OPTOELEKTRONIKA II. Podstawy fizyki laserów

Wielkość: px
Rozpocząć pokaz od strony:

Download "OPTOELEKTRONIKA II. Podstawy fizyki laserów"

Transkrypt

1 OPTOELEKTRONIKA II Podstawy fizyki laserów

2 1. ABSORPCJA i EMISJA ŚWIATŁA Prawdopodobieństwo: - emisji spontanicznej - emisji wymuszonej - absorpcji gdzie -gęstość energii fotonów Bernard Ziętek IF UMK Toruń 2

3 W równowadze termodynamicznej to W temperaturze pokojowej W T = 3000 K (żarówka) Prawdopodobieństwa emisji wymuszonej i spontaniczne są równe w!!! Bernard Ziętek IF UMK Toruń 3

4 Dla lasera He - Ne Zakładamy: moc wyjściowa 1 mw, nm, FWHM 1.5x10 8 Hz promień wiązki 5x10-4 m, zwierciadło wyjściowe 99 % zatem moc we wnęce 199 mw czyli Gęstość energii, Zatem Odpowiada to temperaturze Bernard Ziętek IF UMK Toruń 4

5 Relacje Einsteina Zmiana obsadzenia w czasie Zaniedbujemy emisję spontaniczną i z relacji Einsteina lub Jest to podstawowe równanie teorii laserów gdzie: przekrój czynny na emisję wymuszoną Bernard Ziętek IF UMK Toruń 5

6 Tylko jeśli ośrodek czynny wzmacnia światło INWERSJA OBSADZEŃ Bernard Ziętek IF UMK Toruń 6

7 Szerokość linii emisji i absorpcji Poszerzenie: - jednorodne - niejednorodne Przyczyny: 1. skończony czas życia stanu wzbudzonego, 2. efekt Dopplera, 3. zderzenia (ciśnienie i temperatura), 4. oddziaływanie z siecią, 5. poszerzenie izotopowe, 6. różne oddziaływanie z otoczeniem np. w szkłach, z siecią Bernard Ziętek IF UMK Toruń 7

8 Funkcje kształtu linii Wielkość jest względnym prawdopodobieństwem absorpcji lub emisji światła Prawdopodobieństwo absorpcji Bernard Ziętek IF UMK Toruń 8

9 Dwa przypadki Pasmo białe Światło laserowe Bernard Ziętek IF UMK Toruń 9

10 1. Poszerzenie jednorodne Poszerzenie naturalne konsekwencja zasady nieoznaczoności Ponieważ to Szerokość linii przy przejściu między stanami o różnym czasie życia Wpływ przejść bezpromienistych i wygaszania Bernard Ziętek IF UMK Toruń 10

11 Funkcja kształtu linii przy poszerzeniu jednorodnym Maksimum Bernard Ziętek IF UMK Toruń 11

12 2. Poszerzenie niejednorodne Funkcja kształtu linii Szerokość połówkowa (FWHM) linii Maksimum Bernard Ziętek IF UMK Toruń 12

13 Dla celów obliczeniowych stała wartość w obszarze emisji i absorpcji Normalizacja Wtedy przekrój czynny na emisję Profil Voita Bernard Ziętek IF UMK Toruń 13

14 Schematy pompowania 1. Dwupoziomowy Bernard Ziętek IF UMK Toruń 14

15 a) Rozwiązanie stacjonarne gdzie b) Rozwiązanie niestacjonarne - - i silne wzbudzenie - i słabym wzbudzeniu Uwaga : Obsadzenie zależy od gęstości promieniowania w ośrodku Bernard Ziętek IF UMK Toruń 15

16 2. Schemat trójpoziomowy 3. Schemat czteropoziomowy zatem Bernard Ziętek IF UMK Toruń 16

17 a). Rozwiązania stacjonarne 3 Poziomy 4 Poziomy Wyrażenia na obsadzenia poziomów skomplikowane! Inwersja obsadzeń Przy małych strumieniach jeśli lub Pompowanie progowe Bernard Ziętek IF UMK Toruń 17

18 Bernard Ziętek IF UMK Toruń 18

19 2. WZMOCNIENIE I WZMACNIACZE Zastosowania wzmacniaczy światła - w laserach, jako element czynny, - w systemach laserowych wielkich mocy, - w telekomunikacji - w torach światłowodowych, - w fotonice do kontroli parametrów impulsów świetlnych. Bernard Ziętek IF UMK Toruń 19

20 Parametry ważniejszych ośrodków czynnych I poszerzenie nejednorodne, H - jednorodne Bernard Ziętek IF UMK Toruń 20

21 Obsadzenie górnego stanu Ponieważ to Współczynnik wzmocnienia Natężenie światła po przejściu wzmacniacza o długości L Bernard Ziętek IF UMK Toruń 21

22 Natężenie nasycenia Wzmocnienie - linii jednorodnie poszerzonych - linii niejednorodnie poszerzonych Całkowite wzmocnienie Dla przypadku stacjonarnego Wzmocnienie małego sygnału db Inwersja obsadzeń lub Bernard Ziętek IF UMK Toruń 22

23 Wzmocnienie linii jednorodnie poszerzonych Dwa skrajne przypadki eksponencjalny wzrost natężenia, słabe wykorzystanie energii wzbudzenia liniowy wzrost natężenia, całkowite wykorzystanie wnergii wzbudzenia wzmacniacza Bernard Ziętek IF UMK Toruń 23

24 Szerokość linii Dla linii Lorentza Dla określonej częstotliwości Z definicji stąd zatem Szerokość pasma maleje ze wzrostem wzmocnienia Z drugiej strony, przy nasyceniu Szerokość pasma rośnie ze wzrostem sygnału Bernard Ziętek IF UMK Toruń 24

25 Wzmocnienie a natężenie sygnału Niech, jeśli, to Rozwiązanie Przypadki: 1. 2., 3.. Dla dużych L Bernard Ziętek IF UMK Toruń 25

26 Stabilizacja natężenia Niech to wzmocnienie transmisja bez zmian natężenia osłabienie Bernard Ziętek IF UMK Toruń 26

27 Wzmocnienie linii niejednorodnie poszerzonych Spektralne wypalanie dziur Niejednorodne Jednorodne Dziury o szerokości Częstotliwości dziur Dziura Lamba Bernard Ziętek IF UMK Toruń 27

28 Wzmacnianie impulsów (model Frantza Nodvika) Założenia: - zaniedbamy wszystkie procesy spontaniczne, -ośrodek czynny jest napompowany. Układ opisują: Równania kinetyczne na obsadzenia lub Równanie transportu Bernard Ziętek IF UMK Toruń 28

29 Po podstawieniu a po zamianie zmiennych czyli Całkując lub gdzie Rozwiązanie Bernard Ziętek IF UMK Toruń 29

30 Ogólne rozwiązanie Jeśli N 1,2 (z) = const., to gdzie fluencja (energia impulsu wchodzącego do wzmacniacza na jednostkę powierzchni) energia nasycenia Inwersja obsadzeń Bernard Ziętek IF UMK Toruń 30

31 Ewolucja kształtu impulsu Impuls sin 2 (x) Impuls prostokątny Bernard Ziętek IF UMK Toruń 31

32 Szum wzmacniaczy Pomiar współczynnika wzmocnienia Kształt impulsu a dyspersja Bernard Ziętek IF UMK Toruń 32

33 Formowanie w czasie impulsu Rozszerzacz (stretcher) Kompresor Bernard Ziętek IF UMK Toruń 33

34 a) Wzmacniacze regeneratywne b) Zależność fluencji wyjściowej od liczby przejść Bernard Ziętek IF UMK Toruń 34

35 3. REZONATORY OPTYCZNE Dobroć rezonatora Rezonatory stabilne i astabilne Czas życia fotonów we wnęce Bernard Ziętek IF UMK Toruń 35

36 Rezonator Fabry-Perota gdzie współczynnik finezji Szerokość połówkowa Finezja Dla różnych zwierciadeł Bernard Ziętek IF UMK Toruń 36

37 Rezonatory ze zwierciadłami: -płaskorównoległymi - sferycznymi Bernard Ziętek IF UMK Toruń 37

38 Stabilność Macierz ABCD dla rezonatora sferycznego Po N przejściach (twierdzenie Sylvestra) gdzie Bernard Ziętek IF UMK Toruń 38

