłu U=Q=340 J. 6. Zdoność skupiająca soczewki, wykonanej z materiału o współczynniku załamania n, znajdującej się w ośrodku o współczynniku załamania n o, wyraża się wzorem: n 1 1 z ( 1)( ), gdzie r 1 oraz r oznaczają promienie krzywizny powierzchni no r 1 r
5 ograniczających soczewkę. Stosując ten wzór dwukrotnie i dzieąc równości stronami zd nd 1 dostajemy:, 8. z n 1 s s 7. Załóżmy, że jest maksymanym promieniem czarnej dziury o masie równej masie Słońca. Foton wysłany z jej powierzchni nie może wydostać się poza obszar przyciągania grawitacyjnego, tzn. jego energia w bardzo dużej odegłości ( w nieskończoności ) jest równa zero. Przyrównując energię fotonu na powierzchni z energią w nieskończoności GMm otrzymujemy: h 0 (gdzie G oznacza stałą grawitacji), przy czym GM rozwiązaniu i wykonaniu obiczeń dostajemy wynik: 1480 m. c m h. Po
Zasady oceniania karta pracy
Zadanie 1.1. 5) stosuje zasadę zachowania energii oraz zasadę zachowania pędu do opisu zderzeń sprężystych i niesprężystych. Zderzenie, podczas którego wózki łączą się ze sobą, jest zderzeniem niesprężystym.
2. Obliczenie sił działających w huśtawce
. Obiczenie sił działających w huśtawce Rozważone zostaną dwa aspekty rozwiązania tego zadania. Dokonanie obiczeń jest ważne ze wzgędu na dobór eementów, które zostaną wykorzystane w koncepcjach reguacji
41R POWTÓRKA FIKCYJNY EGZAMIN MATURALNY Z FIZYKI I ASTRONOMII. POZIOM ROZSZERZONY (od początku do końca)
Włodzimierz Wolczyński 41R POWTÓRKA FIKCYJNY EGZAMIN MATURALNY Z FIZYKI I ASTRONOMII POZIOM ROZSZERZONY (od początku do końca) Rozwiązanie zadań należy zapisać w wyznaczonych miejscach pod treścią zadania
PRÓBNY EGZAMIN MATURALNY Z ZAMKOREM FIZYKA I ASTRONOMIA. Styczeń 2013 POZIOM ROZSZERZONY
PRÓBNY EGZAMIN MATURALNY Z ZAMKOREM FIZYKA I ASTRONOMIA Styczeń 2013 POZIOM ROZSZERZONY 1. Sprawdź, czy arkusz egzaminacyjny zawiera 10 stron (zadania 1 6). Ewentualny brak zgłoś przewodniczącemu zespołu
m Jeżeli do końca naciągniętej (ściśniętej) sprężyny przymocujemy ciało o masie m., to będzie na nie działała siła (III zasada dynamiki):
Ruch drgający -. Ruch drgający Ciało jest sprężyste, jeżei odzyskuje pierwotny kształt po ustaniu działania siły, która ten kształt zmieniła. Właściwość sprężystości jest ograniczona, to znaczy, że przy
14R POWTÓRKA FIKCYJNY EGZAMIN MATURALNY Z FIZYKI I ASTRONOMII. POZIOM ROZSZERZONY (od początku do grawitacji)
Włodzimierz Wolczyński 14R POWTÓRKA FIKCYJNY EGZAMIN MATURALNY Z FIZYKI I ASTRONOMII POZIOM ROZSZERZONY (od początku do grawitacji) Rozwiązanie zadań należy zapisać w wyznaczonych miejscach pod treścią
LXI MIĘDZYSZKOLNY TURNIEJ FIZYCZNY. dla uczniów szkół ponadgimnazjalnych województwa zachodniopomorskiego w roku szkolnym 2018/2019 TEST
LXI MIĘDZYSZKOLNY TURNIEJ FIZYCZNY dla uczniów szkół ponadgimnazjalnych województwa zachodniopomorskiego w roku szkolnym 08/09 TEST (Czas rozwiązywania 60 minut). Ciało rzucone poziomo z prędkością o wartości
Zadanie na egzamin 2011
Zadanie na egzamin 0 Zaproponował: Jacek Ciborowski. Wersja A dla medyków Na stacji kolejowej znajduje się peron, z którym wiążemy układ odniesienia U. Po szynach, z prędkością V = c/ względem peronu,
LXVII OLIMPIADA FIZYCZNA ZAWODY II STOPNIA
LXVII OLIMPIADA FIZYCZNA ZAWODY II STOPNIA CZĘŚĆ TEORETYCZNA Za każde zadanie można otrzymać maksymalnie 0 punktów. Zadanie 1. przedmiot. Gdzie znajduje się obraz i jakie jest jego powiększenie? Dla jakich
14P POWTÓRKA FIKCYJNY EGZAMIN MATURALNY Z FIZYKI I ASTRONOMII. POZIOM PODSTAWOWY (od początku do grawitacji)
Włodzimierz Wolczyński 14P POWTÓRKA FIKCYJNY EGZAMIN MATURALNY Z FIZYKI I ASTRONOMII POZIOM PODSTAWOWY (od początku do grawitacji) Rozwiązanie zadań należy zapisać w wyznaczonych miejscach pod treścią
ZBIÓR ZADAŃ STRUKTURALNYCH
ZBIÓR ZADAŃ STRUKTURALNYCH Zgodnie z zaleceniami metodyki nauki fizyki we współczesnej szkole zadania prezentowane uczniom mają odnosić się do rzeczywistości i być tak sformułowane, aby każdy nawet najsłabszy
Prawda/Fałsz. Klucz odpowiedzi. Uwaga: Akceptowane są wszystkie odpowiedzi merytorycznie poprawne i spełniające warunki zadania. Zad 1.