39 Odległość promienia od osi po N przejściach Jeśli jest rzeczywiste, to promień oscyluje w pobliżu osi jest rzeczywiste jeśli Czyli Bernard Ziętek IF UMK Toruń 39

40 Rezonatory ze zwierciadłami sferycznymi są stabilne, jeśli gdzie Bernard Ziętek IF UMK Toruń 40

41 Gałąź dodatnia Gałąź ujemna Bernard Ziętek IF UMK Toruń 41

42 Mody poprzeczne Bernard Ziętek IF UMK Toruń 42

43 Mody podłużne Warunek rezonansu rezonatora liniowego Różnica częstotliwości między sąsiednimi modami Liczba modów Rezonator pierścieniowy Bernard Ziętek IF UMK Toruń 43

44 Przybliżenie wolnozmiennej obwiedni (amplitudy) Zakładamy: 1. Fala rozchodzi się w dielektryku bez strat. 2. Nie ma prądów. 3. Fala jest monochromatyczna. 4. Polaryzacja fali jest stała i określona. Bernard Ziętek IF UMK Toruń 44

45 Założenie: dla jest spełniona relacja Ponieważ to Ale również Rozwiązanie Bernard Ziętek IF UMK Toruń 45

46 Wiązka paraboliczna Fala kulista Załóżmy, że Niech czyli Bernard Ziętek IF UMK Toruń 46

47 Wiązka gaussowska Niech Z równania Helmholtza Rozwiązaniem jest funkcja Bernard Ziętek IF UMK Toruń 47

48 Promień wiązki Promień krzywizny frontu falowego Faza Rozbieżność w przybliżeniu Bernard Ziętek IF UMK Toruń 48

49 Inaczej gdzie,,, - parametr Kogelnika czyli, Bernard Ziętek IF UMK Toruń 49

50 Właściwości wiązki gaussowskiej -w płaszczyźnie z = z 0 1. promień wiązki jest raza większy niż w przewężeniu, 2. natężenie wiązki w osi jest 2 razy mniejsze, 3. faza wiązki na osi jest opóźniona o /4 w stosunku do fali płaskiej 4. promień krzywizny frontu falowego jest najmniejszy R = 2 z obszar zawarty między z 0 a z 0 nazywa się głębokością ogniska -w przewężeniu wiązka jest falą płaską - daleko od przewężenia fala jest sferyczna: R(z) = z Bernard Ziętek IF UMK Toruń 50

51 Pole w wiązce Wiązki gaussowskie w rezonatorach Promień krzywizny frontu falowego Przewężenie w Bernard Ziętek IF UMK Toruń 51

52 Krzywizna frontów w punktach z 1 i z 2 Przewężenie Średnica wiązki na zwierciadłach Bernard Ziętek IF UMK Toruń 52

53 Ponieważ faza a warunek rezonansu przy Stąd częstotliwość rezonansowa Bernard Ziętek IF UMK Toruń 53

54 Rezonator niesymetryczny Rezonator trójzwierciadłowy Rezonator pierścieniowy Bernard Ziętek IF UMK Toruń 54

55 Prawo ABCD Kogelnika Transformacja wiązki gaussowskiej Dla soczewki Znając parametr Kogelnika można wyznaczyć w 0 i d 2 W przybliżeniu Bernard Ziętek IF UMK Toruń 55

56 Wiązki wyższych rzędów -Wiązki Hermita-Gaussa (współrzędne kartezjańskie) Bernard Ziętek IF UMK Toruń 56

57 We współrzędnych cylindrycznych właściwych dla symetrii cylindrycznej (światłowody, rezonatory sferyczne, rury i pręty laserowe w kształcie cylindrów) Wiązki Lagerra-Gaussa Bernard Ziętek IF UMK Toruń 57

58 Wiązki Bessela Realizacja jednowymiarowa: 1. dwa punkty świecące w płaszczyźnie ogniskowej soczewki, 2. dwie równoległe wiązki przecinają się pod kątem Wypadkowe pole za soczewką gdzie Powstają fale stojące o maksimach w Bernard Ziętek IF UMK Toruń 58

59 Właściwości wiązek Bessela B Bernard Ziętek IF UMK Toruń 59

60 Wiązki Bessela Porównanie wiązek Gaussa i Bessela gdzie Bernard Ziętek IF UMK Toruń 60

61 Zastosowania wiązek Bessela 1. Precyzyjne pomiary optyczne 2. Transport energii 3. Optyka nieliniowa Bernard Ziętek IF UMK Toruń 61

62 Rezonatory selektywne Bernard Ziętek IF UMK Toruń 62

63 Rezonatory falowodowe Bernard Ziętek IF UMK Toruń 63

64 Mody galerii szeptów Bernard Ziętek IF UMK Toruń 64

65 Rezonatory laserów półprzewodnikowych Bernard Ziętek IF UMK Toruń 65

66 4. AKCJA LASEROWA Sekwencja wydarzeń w układzie lasera 1. Emisja spontaniczna 2. Inwersja obsadzeń 3. Wzmocniona emisja spontaniczna 4. Zwierciadło kieruje do wzmacniacza promienie przyosiowe (kolimacja) 5. Zmiana fazy fali na zwierciadle (węzeł) 6. Zwierciadło wyjściowe zawraca część promieniowania do wzmacniacza (dalsza kolimacja) 7. Zmiana faza fali na zwierciadle fala stojąca, mody 8. Przekroczenie progu AKCJA LASEROWA Bernard Ziętek IF UMK Toruń 66

67 Próg akcji laserowej Warunek progowy Wzmocnienie progowe Czas życia fotonów -we wnęce pasywnej -we wnęce aktywnej Bernard Ziętek IF UMK Toruń 67

68 Ponieważ Inwersja progowa Warunek Schawlowa - Townesa Bernard Ziętek IF UMK Toruń 68

69 Model hydrauliczny Bernard Ziętek IF UMK Toruń 69

70 Równania kinetyczne Do równań kinetycznych dodać równanie na gęstość fotonów we wnęce Bernard Ziętek IF UMK Toruń 70

71 W przybliżeniu stacjonarnym (1) (2) z (1) gdzie Podstawiając do (2) gdzie Bernard Ziętek IF UMK Toruń 71

72 Rozwiązanie (dodatnie) Przypadki zatem to Jeśli: V = 10cm 3, c = 3*10 10 cm/s = cm 2 = 10-9 s = 5.77*10 9 to i czyli Bernard Ziętek IF UMK Toruń 72

73 Bernard Ziętek IF UMK Toruń 73

74 Szerokość linii Mieliśmy oraz zatem: dla rezonatora pasywnego dla rezonatora aktywnego Im większe wzmocnienie tym dłuższy efektywny czas życia fotonów we wnęce W schemacie czteropoziomowym Zatem Bernard Ziętek IF UMK Toruń 74

75 Optymalizacja pracy lasera Zapiszmy gdzie Ponieważ To maksymalna moc dla Bernard Ziętek IF UMK Toruń 75

76 Bernard Ziętek IF UMK Toruń 76

77 Lasery liniowe Bernard Ziętek IF UMK Toruń 77

78 Bernard Ziętek IF UMK Toruń 78

79 Lasery pierścieniowe W większości przypadków (również dla liniowych) Bernard Ziętek IF UMK Toruń 79

80 Stabilizacja pracy laserów 1. Stabilizacja częstotliwości Wzorce atomowe Bernard Ziętek IF UMK Toruń 80

81 2. Stabilizacja natężenia Bernard Ziętek IF UMK Toruń 81

82 1. Oscylacje relaksacyjne Równania wyjściowe DYNAMIKA LASERÓW Załóżmy, że Zaniedbujemy wyrazy wyższego niż II rząd Bernard Ziętek IF UMK Toruń 82

83 rozwiązanie gdzie Jeśli Generowane są impulsy zanikające Bernard Ziętek IF UMK Toruń 83

84 Impulsy gigantyczne Pamiętamy, że Impuls gigantyczny szybka zmiana dobroci wnęki z małej na dużą Nadwyżka energii nad progową jest emitowana w postaci impulsu gigantycznego Bernard Ziętek IF UMK Toruń 84

85 Metody Równania kinetyczne gdzie Bernard Ziętek IF UMK Toruń 85

86 Rozwiązanie numeryczne Ponieważ Moc impulsu a i Bernard Ziętek IF UMK Toruń 86

87 Cavity dumping (tłumienie dobroci wnęki) Bernard Ziętek IF UMK Toruń 87

88 Synchronizacja modów podłużnych (mode locking) (interferencja światła o różnej częstotliwości) a). Synchronizacja modów podłużnych Dobroć wnęki (lub fazę) modulujemy z częstotliwością równą odwrotności T = L/2c (f = 1/T różnica częstotliwości między sąsiednimi modami) Ω = 2πf -Obraz częstościowy (ośrodki niejednorodnie poszerzone) Mod o częstości ω 0 wymusza oscylacje modów o częstościach ω 0 ±kω, wszystkie o takich samych fazach. Interferencja skutkuje powstaniem impulsu. - Obraz czasowy (ośrodki jednorodnie poszerzone) Z przypadkowych oscylacji laserowych zostaje wybrana jedna i jako impuls(y) porusza się w rezonatorze, ulegając modyfikacji Bernard Ziętek IF UMK Toruń 88

89 Obraz częstościowy (Frequency- Domain Description) Modulujemy dobroć wnęki z częstością Po rozwinięciu Sumujemy pola wszystkich modów gdzie Bernard Ziętek IF UMK Toruń 89

90 Przy braku synchronizacji Pole (amplitudy wszystkich modów są równe) Natężenie Bernard Ziętek IF UMK Toruń 90

91 Synchronizacji z modulacja amplitudy Pole całkowite Natężenie Maksimum Czas trwania impulsu Bernard Ziętek IF UMK Toruń 91

92 Synchronizacja z modulacją częstości gdzie Bernard Ziętek IF UMK Toruń 92

93 Bernard Ziętek IF UMK Toruń 93

94 Obraz czasowy (Time-Domain Description) (trudniejszy matematycznie) Synchronizacja fundamentalna modulator umieszczony na zwierciadle rezonatora (częstotliwość impulsów f = 2L/c) Synchronizacja harmoniczna modulator umieszczony -w połowie długości rezonatora (L/2) (częstość impulsów 2 x f) - L/3 od zwierciadła (częstotliwość impulsów f/3) Czas trwania impulsu = 1/szerokość pasma Bernard Ziętek IF UMK Toruń 94

95 Metody synchronizacji 1. Aktywna modulatory elektrooptyczne, 2. Pasywna pompowanie synchroniczne, nasycający się absorber, optyczny efekt Kerra. Samosynchronizacja Bernard Ziętek IF UMK Toruń 95

96 b). Synchronizacja modów poprzecznych Częstość modów rezonatora sferycznego Natężenia pola Natężenie światła Różnica częstości między modami rząd 100 MHz Bernard Ziętek IF UMK Toruń 96

97 Bernard Ziętek IF UMK Toruń 97

98 Impulsy femtosekundowe Ograniczenia w uzyskiwaniu krótszych impulsów: -pasmo emisji, -dyspersja ośrodka i elementów lasera, -długość fali Bernard Ziętek IF UMK Toruń 98

99 Bernard Ziętek IF UMK Toruń 99

100 Dyspersja i jej kompensacja It has been proven that the signal velocity is exactly equal to c, if we assume the observer to be equipped with a detector of infinite sensivity, and this is true for normal and anomalous dispersion, for isotropic or anisotropic medium, that may or not contain coductions electron. The signal has absolutely nothig to do with the phase velosity. L. Brillouin, Wave Propagation and Groupe Velocity, Academic Press, New York, 1960 Prędkość światła: - prekursory Brouilloina i Somerfelda -prędkości nadświetlne - prędkość fazowa a grupowa impuls światła Bernard Ziętek IF UMK Toruń 100

101 Dyspersja: - normalna i anomalna - dodatnia i ujemna Przesunięcie fazy na drodze L W ośrodkach dyspersyjnych Najczęściej stosuje się (wzór Sellmeiera) Stałe Bernard Ziętek IF UMK Toruń 101

102 Dyspersja SiO 2 Bernard Ziętek IF UMK Toruń 102

103 Impuls światła w dielektryku Zakładamy impuls gaussowski Widmo na drodze z zmienia się i Z rozwinięcia Taylora gdzie i Bernard Ziętek IF UMK Toruń 103

104 Po podstawieniu Ewolucja w czasie impulsu z transformacji Fouriera Czyli gdzie Prędkość fazowa Prędkość grupowa Bernard Ziętek IF UMK Toruń 104

105 Ponieważ to oraz Dyspersja prędkości grupowej ale Zależy od krzywizny dyspersji Bernard Ziętek IF UMK Toruń 105

106 Ponieważ to zależy od częstości przez k Zapiszmy gdzie Czyli w równaniu impulsu Część rzeczywista jest gaussowska, ale poszerzona Cześć urojona jest kwadratowa Bernard Ziętek IF UMK Toruń 106

107 Niech Częstość chwilowa Z częstością kwadratową Częstość chwilowa Zmienia się liniowo w czasie - świergot Bernard Ziętek IF UMK Toruń 107

108 , -prędkość grupowa Opóźnienie składowych o różnych częstościach na jednostkę częstości Dyspersja prędkości grupowej Współczynnik dyspersji materiałowej Bernard Ziętek IF UMK Toruń 108

109 Dyspersja opóźnienia grupowego Poszerzenie impulsu gaussowskiego o szerokości w ośrodku dyspersyjnym Świergot impulsu (ang. chirping pulse) Bernard Ziętek IF UMK Toruń 109

110 Metody kompensacji dyspersji 1. Pryzmaty L P droga optyczna Kąty są małe i drugi czynnik może dominować ujemna dyspersja Bernard Ziętek IF UMK Toruń 110

111 2. Siatki dyfrakcyjne Droga optyczna w funkcji czestości Dyspersja zawsze ujemna! Bernard Ziętek IF UMK Toruń 111

112 Dyspersja opóźnienia grupowego -zerowa -dodatnia rozszerzacz -ujemna kompresor Bernard Ziętek IF UMK Toruń 112

113 3. Siatki Bragga Bernard Ziętek IF UMK Toruń 113

114 Kompresja impulsów Bernard Ziętek IF UMK Toruń 114

115 Generatory Kompresor 1. Barwnikowy 2. Tytanowo - szafirowy Zwierciadło wyjściowe Dopas owanie długości wnęki Ośrodek cz ynny Pompowanie Kompensator dyspers ji Zwierciadło Dopasowan ie dyspersji Bernard Ziętek IF UMK Toruń 115

116 Autokorelatory Bernard Ziętek IF UMK Toruń 116

117 Dwufotonowa fluorescencja Bernard Ziętek IF UMK Toruń 117

118 1. FROG Diagnostyka impulsów femtosekundowych a) Koncepcja: wykonać równocześnie widmo kolejno fragmentów impulsów i funkcji autokorelacji. Otrzymujemy: -kształt impulsu w czasie - informacje o zmianie fazy w czasie b) Realizacja Bernard Ziętek IF UMK Toruń 118

119 Bernard Ziętek IF UMK Toruń 119

120 2. SPIDER Bernard Ziętek IF UMK Toruń 120

121 Wzmacnianie impulsów femtosekundowych Rozszerzacze impulsów w czasie Kompresory Bernard Ziętek IF UMK Toruń 121

122 Wzmacniacze regeneratywne Bernard Ziętek IF UMK Toruń 122

123 Kontrola kształtu impulsu Modulator liniowy w płaszczyźnie Fouriera LC-SLM Bernard Ziętek IF UMK Toruń 123

124 Impulsy attosekundowe (10-18 s) Impuls femtosekundowy ( kula o wymiarach μm, gęstości mocy W/cm 2 i amplitudzie 10 9 V/cm) oddziałuje z atomami gazu. Pole świetlne zmienia kształt barier potencjału i elektron staje się quasi-swobodny. W polu nabywa ogromnej energii kinetycznej, która jest wyzwalana w akcie rekombinacji w postaci harmonicznych wysokich rzędów. Bernard Ziętek IF UMK Toruń 124