Klucz odpowiedzi Uwaga: Akceptowane są wszystkie odpowiedzi merytorycznie poprawne i spełniające warunki zadania. Zad 1.1 Poprawna odpowiedź: 2 pkt narysowane wszystkie siły, zachowane odpowiednie proporcje
Nazwisko i imię: Zespół: Data: Ćwiczenie nr 1: Wahadło fizyczne. opis ruchu drgającego a w szczególności drgań wahadła fizycznego
Nazwisko i imię: Zespół: Data: Cel ćwiczenia: Ćwiczenie nr 1: Wahadło fizyczne opis ruchu drgającego a w szczególności drgań wahadła fizycznego wyznaczenie momentów bezwładności brył sztywnych Literatura
Ćwiczenie M-2 Pomiar przyśpieszenia ziemskiego za pomocą wahadła rewersyjnego Cel ćwiczenia: II. Przyrządy: III. Literatura: IV. Wstęp. l Rys.
Ćwiczenie M- Pomiar przyśpieszenia ziemskiego za pomocą wahadła rewersyjnego. Cel ćwiczenia: pomiar przyśpieszenia ziemskiego przy pomocy wahadła fizycznego.. Przyrządy: wahadło rewersyjne, elektroniczny
Zakład Dydaktyki Fizyki UMK
Toruński poręcznik do fizyki I. Mechanika Materiały dydaktyczne Krysztof Rochowicz Zadania przykładowe Dr Krzysztof Rochowicz Zakład Dydaktyki Fizyki UMK Toruń, czerwiec 2012 1. Samochód jadący z prędkością
FIZYKA-egzamin opracowanie pozostałych pytań
FIZYKA-egzamin opracowanie pozostałych pytań Andrzej Przybyszewski Michał Witczak Marcin Talarek. Definicja pracy na odcinku A-B 2. Zdefiniować różnicę energii potencjalnych gdy ciało przenosimy z do B
WOJEWÓDZKI KONKURS Z FIZYKI DLA UCZNIÓW GIMNAZJUM ROK SZKOLNY 2014/2015, ETAP REJONOWY
WOJEWÓDZKI KONKURSZ FIZYKI DLA UCZNIÓW GIMNAZJÓW ROK SZKOLNY 2014/2015 IMIĘ I NAZWISKO UCZNIA wpisuje komisja konkursowa po rozkodowaniu pracy! KOD UCZNIA: ETAP II REJONOWY Informacje: 1. Czas rozwiązywania
M2. WYZNACZANIE MOMENTU BEZWŁADNOŚCI WAHADŁA OBERBECKA
M WYZNACZANE MOMENTU BEZWŁADNOŚC WAHADŁA OBERBECKA opracowała Bożena Janowska-Dmoch Do opisu ruchu obrotowego ciał stosujemy prawa dynamiki ruchu obrotowego, w których występują wielkości takie jak: prędkość
autor: Włodzimierz Wolczyński rozwiązywał (a)... ARKUSIK 09 PĘD Rozwiązanie zadań należy zapisać w wyznaczonych miejscach pod treścią zadania
autor: Włodzimierz Wolczyński rozwiązywał (a)... ARKUSIK 09 PĘD Rozwiązanie zadań należy zapisać w wyznaczonych miejscach pod treścią zadania Zadanie 1 1 punkt PYTANIA ZAMKNIĘTE Jeśli energia kinetyczna
Wyznaczanie przyspieszenia ziemskiego za pomocą wahadła rewersyjnego (Katera)
Politechnika Łódzka FTMS Kierunek: nformatyka rok akademicki: 2008/2009 sem. 2. Termin: 6 V 2009 Nr. ćwiczenia: 112 Temat ćwiczenia: Wyznaczanie przyspieszenia ziemskiego za pomocą wahadła rewersyjnego
Praca. Siły zachowawcze i niezachowawcze. Pole Grawitacyjne.
PRACA Praca. Siły zachowawcze i niezachowawcze. Pole Grawitacyjne. Rozważmy sytuację, gdy w krótkim czasie działająca siła spowodowała przemieszczenie ciała o bardzo małą wielkość Δs Wtedy praca wykonana
OCENIANIE ARKUSZA POZIOM ROZSZERZONY INFORMACJE DLA OCENIAJACYCH
Próbny egzamin maturalny z fizyki i astronomii OCENIANIE ARKUSZA POZIOM ROZSZERZONY INFORMACJE DLA OCENIAJACYCH. Rozwiązania poszczególnych zadań i poleceń oceniane są na podstawie punktowych kryteriów
pobrano z serwisu Fizyka Dla Każdego - http://fizyka.dk - zadania fizyka, wzory fizyka, matura fizyka
4. Pole grawitacyjne. Praca. Moc.Energia zadania z arkusza I 4.8 4.1 4.9 4.2 4.10 4.3 4.4 4.11 4.12 4.5 4.13 4.14 4.6 4.15 4.7 4.16 4.17 4. Pole grawitacyjne. Praca. Moc.Energia - 1 - 4.18 4.27 4.19 4.20
KOD UCZNIA KONKURS FIZYCZNY DLA UCZNIÓW GIMNAZJÓW III ETAP WOJEWÓDZKI. 09 lutego 2015
KOD UCZNIA KONKURS FIZYCZNY DLA UCZNIÓW GIMNAZJÓW III ETAP WOJEWÓDZKI 09 lutego 2015 Ważne informacje: 1. Masz 120 minut na rozwiązanie wszystkich zadań. 2. Zapisuj szczegółowe obliczenia i komentarze
Kołowrót -11pkt. 1. Zadanie 22. Wahadło balistyczne (10 pkt)
Kołowrót -11pkt. Kołowrót w kształcie walca, którego masa wynosi 10 kg, zamocowany jest nad studnią (rys.). Na kołowrocie nawinięta jest nieważka i nierozciągliwa linka, której górny koniec przymocowany
36P POWTÓRKA FIKCYJNY EGZAMIN MATURALNY Z FIZYKI I ASTRONOMII. POZIOM PODSTAWOWY (od początku do optyki geometrycznej)
Włodzimierz Wolczyński 36P POWTÓRKA FIKCYJNY EGZAMIN MATURALNY Z FIZYKI I ASTRONOMII POZIOM PODSTAWOWY (od początku do optyki geometrycznej) Rozwiązanie zadań należy zapisać w wyznaczonych miejscach pod
MECHANIKA II. Dynamika ruchu obrotowego bryły sztywnej
MECHANIKA II. Dynamika ruchu obrotowego bryły sztywnej Daniel Lewandowski Politechnika Wrocławska, Wydział Mechaniczny, Katedra Mechaniki i Inżynierii Materiałowej http://kmim.wm.pwr.edu.pl/lewandowski/
WYDZIAŁ LABORATORIUM FIZYCZNE
1 W S E i Z W WARSZAWE WYDZAŁ LABORAORUM FZYCZNE Ćwiczenie Nr 1 emat: WYZNACZNE PRZYSPESZENA ZEMSKEGO ZA POMOCĄ WAHADŁA REWERSYJNEGO Warszawa 9 WYZNACZANE PRZYSPESZENA ZEMSKEGO ZA POMOCĄ WAHADŁA REWERSYJNEGO
Egzamin maturalny z fizyki i astronomii 5 Poziom podstawowy
Egzamin maturalny z fizyki i astronomii 5 Poziom podstawowy 14. Kule (3 pkt) Dwie małe jednorodne kule A i B o jednakowych masach umieszczono w odległości 10 cm od siebie. Kule te oddziaływały wówczas
a, F Włodzimierz Wolczyński sin wychylenie cos cos prędkość sin sin przyspieszenie sin sin siła współczynnik sprężystości energia potencjalna
Włodzimierz Wolczyński 3 RUCH DRGAJĄCY. CZĘŚĆ 1 wychylenie sin prędkość cos cos przyspieszenie sin sin siła współczynnik sprężystości sin sin 4 3 1 - x. v ; a ; F v -1,5T,5 T,75 T T 8t x -3-4 a, F energia
14 POLE GRAWITACYJNE. Włodzimierz Wolczyński. Wzór Newtona. G- stała grawitacji 6, Natężenie pola grawitacyjnego.
Włodzimierz Wolczyński 14 POLE GRAWITACYJNE Wzór Newtona M r m G- stała grawitacji Natężenie pola grawitacyjnego 6,67 10 jednostka [ N/kg] Przyspieszenie grawitacyjne jednostka [m/s 2 ] Praca w polu grawitacyjnym
Zasady dynamiki Isaak Newton (1686 r.)
Zasady dynamiki Isaak Newton (1686 r.) I (zasada bezwładności) Istnieje taki układ odniesienia, w którym ciało pozostaje w spoczynku lub porusza się ruchem jednostajnym prostoliniowym, jeśli nie działają
ARKUSZ EGZAMINACYJNY Z FIZYKI i ASTRONOMII
(Wypełnia kandydat przed rozpoczęciem pracy) KOD KANDYDATA ARKUSZ EGZAMINACYJNY Z FIZYKI i ASTRONOMII Instrukcja dla zdającego Czas pracy 120 minut 1. Sprawdź, czy arkusz egzaminacyjny zawiera 12 stron.
Podstawy fizyki wykład 5
Podstawy fizyki wykład 5 Dr Piotr Sitarek Instytut Fizyki, Politechnika Wrocławska Grawitacja Pole grawitacyjne Prawo powszechnego ciążenia Pole sił zachowawczych Prawa Keplera Prędkości kosmiczne Czarne
Sprawdzian Na rysunku przedstawiono siłę, którą kula o masie m przyciąga kulę o masie 2m.
Imię i nazwisko Data Klasa Wersja A Sprawdzian 1. 1. Orbita każdej planety jest elipsą, a Słońce znajduje się w jednym z jej ognisk. Treść tego prawa podał a) Kopernik. b) Newton. c) Galileusz. d) Kepler..