125 W widmie harmonicznych: -plateau, -energia odcięcia. Harmoniczne (nawet powyżej 50-tego rzędu) interferują powstają impulsy attosekundowe, które pokrywają obszar spektralny setek ev. Diagnostyka możliwa dzięki jonizacji gazu przez impulsy attosekundowe i pomiar rozkładu fotoelektronów spektrometrem elektronowym (technika RABBITT, FROG CRAB). Rekord: ok. 250 as Zastosowania: 1. badanie dynamiki rdzeniowych elektronów w atomach, 2. spektroskopia plazmy, 3. fluorescencja rentgenowska, 4. badanie dynamiki cząsteczek biologicznie ważnych np. DNA, białka itd. Bernard Ziętek IF UMK Toruń 125

FIZYKA LASERÓW. AKCJA LASEROWA (dynamika) TEK, IFAiIS UMK, Toruń

FIZYKA LASERÓW. AKCJA LASEROWA (dynamika) TEK, IFAiIS UMK, Toruń FIZYKA LASERÓW AKCJA LASEROWA (dynamika) BERNARD ZIĘTEK, TEK, IFAiIS UMK, Toruń 1. Oscylacje relaksacyjne Równania wyjściowe Dynamika laserów Załóżmy, że Zaniedbujemy wyrazy wyższego niż II rząd Bernard

Bardziej szczegółowo

VI AKCJA LASEROWA. IFAiIS UMK, Toruń

VI AKCJA LASEROWA. IFAiIS UMK, Toruń VI AKCJA LASEROWA BERNARD ZIĘTEK, IFAiIS UMK, Toruń Sekwencja wydarzeń w układzie lasera 1. Emisja spontaniczna 2. Inwersja obsadzeń 3. Wzmocniona emisja spontaniczna 4. Zwierciadło kieruje do wzmacniacza

Bardziej szczegółowo

OPTOELEKTRONIKA. I Podstawy fizyki laserów

OPTOELEKTRONIKA. I Podstawy fizyki laserów OPTOELEKTRONIKA I Podstawy fizyki laserów 1. ABSORPCJA i EMISJA ŚWIATŁA Prawdopodobieństwo: - emisji spontanicznej - emisji wymuszonej - absorpcji gdzie -gęstość energii fotonów Bernard Ziętek IF UMK Toruń

Bardziej szczegółowo

IV. Transmisja. /~bezet

IV. Transmisja.  /~bezet Światłowody IV. Transmisja BERNARD ZIĘTEK http://www.fizyka.umk.pl www.fizyka.umk.pl/~ /~bezet 1. Tłumienność 10 7 10 6 Tłumienność [db/km] 10 5 10 4 10 3 10 2 10 SiO 2 Tłumienność szkła w latach (za A.

Bardziej szczegółowo

PODSTAWY FIZYKI LASERÓW Wstęp

PODSTAWY FIZYKI LASERÓW Wstęp PODSTAWY FIZYKI LASERÓW Wstęp LASER Light Amplification by Stimulation Emission of Radiation Składa się z: 1. ośrodka czynnego. układu pompującego 3.Rezonator optyczny - wnęka rezonansowa Generatory: liniowe

Bardziej szczegółowo

Modulatory. Bernard Ziętek

Modulatory. Bernard Ziętek Modulatory Bernard Ziętek Wstęp Równanie fali (pole elektryczne fali elektromagnetycznej) Parametry: α ω φ nz Współczynnik absorpcji (amplituda) Częstość kołowa Faza Droga optyczna (współczynnik załamania

Bardziej szczegółowo

VI. Elementy techniki, lasery

VI. Elementy techniki, lasery Światłowody VI. Elementy techniki, lasery BERNARD ZIĘTEK http://www.fizyka.umk.pl www.fizyka.umk.pl/~ /~bezet a) Sprzęgacze czołowe 1. Sprzęgacze światłowodowe (czołowe, boczne, stałe, rozłączalne) Złącza,

Bardziej szczegółowo

LASERY NA CIELE STAŁYM BERNARD ZIĘTEK

LASERY NA CIELE STAŁYM BERNARD ZIĘTEK LASERY NA CIELE STAŁYM BERNARD ZIĘTEK TEK Lasery na ciele stałym lasery, których ośrodek czynny jest: -kryształem i ciałem amorficznym (również proszkiem), - dielektrykiem i półprzewodnikiem. 2 Podział

Bardziej szczegółowo

Właściwości światła laserowego

Właściwości światła laserowego Właściwości światła laserowego Cechy charakterystyczne światła laserowego: rozbieżność (równoległość) wiązki, pasmo spektralne, gęstość mocy spójność (koherencja). Równoległość wiązki Dyfrakcyjną rozbieżność

Bardziej szczegółowo

III. Opis falowy. /~bezet

III. Opis falowy.  /~bezet Światłowody III. Opis falowy BERNARD ZIĘTEK http://www.fizyka.umk.pl www.fizyka.umk.pl/~ /~bezet Równanie falowe w próżni Teoria falowa Równanie Helmholtza Równanie bezdyspersyjne fali płaskiej, rozchodzącej

Bardziej szczegółowo

II. WYBRANE LASERY. BERNARD ZIĘTEK IF UMK www.fizyka.umk.pl/~ /~bezet

II. WYBRANE LASERY. BERNARD ZIĘTEK IF UMK www.fizyka.umk.pl/~ /~bezet II. WYBRANE LASERY BERNARD ZIĘTEK IF UMK www.fizyka.umk.pl/~ /~bezet Laser gazowy Laser He-Ne, Mechanizm wzbudzenia Bernard Ziętek IF UMK Toruń 2 Model Bernard Ziętek IF UMK Toruń 3 Rozwiązania stacjonarne

Bardziej szczegółowo

Równania Maxwella. Wstęp E B H J D

Równania Maxwella. Wstęp E B H J D Równania Maxwella E B t, H J D t, D, B 0 Równania materiałowe B 0 H M, D 0 E P, J E, gdzie: 0 przenikalność elektryczną próżni ( 0 8854 10 1 As/Vm), 0 przenikalność magetyczną próżni ( 0 4 10 7 Vs/Am),

Bardziej szczegółowo

Wstęp do Optyki i Fizyki Materii Skondensowanej

Wstęp do Optyki i Fizyki Materii Skondensowanej Wstęp do Optyki i Fizyki Materii Skondensowanej Część I: Optyka, wykład 8 wykład: Piotr Fita pokazy: Andrzej Wysmołek ćwiczenia: Anna Grochola, Barbara Piętka Wydział Fizyki Uniwersytet Warszawski 2014/15

Bardziej szczegółowo

Lasery półprzewodnikowe. przewodnikowe. Bernard Ziętek

Lasery półprzewodnikowe. przewodnikowe. Bernard Ziętek Lasery półprzewodnikowe przewodnikowe Bernard Ziętek Plan 1. Rodzaje półprzewodników 2. Parametry półprzewodników 3. Złącze p-n 4. Rekombinacja dziura-elektron 5. Wzmocnienie 6. Rezonatory 7. Lasery niskowymiarowe

Bardziej szczegółowo

CHARAKTERYSTYKA WIĄZKI GENEROWANEJ PRZEZ LASER

CHARAKTERYSTYKA WIĄZKI GENEROWANEJ PRZEZ LASER CHARATERYSTYA WIĄZI GENEROWANEJ PRZEZ LASER ształt wiązki lasera i jej widmo są rezultatem interferencji promieniowania we wnęce rezonansowej. W wyniku tego procesu powstają charakterystyczne rozkłady

Bardziej szczegółowo

Technika laserowa, otrzymywanie krótkich impulsów Praca impulsowa

Technika laserowa, otrzymywanie krótkich impulsów Praca impulsowa Praca impulsowa Impuls trwa określony czas i jest powtarzany z pewną częstotliwością; moc w pracy impulsowej znacznie wyższa niż w pracy ciągłej (pomiędzy impulsami może magazynować się energia) Ablacja

Bardziej szczegółowo

Bernard Zi etek LASERY

Bernard Zi etek LASERY Uniwersytet Miko aja Kopernika Bernard Zi etek LASERY Wydanie II rozszerzone i poprawione Toruń 2009 SPIS TREŚCI PRZEDMOWA 1 PRZEDMOWA DO WYDANIA I 2 SPIS NAJWA ZNIEJSZYCH SYMBOLI 8 I. WSTEP 12 II. ŚWIAT

Bardziej szczegółowo

Fotonika kurs magisterski grupa R41 semestr VII Specjalność: Inżynieria fotoniczna. Egzamin ustny: trzy zagadnienia do objaśnienia