ZADANIA MATURALNE Z FIZYKI I ASTRONOMII
ZADANIA ZAMKNIĘTE W zadaniach od 1. do 10. wybierz i zaznacz na karcie odpowiedzi jedną poprawną odpowiedź. Zadanie 1. (1 pkt) Samochód porusza się po prostoliniowym odcinku autostrady. Drogę przebytą
Blok 6: Pęd. Zasada zachowania pędu. Praca. Moc.
Blok 6: Pęd. Zasada zachowania pędu. Praca. Moc. ZESTAW ZADAŃ NA ZAJĘCIA ROZGRZEWKA 1. Przypuśćmy, że wszyscy ludzie na świecie zgromadzili się w jednym miejscu na Ziemi i na daną komendę jednocześnie
CIĘŻAR. gdzie: F ciężar [N] m masa [kg] g przyspieszenie ziemskie ( 10 N ) kg
WZORY CIĘŻAR F = m g F ciężar [N] m masa [kg] g przyspieszenie ziemskie ( 10 N ) kg 1N = kg m s 2 GĘSTOŚĆ ρ = m V ρ gęstość substancji, z jakiej zbudowane jest ciało [ kg m 3] m- masa [kg] V objętość [m
MATERIAŁ DIAGNOSTYCZNY Z FIZYKI I ASTRONOMII
Miejsce na naklejkę z kodem szkoły dysleksja MATERIAŁ DIAGNOSTYCZNY Z FIZYKI I ASTRONOMII POZIOM ROZSZERZONY Czas pracy 150 minut Instrukcja dla zdającego 1. Sprawdź, czy arkusz egzaminacyjny zawiera 15
pobrano z serwisu Fizyka Dla Każdego - http://fizyka.dk - zadania fizyka, wzory fizyka, matura fizyka
7. Pole magnetyczne zadania z arkusza I 7.8 7.1 7.9 7.2 7.3 7.10 7.11 7.4 7.12 7.5 7.13 7.6 7.7 7. Pole magnetyczne - 1 - 7.14 7.25 7.15 7.26 7.16 7.17 7.18 7.19 7.20 7.21 7.27 Kwadratową ramkę (rys.)
Opis ćwiczenia. Cel ćwiczenia Poznanie budowy i zrozumienie istoty pomiaru przyspieszenia ziemskiego za pomocą wahadła rewersyjnego Henry ego Katera.
ĆWICZENIE WYZNACZANIE PRZYSPIESZENIA ZIEMSKIEGO ZA POMOCĄ WAHADŁA REWERSYJNEGO Opis ćwiczenia Cel ćwiczenia Poznanie budowy i zrozumienie istoty pomiaru przyspieszenia ziemskiego za pomocą wahadła rewersyjnego
Ćwiczenie 42 WYZNACZANIE OGNISKOWEJ SOCZEWKI CIENKIEJ. Wprowadzenie teoretyczne.
Ćwiczenie 4 WYZNACZANIE OGNISKOWEJ SOCZEWKI CIENKIEJ Wprowadzenie teoretyczne. Soczewka jest obiektem izycznym wykonanym z materiału przezroczystego o zadanym kształcie i symetrii obrotowej. Interesować
Sztuczny satelita Ziemi. Ruch w polu grawitacyjnym
Sztuczny satelita Ziemi Ruch w polu grawitacyjnym Sztuczny satelita Ziemi Jest to obiekt, któremu na pewnej wysokości nad powierzchnią Ziemi nadano prędkość wystarczającą do uzyskania przez niego ruchu
14R2 POWTÓRKA FIKCYJNY EGZAMIN MATURALNYZ FIZYKI I ASTRONOMII - II POZIOM ROZSZERZONY
14R2 POWTÓRKA FIKCYJNY EGZAMIN MATURALNYZ FIZYKI I ASTRONOMII - II POZIOM ROZSZERZONY Ruch jednostajny po okręgu Dynamika bryły sztywnej Pole grawitacyjne Rozwiązanie zadań należy zapisać w wyznaczonych
DRGANIA SWOBODNE UKŁADU O DWÓCH STOPNIACH SWOBODY. Rys Model układu
Ćwiczenie 7 DRGANIA SWOBODNE UKŁADU O DWÓCH STOPNIACH SWOBODY. Cel ćwiczenia Doświadczalne wyznaczenie częstości drgań własnych układu o dwóch stopniach swobody, pokazanie postaci drgań odpowiadających
Egzamin z fizyki Informatyka Stosowana
Egzamin z fizyki Informatyka Stosowana 1) Dwie kulki odległe od siebie o d=8m wystrzelono w tym samym momencie czasu z prędkościami v 1 =4m/s i v 2 =8m/s, jak pokazano na rysunku. v 1 8 m v 2 α a) kulka
OPTYKA GEOMETRYCZNA I INSTRUMENTALNA
1100-1BO15, rok akademicki 2018/19 OPTYKA GEOMETRYCZNA I INSTRUMENTALNA dr hab. Raał Kasztelanic Wykład 4 Obliczenia dla zwierciadeł Równanie zwierciadła 1 1 2 1 s s r s s 2 Obliczenia dla zwierciadeł
Bryła sztywna Zadanie domowe
Bryła sztywna Zadanie domowe 1. Podczas ruszania samochodu, w pewnej chwili prędkość środka przedniego koła wynosiła. Sprawdź, czy pomiędzy kołem a podłożem występował poślizg, jeżeli średnica tego koła
XLIII OLIMPIADA FIZYCZNA ETAP WSTĘPNY Zadanie teoretyczne
XLIII OLIMPIADA FIZYCZNA ETAP WSTĘPNY Zadanie teoretyczne ZADANIE T Nazwa zadania: Obraz widziany przez rybę A) W basenie pod wodą zanurzono prostopadle do powierzchni wody świecący, kwadratowy ekran,
I. DYNAMIKA PUNKTU MATERIALNEGO
I. DYNAMIKA PUNKTU MATERIALNEGO A. RÓŻNICZKOWE RÓWNANIA RUCHU A1. Bryła o masie m przesuwa się po chropowatej równi z prędkością v M. Podać dynamiczne równania ruchu bryły i rozwiązać je tak, aby wyznaczyć
Treści dopełniające Uczeń potrafi:
P Lp. Temat lekcji Treści podstawowe 1 Elementy działań na wektorach podać przykłady wielkości fizycznych skalarnych i wektorowych, wymienić cechy wektora, dodać wektory, odjąć wektor od wektora, pomnożyć
Zasada zachowania pędu
Zasada zachowania pędu Zasada zachowania pędu Układ izolowany Układem izolowanym nazwiemy układ, w którym każde ciało może w dowolny sposób oddziaływać z innymi elementami układu, ale brak jest oddziaływań
Fizyka 11. Janusz Andrzejewski
Fizyka 11 Ruch okresowy Każdy ruch powtarzający się w regularnych odstępach czasu nazywa się ruchem okresowym lub drganiami. Drgania tłumione ruch stopniowo zanika, a na skutek tarcia energia mechaniczna
KONKURS PRZEDMIOTOWY Z FIZYKI dla uczniów gimnazjów. Schemat punktowania zadań
KONKURS PRZEDMIOTOWY Z FIZYKI dla uczniów gimnazjów 7 stycznia 06 r. zawody II stopnia (rejonowe) Schemat punktowania zadań Maksymalna liczba punktów 60 Uwaga!. Za poprawne rozwiązanie zadania metodą,
Praca domowa nr 2. Kinematyka. Dynamika. Nieinercjalne układy odniesienia.
Praca domowa nr 2. Kinematyka. Dynamika. Nieinercjalne układy odniesienia. Grupa 1. Kinematyka 1. W ciągu dwóch sekund od wystrzelenia z powierzchni ziemi pocisk przemieścił się o 40 m w poziomie i o 53
FIZYKA POZIOM ROZSZERZONY
EGZAMIN MATURALNY W ROKU SZKOLNYM 2015/2016 FORMUŁA OD 2015 ( NOWA MATURA ) FIZYKA POZIOM ROZSZERZONY ZASADY OCENIANIA ROZWIĄZAŃ ZADAŃ ARKUSZ MFA-R1 MAJ 2016 Uwaga: Akceptowane są wszystkie odpowiedzi
pobrano z serwisu Fizyka Dla Każdego - http://fizyka.dk - zadania z fizyki, wzory fizyczne, fizyka matura
12. Fale elektromagnetyczne zadania z arkusza I 12.5 12.1 12.6 12.2 12.7 12.8 12.9 12.3 12.10 12.4 12.11 12. Fale elektromagnetyczne - 1 - 12.12 12.20 12.13 12.14 12.21 12.22 12.15 12.23 12.16 12.24 12.17
ARKUSZ PRÓBNEJ MATURY Z OPERONEM FIZYKA I ASTRONOMIA
Miejsce na identyfikację szkoły ARKUSZ PRÓBNEJ MATURY Z OPERONEM FIZYKA I ASTRONOMIA POZIOM ROZSZERZONY LISTOPAD 01 Czas pracy: 150 minut Instrukcja dla zdającego 1. Sprawdź, czy arkusz egzaminacyjny zawiera
Prawo powszechnego ciążenia, siła grawitacyjna, pole grawitacyjna
Prawo powszechnego ciążenia, siła grawitacyjna, pole grawitacyjna G m m r F = r r F = F Schemat oddziaływania: m pole sił m Prawo powszechnego ciążenia, siła grawitacyjna, pole grawitacyjna Masa M jest
KRYTERIA OCENIANIA ODPOWIEDZI Próbna Matura z OPERONEM Fizyka Poziom rozszerzony. Listopad 2015
kod wewnątrz Zadanie 1. (0 1) KRYTERIA OCENIANIA ODPOWIEDZI Próbna Matura z OPERONEM Fizyka Poziom rozszerzony Listopad 2015 Vademecum Fizyka fizyka ZAKRES ROZSZERZONY VADEMECUM MATURA 2016 Zacznij przygotowania
Odp.: F e /F g = 1 2,
Segment B.IX Pole elektrostatyczne Przygotował: mgr Adam Urbanowicz Zad. 1 W atomie wodoru odległość między elektronem i protonem wynosi około r = 5,3 10 11 m. Obliczyć siłę przyciągania elektrostatycznego
FIZYKA Z ASTRONOMIĄ POZIOM PODSTAWOWY
EGZAMIN MATURALNY W ROKU SZKOLNYM 2013/2014 FIZYKA Z ASTRONOMIĄ POZIOM PODSTAWOWY ROZWIĄZANIA ZADAŃ I SCHEMAT PUNKTOWANIA MAJ 2014 2 Zadanie 1. (0 1) Obszar standardów Opis wymagań Obliczanie prędkości
Materiały pomocnicze 6 do zajęć wyrównawczych z Fizyki dla Inżynierii i Gospodarki Wodnej
Materiały pomocnicze 6 do zajęć wyrównawczych z Fizyki dla Inżynierii i Gospodarki Wodnej 1. Energia mechaniczna. Energia mechaniczna dzieli się na energię kinetyczną i potencjalną. Energia kinetyczna
Laboratorium Dynamiki Maszyn
Laboratorium Dynamiki Maszyn Laboratorium nr 5 Temat: Badania eksperymentane drgań wzdłużnych i giętnych układów mechanicznych Ce ćwiczenia:. Zbudować mode o jednym stopniu swobody da zadanego układu mechanicznego.