Fotonika kurs magisterski grupa R41 semestr VII Specjalność: Inżynieria fotoniczna. Egzamin ustny: trzy zagadnienia do objaśnienia Dr inż. Tomasz Kozacki Prof. dr hab.inż. Romuald Jóźwicki Zakład Techniki Optycznej Instytut Mikromechaniki i Fotoniki pokój 513a ogłoszenia na tablicach V-tego piętra kurs magisterski grupa R41 semestr

Bardziej szczegółowo

Wstęp do Optyki i Fizyki Materii Skondensowanej

Wstęp do Optyki i Fizyki Materii Skondensowanej Wstęp do Optyki i Fizyki Materii Skondensowanej Część I: Optyka, wykład 8 wykład: Piotr Fita pokazy: Andrzej Wysmołek ćwiczenia: Anna Grochola, Barbara Piętka Wydział Fizyki Uniwersytet Warszawski 2013/14

Bardziej szczegółowo

1. FALE ELEKTROMAGNETYCZNE: WŁASNOŚCI I PARAMETRY.

1. FALE ELEKTROMAGNETYCZNE: WŁASNOŚCI I PARAMETRY. 1. FALE ELEKTROMAGNETYCZNE: WŁASNOŚCI I PARAMETRY. 1. Napisz układ równań Maxwella w postaci: a) różniczkowej b) całkowej 2. Podaj trzy podstawowe równania materiałowe wiążące E z D, B z H, E z j 3. Zapisz

Bardziej szczegółowo

Bernard Ziętek OPTOELEKTRONIKA

Bernard Ziętek OPTOELEKTRONIKA Uniwersytet Mikołaja Kopernika Bernard Ziętek OPTOELEKTRONIKA Wydanie III, uzupełnione i poprawione Toruń 2011 SPIS TREŚCI PRZEDMOWA DO III WYDANIA 1 PRZEDMOWA DO II WYDANIA 3 PRZEDMOWA DO I WYDANIA 4

Bardziej szczegółowo

Fala jest zaburzeniem, rozchodzącym się w ośrodku, przy czym żadna część ośrodka nie wykonuje zbyt dużego ruchu

Fala jest zaburzeniem, rozchodzącym się w ośrodku, przy czym żadna część ośrodka nie wykonuje zbyt dużego ruchu Ruch falowy Fala jest zaburzeniem, rozchodzącym się w ośrodku, przy czym żadna część ośrodka nie wykonuje zbyt dużego ruchu Fala rozchodzi się w przestrzeni niosąc ze sobą energię, ale niekoniecznie musi

Bardziej szczegółowo

Niezwykłe światło. ultrakrótkie impulsy laserowe. Piotr Fita

Niezwykłe światło. ultrakrótkie impulsy laserowe. Piotr Fita Niezwykłe światło ultrakrótkie impulsy laserowe Laboratorium Procesów Ultraszybkich Zakład Optyki Wydział Fizyki Uniwersytetu Warszawskiego Światło Fala elektromagnetyczna Dla światła widzialnego długość

Bardziej szczegółowo

Własności światła laserowego

Własności światła laserowego Własności światła laserowego Cechy światła laserowego: rozbieżność (równoległość) wiązki, pasmo spektralne, gęstość mocy oraz spójność (koherencja). Równoległość wiązki Dyfrakcyjną rozbieżność kątową awkącie

Bardziej szczegółowo

Różnorodne zjawiska w rezonatorze Fala stojąca modu TEM m,n

Różnorodne zjawiska w rezonatorze Fala stojąca modu TEM m,n Różnorodne zjawiska w rezonatorze Fala stojąca modu TEM m,n -z z w płaszczyzna przewężenia Propaguję się jednocześnie dwie fale w przeciwbieżnych kierunkach Dla kierunku 2 kr 2R ( r,z) exp i kz s Φ exp(

Bardziej szczegółowo

OTRZYMYWANIE KRÓTKICH IMPULSÓW LASEROWYCH

OTRZYMYWANIE KRÓTKICH IMPULSÓW LASEROWYCH OTRZYMYWANIE KRÓTKICH IMPULSÓW LASEROWYCH Impulsowe lasery na ciele stałym są najbardziej ważnymi i szeroko rozpowszechnionymi systemami laserowymi. Np laser Nd:YAG jest najczęściej stosowany do znakowania,

Bardziej szczegółowo

Ponadto, jeśli fala charakteryzuje się sferycznym czołem falowym, powyższy wzór można zapisać w następujący sposób:

Ponadto, jeśli fala charakteryzuje się sferycznym czołem falowym, powyższy wzór można zapisać w następujący sposób: Zastosowanie laserów w Obrazowaniu Medycznym Spis treści 1 Powtórka z fizyki Zjawisko Interferencji 1.1 Koherencja czasowa i przestrzenna 1.2 Droga i czas koherencji 2 Lasery 2.1 Emisja Spontaniczna 2.2

Bardziej szczegółowo

Fizyka Laserów wykład 5. Czesław Radzewicz

Fizyka Laserów wykład 5. Czesław Radzewicz Fizyka Laserów wykład 5 Czesław Radzewicz rezonatory optyczne, optyczne wnęki rezonansowe rezonatory otwarte: Fabry-Perot E t E 0 R 0.99 T 1 0 E r R R R 0. R 0.9 E t = TE 0 e iδφ R 0.5 R 0.9 E t Gires-Tournois

Bardziej szczegółowo

Wstęp do Optyki i Fizyki Materii Skondensowanej

Wstęp do Optyki i Fizyki Materii Skondensowanej Wstęp do Optyki i Fizyki Materii Skondensowanej Część I: Optyka, wykład 3 wykład: Piotr Fita pokazy: Andrzej Wysmołek ćwiczenia: Anna Grochola, Barbara Piętka Wydział Fizyki Uniwersytet Warszawski 2013/14

Bardziej szczegółowo

Solitony i zjawiska nieliniowe we włóknach optycznych

Solitony i zjawiska nieliniowe we włóknach optycznych Solitony i zjawiska nieliniowe we włóknach optycznych Prezentacja zawiera kopie folii omawianych na wykładzie. Niniejsze opracowanie chronione jest prawem autorskim. Wykorzystanie niekomercyjne dozwolone

Bardziej szczegółowo

Technika laserowa. dr inż. Sebastian Bielski. Wydział Fizyki Technicznej i Matematyki Stosowanej PG

Technika laserowa. dr inż. Sebastian Bielski. Wydział Fizyki Technicznej i Matematyki Stosowanej PG Technika laserowa dr inż. Sebastian Bielski Wydział Fizyki Technicznej i Matematyki Stosowanej PG Technika laserowa Zakres materiału (wstępnie przewidywany) 1. Bezpieczeństwo pracy z laserem 2. Własności

Bardziej szczegółowo

Oscylator wprowadza lokalne odkształcenie s ośrodka propagujące się zgodnie z równaniem. S 0 amplituda odkształcenia. f [Hz] - częstotliwość.

Oscylator wprowadza lokalne odkształcenie s ośrodka propagujące się zgodnie z równaniem. S 0 amplituda odkształcenia. f [Hz] - częstotliwość. Akusto-optyka Fala akustyczna jest falą mechaniczną Oscylator wprowadza lokalne odkształcenie s ośrodka propagujące się zgodnie z równaniem ( x, t) S cos( Ωt qx) s Częstotliwość kołowa Ω πf Długość fali

Bardziej szczegółowo

Wprowadzenie do optyki nieliniowej

Wprowadzenie do optyki nieliniowej Wprowadzenie do optyki nieliniowej Prezentacja zawiera kopie folii omawianych na wykładzie. Niniejsze opracowanie chronione jest prawem autorskim. Wykorzystanie niekomercyjne dozwolone pod warunkiem podania

Bardziej szczegółowo

Wstęp do Optyki i Fizyki Materii Skondensowanej

Wstęp do Optyki i Fizyki Materii Skondensowanej Wstęp do Optyki i Fizyki Materii Skondensowanej Część I: Optyka, wykład 8 wykład: Piotr Fita pokazy: Andrzej Wysmołek ćwiczenia: Paweł Kowalczyk, Barbara Piętka Wydział Fizyki Uniwersytet Warszawski 2015/16

Bardziej szczegółowo

2. Całkowita liczba modów podłużnych. Dobroć rezonatora. Związek między szerokością linii emisji wymuszonej a dobrocią rezonatora