BUDOWNICTWO LĄDOWE. Zadania z fizyki dla 4,6,7 i 8 grupy BL semestr I. 1. Zbiór zadań z fizyki ; pod redakcją I.W. Sawiejlewa
BUDOWNICTWO LĄDOWE Zadania z fizyki dla 4,6,7 i 8 grupy BL semestr I Zadania opracowano na podstawie:. Zbiór zadań z fizyki ; pod redakcją I.W. Sawiejlewa. Fizyka w przykładach ; pod kierunkiem prof. dr
Treści nauczania (program rozszerzony)- 25 spotkań po 4 godziny lekcyjne
(program rozszerzony)- 25 spotkań po 4 godziny lekcyjne 1, 2, 3- Kinematyka 1 Pomiary w fizyce i wzorce pomiarowe 12.1 2 Wstęp do analizy danych pomiarowych 12.6 3 Jak opisać położenie ciała 1.1 4 Opis
KONKURS PRZEDMIOTOWY Z FIZYKI dla uczniów dotychczasowych gimnazjów. Schemat punktowania zadań
1 KONKURS PRZEDMIOTOWY Z FIZYKI dla uczniów dotychczasowych gimnazjów 5 marca 019 r. etap finałowy Schemat punktowania zadań Maksymalna liczba punktów 50. Uwaga! 1. Za poprawne rozwiązanie zadania metodą,
Stosując II zasadę dynamiki Newtona dla ruchu postępowego otrzymujemy
Zadania do rozdziału 6 Zad.6.. Wprowadzić równanie ruchu drgań wahadła matematcznego. Obicz okres wahadła matematcznego o długości =0 m. Wahadło matematczne jest to punkt materian (np. w postaci kuki K
Jak zmieni się wartość siły oddziaływania między dwoma ciałami o masie m każde, jeżeli odległość między ich środkami zmniejszy się dwa razy.
I ABC FIZYKA 2018/2019 Tematyka kartkówek oraz zestaw zadań na sprawdzian - Dział I Grawitacja 1.1 1. Podaj główne założenia teorii geocentrycznej Ptolemeusza. 2. Podaj treść II prawa Keplera. 3. Odpowiedz
KĄCIK ZADAŃ Drugi stopień olimpiady fizycznej na Ukrainie (rok 2000)
KĄCIK ZADAŃ Drugi stopień oipiady fizycznej na Ukrainie (rok 000) Jadwiga Saach Redakcja prezentuje trzy przykładowe zadania z drugiego stopnia oipiady fizycznej na Ukrainie (rok 000) Zadania z tej oipiady
3.5 Wyznaczanie stosunku e/m(e22)
Wyznaczanie stosunku e/m(e) 157 3.5 Wyznaczanie stosunku e/m(e) Celem ćwiczenia jest wyznaczenie stosunku ładunku e do masy m elektronu metodą badania odchylenia wiązki elektronów w poprzecznym polu magnetycznym.
A. 0,3 N B. 1,5 N C. 15 N D. 30 N. Posługiwać się wzajemnym związkiem między siłą, a zmianą pędu Odpowiedź
Egzamin maturalny z fizyki z astronomią W zadaniach od 1. do 10. należy wybrać jedną poprawną odpowiedź i wpisać właściwą literę: A, B, C lub D do kwadratu obok słowa:. m Przyjmij do obliczeń, że przyśpieszenie
GAZ DOSKONAŁY. Brak oddziaływań między cząsteczkami z wyjątkiem zderzeń idealnie sprężystych.
TERMODYNAMIKA GAZ DOSKONAŁY Gaz doskonały to abstrakcyjny, matematyczny model gazu, chociaż wiele gazów (azot, tlen) w warunkach normalnych zachowuje się w przybliżeniu jak gaz doskonały. Model ten zakłada:
b) Wybierz wszystkie zdania prawdziwe, które odnoszą się do przemiany 2.
Sprawdzian 8A. Gaz doskonały przeprowadzono ze stanu P do stanu K dwoma sposobami: i, tak jak pokazano na rysunku. Poniżej napisano kilka zdań o tych przemianach. a) Wybierz spośród nich wszystkie zdania
Zestaw 1cR. Dane: t = 6 s czas spadania ciała, g = 10 m/s 2 przyspieszenie ziemskie. Szukane: H wysokość, z której rzucono ciało poziomo, Rozwiązanie
Zestaw 1cR Zadanie 1 Sterowiec wisi nieruchomo na wysokości H nad punktem A położonym bezpośrednio pod nim na poziomej powierzchni lotniska. Ze sterowca wyrzucono poziomo ciało, nadając mu prędkość początkową
Egzamin w dniu zestaw pierwszy
Fizyka 1 Zestaw pierwszy Egzamin w dniu 1.02.2013- zestaw pierwszy 1. Jednostką podstawową układu SI jest: A) amper(a) B) coulomb(c) C) niuton(n) D) wolt(v) 2. RządwielkościzredukowanejstałejPlancka h=1,054571
EGZAMIN MATURALNY W ROKU SZKOLNYM 2014/2015
EGZAMIN MATURALNY W ROKU SZKOLNYM 2014/2015 FORMUŁA DO 2014 ( STARA MATURA ) FIZYKA POZIOM PODSTAWOWY ZASADY OCENIANIA ROZWIĄZAŃ ZADAŃ ARKUSZ MFA-P1 MAJ 2015 Zadania zamknięte Zadanie 1. (0 1) Obszar standardów
autor: Włodzimierz Wolczyński rozwiązywał (a)... ARKUSIK 13 RUCH OBROTOWY BRYŁY SZTYWNEJ. CZĘŚĆ 3
autor: Włodzimierz Wolczyński rozwiązywał (a)... ARKUSIK 13 RUCH OBROTOWY BRYŁY SZTYWNEJ. CZĘŚĆ 3 Rozwiązanie zadań należy zapisać w wyznaczonych miejscach pod treścią zadania PYTANIA ZAMKNIĘTE Zadanie
KONKURS PRZEDMIOTOWY Z FIZYKI dla uczniów gimnazjów. Schemat punktowania zadań
1 KONKURS PRZEDMIOTOWY Z FIZYKI dla uczniów gimnazjów 18 stycznia 018 r. zawody II stopnia (rejonowe) Schemat punktowania zadań Maksymalna liczba punktów 60. 85% 51pkt. Uwaga! 1. Za poprawne rozwiązanie
FIZYKA I ASTRONOMIA RUCH JEDNOSTAJNIE PROSTOLINIOWY RUCH PROSTOLINIOWY JEDNOSTAJNIE PRZYSPIESZONY RUCH PROSTOLINIOWY JEDNOSTAJNIE OPÓŹNIONY
FIZYKA I ASTRONOMIA RUCH JEDNOSTAJNIE PROSTOLINIOWY Każdy ruch jest zmienną położenia w czasie danego ciała lub układu ciał względem pewnego wybranego układu odniesienia. v= s/t RUCH
Obraz Ziemi widzianej z Księżyca
Grawitacja Obraz Ziemi widzianej z Księżyca Prawo powszechnego ciążenia Dwa punkty materialne o masach m 1 i m przyciągają się wzajemnie siłą proporcjonalną do iloczynu ich mas i odwrotnie proporcjonalną
Opis ruchu obrotowego
Opis ruchu obrotowego Oprócz ruchu translacyjnego ciała obserwujemy w przyrodzie inną jego odmianę: ruch obrotowy Ruch obrotowy jest zawsze względem osi obrotu W ruchu obrotowym wszystkie punkty zakreślają
Ćwiczenie: "Ruch po okręgu"
Ćwiczenie: "Ruch po okręgu" Opracowane w ramach projektu: "Wirtualne Laboratoria Fizyczne nowoczesną metodą nauczania realizowanego przez Warszawską Wyższą Szkołę Informatyki. Zakres ćwiczenia: 1. Kinematyka
00013 Mechanika nieba A
1 00013 Mechanika nieba A Dane osobowe właściciela arkusza 00013 Mechanika nieba A Czas pracy 90/150 minut Instrukcja dla zdającego 1. Proszę sprawdzić, czy arkusz egzaminacyjny zawiera 10 stron. Ewentualny
WOJEWÓDZKI KONKURS FIZYCZNY MODEL ODPOWIEDZI I SCHEMAT PUNKTOWANIA
Nie przyznaje się połówek. WOJEWÓDZKI KONKURS FIZYCZNY MODEL ODPOWIEDZI I SCHEMAT PUNKTOWANIA Przykładowe poprawne odpowiedzi i schemat punktowania otwarte W ch, za które przewidziano maksymalnie jeden
dn dt C= d ( pv ) = d dt dt (nrt )= kt Przepływ gazu Pompowanie przez przewód o przewodności G zbiornik przewód pompa C A , p 1 , S , p 2 , S E C B
Pompowanie przez przewód o przewodności G zbiornik przewód pompa C A, p 2, S E C B, p 1, S C [W] wydajność pompowania C= d ( pv ) = d dt dt (nrt )= kt dn dt dn / dt - ilość cząstek przepływających w ciągu
POWTÓRKA PRZED KONKURSEM CZĘŚĆ C ZADANIA ZAMKNIĘTE