2. Całkowita liczba modów podłużnych. Dobroć rezonatora. Związek między szerokością linii emisji wymuszonej a dobrocią rezonatora . Całkowita liczba modów podłużnych. Dobroć rezonatora. Związek między szerokością linii emisji wymuszonej a dobrocią rezonatora Gdy na ośrodek czynny, który nie znajduje się w rezonatorze optycznym, pada

Bardziej szczegółowo

GŁÓWNE CECHY ŚWIATŁA LASEROWEGO

GŁÓWNE CECHY ŚWIATŁA LASEROWEGO GŁÓWNE CECHY ŚWIATŁA LASEROWEGO Światło może być rozumiane jako: Strumień fotonów o energii E Fala elektromagnetyczna. = hν i pędzie p h = = hν c Najprostszym przypadkiem fali elektromagnetycznej jest

Bardziej szczegółowo

Fizyka Laserów wykład 6. Czesław Radzewicz

Fizyka Laserów wykład 6. Czesław Radzewicz Fizyka Laserów wykład 6 Czesław Radzewicz wzmacniacz laserowy (długie impulsy) - przypomnienie 2 bilans obsadzeń: σ 21 N 2 F s σ 21 N 2 F ħω 12 dn 2 dt = σ 21N 1 F σ 21 N 2 F + σ 21 N 1 F 1 dn 1 dt = F

Bardziej szczegółowo

Wstęp do Optyki i Fizyki Materii Skondensowanej

Wstęp do Optyki i Fizyki Materii Skondensowanej Wstęp do Optyki i Fizyki Materii Skondensowanej Część I: Optyka, wykład 7 wykład: Piotr Fita pokazy: Jacek Szczytko ćwiczenia: Aneta Drabińska, Paweł Kowalczyk, Barbara Piętka Wydział Fizyki Uniwersytet

Bardziej szczegółowo

Feynmana wykłady z fizyki. [T.] 1.2, Optyka, termodynamika, fale / R. P. Feynman, R. B. Leighton, M. Sands. wyd. 7. Warszawa, 2014.

Feynmana wykłady z fizyki. [T.] 1.2, Optyka, termodynamika, fale / R. P. Feynman, R. B. Leighton, M. Sands. wyd. 7. Warszawa, 2014. Feynmana wykłady z fizyki. [T.] 1.2, Optyka, termodynamika, fale / R. P. Feynman, R. B. Leighton, M. Sands. wyd. 7. Warszawa, 2014 Spis treści Spis rzeczy części 1 tomu I X 26 Optyka: zasada najkrótszego

Bardziej szczegółowo

Rezonatory ze zwierciadłem Bragga

Rezonatory ze zwierciadłem Bragga Rezonatory ze zwierciadłem Bragga Siatki dyfrakcyjne stanowiące zwierciadła laserowe (zwierciadła Bragga) są powszechnie stosowane w laserach VCSEL, ale i w laserach z rezonatorem prostopadłym do płaszczyzny

Bardziej szczegółowo

Oscylator wprowadza lokalne odkształcenie s ośrodka propagujące się zgodnie z równaniem. S 0 amplituda odkształcenia. f [Hz] -częstotliwość.

Oscylator wprowadza lokalne odkształcenie s ośrodka propagujące się zgodnie z równaniem. S 0 amplituda odkształcenia. f [Hz] -częstotliwość. Akusto-optyka Fala akustyczna jest falą mechaniczną Oscylator wprowadza lokalne odkształcenie s ośrodka propagujące się zgodnie z równaniem ( x, t) S cos( Ωt qx) s Częstotliwość kołowa Ω πf Długość fali

Bardziej szczegółowo

Wstęp do optyki i fizyki materii skondensowanej. O: Wojciech Wasilewski FMS: Mateusz Goryca

Wstęp do optyki i fizyki materii skondensowanej. O: Wojciech Wasilewski FMS: Mateusz Goryca Wstęp do optyki i fizyki materii skondensowanej O: Wojciech Wasilewski FMS: Mateusz Goryca 1 Zasady części O Wykład przeglądowy Ćwiczenia rozszerzające lub ilustrujące Sprawdzane prace domowe psi.fuw.edu.pl/main/wdoifms

Bardziej szczegółowo

Trzy rodzaje przejść elektronowych między poziomami energetycznymi

Trzy rodzaje przejść elektronowych między poziomami energetycznymi Trzy rodzaje przejść elektronowych między poziomami energetycznymi absorpcja elektron przechodzi na wyższy poziom energetyczny dzięki pochłonięciu kwantu o energii równej różnicy energetycznej poziomów

Bardziej szczegółowo

POMIARY OPTYCZNE 1. Wykład 1. Dr hab. inż. Władysław Artur Woźniak

POMIARY OPTYCZNE 1. Wykład 1.  Dr hab. inż. Władysław Artur Woźniak POMIARY OPTYCZNE Wykład Dr hab. inż. Władysław Artur Woźniak Instytut Fizyki Politechniki Wrocławskiej Pokój 8/ bud. A- http://www.if.pwr.wroc.pl/~wozniak/ OPTYKA GEOMETRYCZNA Codzienne obserwacje: światło

Bardziej szczegółowo

OPTYKA KWANTOWA Wykład dla 5. roku Fizyki

OPTYKA KWANTOWA Wykład dla 5. roku Fizyki OPTYKA KWANTOWA Wykład dla 5. roku Fizyki c Adam Bechler 006 Instytut Fizyki Uniwersytetu Szczecińskiego Równania (3.7), pomimo swojej prostoty, nie posiadają poza nielicznymi przypadkami ścisłych rozwiązań,

Bardziej szczegółowo

Laboratorium Optyki Nieliniowej

Laboratorium Optyki Nieliniowej Spis treści 1. Wprowadzenie... 1. Dyspersja prędkości grupowej... 5 A. Wydłużenie impulsu... 6 3. Pomiar czasu trwania impulsu... 1 B. Autokorelator interferometryczny... 13 C. Autokorelator natężeniowy...

Bardziej szczegółowo

Lasery. Własności światła laserowego Zasada działania Rodzaje laserów

Lasery. Własności światła laserowego Zasada działania Rodzaje laserów Lasery Własności światła laserowego Zasada działania Rodzaje laserów Lasery Laser - nazwa utworzona jako akronim od Light Amplification by Stimulated Emission of Radiation - wzmocnienie światła poprzez

Bardziej szczegółowo

Lasery. Własności światła laserowego Zasada działania Rodzaje laserów

Lasery. Własności światła laserowego Zasada działania Rodzaje laserów Lasery Własności światła laserowego Zasada działania Rodzaje laserów Lasery Laser - nazwa utworzona jako akronim od Light Amplification by Stimulated Emission of Radiation - wzmocnienie światła poprzez

Bardziej szczegółowo

Podstawy fizyki wykład 7

Podstawy fizyki wykład 7 Podstawy fizyki wykład 7 Dr Piotr Sitarek Katedra Fizyki Doświadczalnej, W11, PWr Drgania Drgania i fale Drgania harmoniczne Siła sprężysta Energia drgań Składanie drgań Drgania tłumione i wymuszone Fale

Bardziej szczegółowo

- Strumień mocy, który wpływa do obszaru ograniczonego powierzchnią A ( z minusem wpływa z plusem wypływa)

- Strumień mocy, który wpływa do obszaru ograniczonego powierzchnią A ( z minusem wpływa z plusem wypływa) 37. Straty na histerezę. Sens fizyczny. Energia dostarczona do cewki ferromagnetykiem jest znacznie większa od energii otrzymanej. Energia ta jest tworzona w ferromagnetyku opisanym pętlą histerezy, stąd

Bardziej szczegółowo

Wstęp do Optyki i Fizyki Materii Skondensowanej

Wstęp do Optyki i Fizyki Materii Skondensowanej Wstęp do Optyki i Fizyki Materii Skondensowanej Część I: Optyka, wykład 7 wykład: Piotr Fita pokazy: Andrzej Wysmołek ćwiczenia: Anna Grochola, Barbara Piętka Wydział Fizyki Uniwersytet Warszawski 2014/15