POWTÓRKA PRZED KONKURSEM CZĘŚĆ C DO ZDOBYCIA PUNKTÓW 55 Jest to powtórka przed etapem szkolnym z materiałem obejmującym dynamikę oraz drgania i fale. ZADANIA ZAMKNIĘTE łącznie pkt. zamknięte (na 10) otwarte
MECHANIKA 2. Drgania punktu materialnego. Wykład Nr 8. Prowadzący: dr Krzysztof Polko
MECHANIKA 2 Wykład Nr 8 Drgania punktu materialnego Prowadzący: dr Krzysztof Polko Wstęp Drgania Okresowe i nieokresowe Swobodne i wymuszone Tłumione i nietłumione Wstęp Drgania okresowe ruch powtarzający
12 RUCH OBROTOWY BRYŁY SZTYWNEJ I. a=εr. 2 t. Włodzimierz Wolczyński. Przyspieszenie kątowe. ε przyspieszenie kątowe [ ω prędkość kątowa
Włodzimierz Wolczyński Przyspieszenie kątowe 1 RUCH OROTOWY RYŁY SZTYWNEJ I = = ε przyspieszenie kątowe [ ] ω prędkość kątowa = = T okres, = - częstotliwość s=αr v=ωr a=εr droga = kąt x promień prędkość
Drgania - zadanka. (b) wyznacz maksymalne położenie, prędkość i przyspieszenie ciała,
Zadania do przeliczenia na lekcji. Drgania - zadanka 1. Ciało o masie m = 0.5kg zawieszono na nieważkiej nitce o długości l = 1m a następne wychylono o 2cm z położenia równowagi (g = 10 m s 2), (a) oblicz
MAGNETYZM. PRĄD PRZEMIENNY
Włodzimierz Wolczyński 47 POWTÓRKA 9 MAGNETYZM. PRĄD PRZEMIENNY Zadanie 1 W dwóch przewodnikach prostoliniowych nieskończenie długich umieszczonych w próżni, oddalonych od siebie o r = cm, płynie prąd.
Nazwisko i imię: Zespół: Data: Ćwiczenie nr 53: Soczewki
Nazwisko i imię: Zespół: Data: Ćwiczenie nr : Soczewki Cel ćwiczenia: Wyznaczenie ogniskowych soczewki skupiającej i układu soczewek (skupiającej i rozpraszającej) oraz ogniskowej soczewki rozpraszającej
Grawitacja - powtórka
Grawitacja - powtórka 1. Oceń prawdziwość każdego zdania. Zaznacz, jeśli zdanie jest prawdziwe, lub, jeśli jest A. Jednorodne pole grawitacyjne istniejące w obszarze sali lekcyjnej jest wycinkiem centralnego
Zad. 2 Jaka jest częstotliwość drgań fali elektromagnetycznej o długości λ = 300 m.
Segment B.XIV Prądy zmienne Przygotowała: dr Anna Zawadzka Zad. 1 Obwód drgający składa się z pojemności C = 4 nf oraz samoindukcji L = 90 µh. Jaki jest okres, częstotliwość, częstość kątowa drgań oraz
A) 14 km i 14 km. B) 2 km i 14 km. C) 14 km i 2 km. D) 1 km i 3 km.
ŁÓDZKIE CENTRUM DOSKONALENIA NAUCZYCIELI I KSZTAŁCENIA PRAKTYCZNEGO Kod pracy Wypełnia Przewodniczący Wojewódzkiej Komisji Wojewódzkiego Konkursu Przedmiotowego z Fizyki Imię i nazwisko ucznia... Szkoła...
To zadanie jest wpadką autorów i recenzentów Lwiątka. I to pomimo, że zarówno zadanie, jak i podana później odpowiedź E są poprawne.
FOTON 15, Lato 14 41 Odgłosy z jaskini Piotr Godstein Zakład Fizyki, Narodowe Centrum Badań Jądrowych Warszawa W tegorocznym Posko-Ukraińskim Konkursie Fizycznym Lwiątko pojawiło się następujące zadanie
Przykłady (twierdzenie A. Castigliano)
23 Przykłady (twierdzenie A. Castigiano) Zadanie 8.4.1 Obiczyć maksymane ugięcie beki przedstawionej na rysunku (8.2). Do obiczeń przyjąć następujące dane: q = 1 kn m, = 1 [m], E = 2 17 [Pa], d = 4 [cm],
Projekt Inżynier mechanik zawód z przyszłością współfinansowany ze środków Unii Europejskiej w ramach Europejskiego Funduszu Społecznego
Zajęcia wyrównawcze z fizyki -Zestaw 4 -eoria ermodynamika Równanie stanu gazu doskonałego Izoprzemiany gazowe Energia wewnętrzna gazu doskonałego Praca i ciepło w przemianach gazowych Silniki cieplne
Konkurs fizyczny szkoła podstawowa. 2018/2019. Etap wojewódzki
UWAGA: W zadaniach o numerach od 1 do 4 spośród podanych propozycji odpowiedzi wybierz i zaznacz tą, która stanowi prawidłowe zakończenie ostatniego zdania w zadaniu. Zadanie 1. (0 1pkt.) Podczas zbliżania