Bardziej szczegółowo

n n 1 2 = exp( ε ε ) 1 / kt = exp( hν / kt) (23) 2 to wzór (22) przejdzie w następującą równość: ρ (ν) = B B A / B 2 1 hν exp( ) 1 kt (24)

n n 1 2 = exp( ε ε ) 1 / kt = exp( hν / kt) (23) 2 to wzór (22) przejdzie w następującą równość: ρ (ν) = B B A / B 2 1 hν exp( ) 1 kt (24) n n 1 2 = exp( ε ε ) 1 / kt = exp( hν / kt) (23) 2 to wzór (22) przejdzie w następującą równość: ρ (ν) = B B A 1 2 / B hν exp( ) 1 kt (24) Powyższe równanie określające gęstość widmową energii promieniowania

Bardziej szczegółowo

Optyka. Optyka geometryczna Optyka falowa (fizyczna) Interferencja i dyfrakcja Koherencja światła Optyka nieliniowa

Optyka. Optyka geometryczna Optyka falowa (fizyczna) Interferencja i dyfrakcja Koherencja światła Optyka nieliniowa Optyka Optyka geometryczna Optyka falowa (fizyczna) Interferencja i dyfrakcja Koherencja światła Optyka nieliniowa 1 Optyka falowa Opis i zastosowania fal elektromagnetycznych w zakresie widzialnym i bliskim

Bardziej szczegółowo

Spektroskopia modulacyjna

Spektroskopia modulacyjna Spektroskopia modulacyjna pozwala na otrzymanie energii przejść optycznych w strukturze z bardzo dużą dokładnością. Charakteryzuje się również wysoką czułością, co pozwala na obserwację słabych przejść,

Bardziej szczegółowo

Kształtowanie wiązki laserowej przez układy optyczne

Kształtowanie wiązki laserowej przez układy optyczne Kształtowanie wiązki laserowej przez układy optyczne W przestrzeni przyosiowej, dla układu bezaberracyjnego i nie przycinającego wiązki gaussowskiej płaszczyzna przewężenia n = 1 n = 1 w w F F w w π π

Bardziej szczegółowo

LASERY PODSTAWY FIZYCZNE część 1

LASERY PODSTAWY FIZYCZNE część 1 Politechnika Warszawska Instytut Mikroelektroniki i Optoelektroniki Zakład Optoelektroniki dr inż. Jerzy Andrzej Kęsik LASERY PODSTAWY FIZYCZNE część 1 SPIS TREŚCI 1. Wstęp. Mechanizm fizyczny wzmacniania

Bardziej szczegółowo

Ośrodki dielektryczne optycznie nieliniowe

Ośrodki dielektryczne optycznie nieliniowe Ośrodki dielektryczne optycznie nieliniowe Równania Maxwella roth rot D t B t = = przy czym tym razem wektor indukcji elektrycznej D ε + = ( ) Wektor polaryzacji jest nieliniową funkcją natężenia pola

Bardziej szczegółowo

http://www.fizyka.umk.pl www.fizyka.umk.pl/~ /~bezet

http://www.fizyka.umk.pl www.fizyka.umk.pl/~ /~bezet IV. Światłowody BERNARD ZIĘTEK http://www.fizyka.umk.pl www.fizyka.umk.pl/~ /~bezet Literatura 2 3 Historia i uwarunkowania Podstawowe elementy: 1. Rozwój techniki laserowej (lasery półprzewodnikowe, modulacja,

Bardziej szczegółowo

Oddziaływanie promieniowania X z materią. Podstawowe mechanizmy

Oddziaływanie promieniowania X z materią. Podstawowe mechanizmy Oddziaływanie promieniowania X z materią Podstawowe mechanizmy Promieniowanie od oscylującego elektronu Rozpraszanie Thomsona Dyspersja podejście klasyczne Fala padająca Wymuszony, tłumiony oscylator harmoniczny

Bardziej szczegółowo

Widmo fal elektromagnetycznych

Widmo fal elektromagnetycznych Czym są fale elektromagnetyczne? Widmo fal elektromagnetycznych dr inż. Romuald Kędzierski Podstawowe pojęcia związane z falami - przypomnienie pole falowe część przestrzeni objęta w danej chwili falą

Bardziej szczegółowo

Prawa optyki geometrycznej

Prawa optyki geometrycznej Optyka Podstawowe pojęcia Światłem nazywamy fale elektromagnetyczne, o długościach, na które reaguje oko ludzkie, tzn. 380-780 nm. O falowych własnościach światła świadczą takie zjawiska, jak ugięcie (dyfrakcja)

Bardziej szczegółowo

Moc wyjściowa laserów

Moc wyjściowa laserów Moc wyjściowa laserów Wstęp Optymalizacja polega na dobraniu takich warunków, by moc wyjściowa lasera była jak największa. Spróbujemy zoptymalizować straty promieniste. W tym celu zapiszmy wyrażenie na

Bardziej szczegółowo

Wstęp do Optyki i Fizyki Materii Skondensowanej

Wstęp do Optyki i Fizyki Materii Skondensowanej Wstęp do Optyki i Fizyki Materii Skondensowanej Część I: Optyka, wykład 3 wykład: Piotr Fita pokazy: Jacek Szczytko ćwiczenia: Aneta Drabińska, Paweł Kowalczyk, Barbara Piętka Wydział Fizyki Uniwersytet

Bardziej szczegółowo

!!!DEL są źródłami światła niespójnego.

!!!DEL są źródłami światła niespójnego. Dioda elektroluminescencyjna DEL Element czynny DEL to złącze p-n. Gdy zostanie ono spolaryzowane w kierunku przewodzenia, to w obszarze typu p, w warstwie o grubości rzędu 1µm, wytwarza się stan inwersji

Bardziej szczegółowo

Wykład FIZYKA II. 7. Optyka geometryczna. Dr hab. inż. Władysław Artur Woźniak

Wykład FIZYKA II. 7. Optyka geometryczna.   Dr hab. inż. Władysław Artur Woźniak Wykład FIZYKA II 7. Optyka geometryczna Instytut Fizyki Politechniki Wrocławskiej http://www.if.pwr.wroc.pl/~wozniak/ WSPÓŁCZYNNIK ZAŁAMANIA Współczynnik załamania ośrodka opisuje zmianę prędkości fali

Bardziej szczegółowo

Zjawiska nieliniowe w światłowodach Wykład 8 SMK Na podstawie: J. Siuzdak, Wstęp do współczesnej telekomunikacji światłowodowej

Zjawiska nieliniowe w światłowodach Wykład 8 SMK Na podstawie: J. Siuzdak, Wstęp do współczesnej telekomunikacji światłowodowej Zjawiska nieliniowe w światłowodach Wykład 8 SMK Na podstawie: J. Siuzdak, Wstęp do współczesnej telekomunikacji światłowodowej Dla dużych mocy świetlnych dochodzi do nieliniowego oddziaływania pomiędzy

Bardziej szczegółowo

Laboratorium TECHNIKI LASEROWEJ. Ćwiczenie 1. Modulator akustooptyczny

Laboratorium TECHNIKI LASEROWEJ. Ćwiczenie 1. Modulator akustooptyczny Laboratorium TECHNIKI LASEROWEJ Ćwiczenie 1. Modulator akustooptyczny Katedra Metrologii i Optoelektroniki WETI Politechnika Gdańska Gdańsk 2018 1. Wstęp Ogromne zapotrzebowanie na informację oraz dynamiczny

Bardziej szczegółowo

Propagacja światła we włóknie obserwacja pól modowych.

Propagacja światła we włóknie obserwacja pól modowych. Propagacja światła we włóknie obserwacja pól modowych. Przy pomocy optyki geometrycznej łatwo można przedstawić efekty propagacji światła tylko w ośrodku nieograniczonym. Nie ukazuje ona jednak interesujących

Bardziej szczegółowo

LABORATORIUM POMIARY W AKUSTYCE. ĆWICZENIE NR 4 Pomiar współczynników pochłaniania i odbicia dźwięku oraz impedancji akustycznej metodą fali stojącej

LABORATORIUM POMIARY W AKUSTYCE. ĆWICZENIE NR 4 Pomiar współczynników pochłaniania i odbicia dźwięku oraz impedancji akustycznej metodą fali stojącej LABORATORIUM POMIARY W AKUSTYCE ĆWICZENIE NR 4 Pomiar współczynników pochłaniania i odbicia dźwięku oraz impedancji akustycznej metodą fali stojącej 1. Cel ćwiczenia Celem ćwiczenia jest poznanie metody

Bardziej szczegółowo

Optyka stanowi dział fizyki, który zajmuje się światłem (także promieniowaniem niewidzialnym dla ludzkiego oka).

Optyka stanowi dział fizyki, który zajmuje się światłem (także promieniowaniem niewidzialnym dla ludzkiego oka). Optyka geometryczna Optyka stanowi dział fizyki, który zajmuje się światłem (także promieniowaniem niewidzialnym dla ludzkiego oka). Założeniem optyki geometrycznej jest, że światło rozchodzi się jako

Bardziej szczegółowo

Piotr Targowski i Bernard Ziętek GENERACJA II HARMONICZNEJ ŚWIATŁA

Piotr Targowski i Bernard Ziętek GENERACJA II HARMONICZNEJ ŚWIATŁA Instytut Fizyki Uniwersytet Mikołaja Kopernika Piotr Targowski i Bernard Ziętek Pracownia Optoelektroniki GENERACJA II HARMONICZNEJ ŚWIATŁA Zadanie VI Zakład Optoelektroniki Toruń 004 I. Cel zadania Celem

Bardziej szczegółowo

ZASADA DZIAŁANIA LASERA

ZASADA DZIAŁANIA LASERA ZASADA DZIAŁANIA LASERA Rozkład promieniowania lasera w kierunku podłużnym Dwa podstawowe zjawiska: emisja wymuszona i rezonans optyczny. Jeżeli wiązkę promieniowania o długości fali λ wprowadzimy miedzy

Bardziej szczegółowo

SYLABUS DOTYCZY CYKLU KSZTAŁCENIA / /20 (skrajne daty)

SYLABUS DOTYCZY CYKLU KSZTAŁCENIA / /20 (skrajne daty) SYLABUS DOTYCZY CYKLU KSZTAŁCENIA... 2016/17-2019/20 (skrajne daty) 1.1. PODSTAWOWE INFORMACJE O PRZEDMIOCIE/MODULE Nazwa przedmiotu/ modułu Techniki laserowe Kod przedmiotu/ modułu* Wydział (nazwa jednostki

Bardziej szczegółowo

Wstęp do Optyki i Fizyki Materii Skondensowanej

Wstęp do Optyki i Fizyki Materii Skondensowanej Wstęp do Optyki i Fizyki Materii Skondensowanej Część I: Optyka, wykład 8 wykład: Piotr Fita pokazy: Andrzej Wysmołek ćwiczenia: Aneta Drabińska, Barbara Piętka, Paweł Kowalczyk Wydział Fizyki Uniwersytet

Bardziej szczegółowo

Prędkość fazowa i grupowa fali elektromagnetycznej w falowodzie

Prędkość fazowa i grupowa fali elektromagnetycznej w falowodzie napisał Michał Wierzbicki Prędkość fazowa i grupowa fali elektromagnetycznej w falowodzie Prędkość grupowa paczki falowej Paczka falowa jest superpozycją fal o różnej częstości biegnących wzdłuż osi z.

Bardziej szczegółowo

Optyka. Optyka falowa (fizyczna) Optyka geometryczna Optyka nieliniowa Koherencja światła

Optyka. Optyka falowa (fizyczna) Optyka geometryczna Optyka nieliniowa Koherencja światła Optyka Optyka falowa (fizyczna) Optyka geometryczna Optyka nieliniowa Koherencja światła 1 Optyka falowa Opis i zastosowania fal elektromagnetycznych w zakresie widzialnym i bliskim widzialnemu Podstawowe

Bardziej szczegółowo

Wykład FIZYKA I. 11. Fale mechaniczne. Dr hab. inż. Władysław Artur Woźniak

Wykład FIZYKA I. 11. Fale mechaniczne.  Dr hab. inż. Władysław Artur Woźniak Wykład FIZYKA I 11. Fale mechaniczne Dr hab. inż. Władysław Artur Woźniak Instytut Fizyki Politechniki Wrocławskiej http://www.if.pwr.wroc.pl/~wozniak/fizyka1.html FALA Falą nazywamy każde rozprzestrzeniające

Bardziej szczegółowo

- wiązki pompująca & próbkująca oddziaływanie selektywne prędkościowo widma bezdopplerowskie T. 0 k. z L 0 k. L 0 k

- wiązki pompująca & próbkująca oddziaływanie selektywne prędkościowo widma bezdopplerowskie T. 0 k. z L 0 k. L 0 k Podsumowanie W1 Lasery w spektroskopii atomowej/molekularnej a) spektroskopia klasyczna b) spektroskopia bezdopplerowska 1. Spektroskopia nasyceniowa - wiązki pompująca & próbkująca oddziaływanie selektywne

Bardziej szczegółowo

UMO-2011/01/B/ST7/06234

UMO-2011/01/B/ST7/06234 Załącznik nr 7 do sprawozdania merytorycznego z realizacji projektu badawczego Szybka nieliniowość fotorefrakcyjna w światłowodach półprzewodnikowych do zastosowań w elementach optoelektroniki zintegrowanej

Bardziej szczegółowo

Fala EM w izotropowym ośrodku absorbującym

Fala EM w izotropowym ośrodku absorbującym Fala EM w izotropowym ośrodku absorbującym Fala EM powoduje generację zmienne pole elektryczne E Zmienne co do kierunku i natężenia, Pole E Nie wywołuje w ośrodku prądu elektrycznego Powoduje ruch elektronów

Bardziej szczegółowo

Optyka. Wykład XII Krzysztof Golec-Biernat. Dyfrakcja. Laser. Uniwersytet Rzeszowski, 17 stycznia 2018

Optyka. Wykład XII Krzysztof Golec-Biernat. Dyfrakcja. Laser. Uniwersytet Rzeszowski, 17 stycznia 2018 Optyka Wykład XII Krzysztof Golec-Biernat Dyfrakcja. Laser Uniwersytet Rzeszowski, 17 stycznia 2018 Wykład XII Krzysztof Golec-Biernat Optyka 1 / 23 Plan Dyfrakcja na jednej i dwóch szczelinach Dyfrakcja

Bardziej szczegółowo

Systemy laserowe. dr inż. Adrian Zakrzewski dr inż. Tomasz Baraniecki

Systemy laserowe. dr inż. Adrian Zakrzewski dr inż. Tomasz Baraniecki Systemy laserowe dr inż. Adrian Zakrzewski dr inż. Tomasz Baraniecki Metody analizy i kształtowania wiązki laserowej Źródło: Beyer Wiązka gaussowska Natężenia promieniowania poprzecznie do kierunku propagacji

Bardziej szczegółowo

Lasery budowa, rodzaje, zastosowanie. Materiały dydaktyczne dla kierunku Technik Optyk (W12) Kwalifikacyjnego kursu zawodowego.

Lasery budowa, rodzaje, zastosowanie. Materiały dydaktyczne dla kierunku Technik Optyk (W12) Kwalifikacyjnego kursu zawodowego. Lasery budowa, rodzaje, zastosowanie Materiały dydaktyczne dla kierunku Technik Optyk (W12) Kwalifikacyjnego kursu zawodowego. Budowa i zasada działania lasera Laser (Light Amplification by Stimulated

Bardziej szczegółowo

Sprzęganie światłowodu z półprzewodnikowymi źródłami światła (stanowisko nr 5)

Sprzęganie światłowodu z półprzewodnikowymi źródłami światła (stanowisko nr 5) Wojciech Niwiński 30.03.2004 Bartosz Lassak Wojciech Zatorski gr.7lab Sprzęganie światłowodu z półprzewodnikowymi źródłami światła (stanowisko nr 5) Zadanie laboratoryjne miało na celu zaobserwowanie różnic

Bardziej szczegółowo

LABORATORIUM ELEKTROAKUSTYKI. ĆWICZENIE NR 1 Drgania układów mechanicznych

LABORATORIUM ELEKTROAKUSTYKI. ĆWICZENIE NR 1 Drgania układów mechanicznych LABORATORIUM ELEKTROAKUSTYKI ĆWICZENIE NR Drgania układów mechanicznych Cel ćwiczenia Celem ćwiczenia jest zapoznanie się z właściwościami układów drgających oraz metodami pomiaru i analizy drgań. W ramach

Bardziej szczegółowo

Dr Piotr Sitarek. Instytut Fizyki, Politechnika Wrocławska

Dr Piotr Sitarek. Instytut Fizyki, Politechnika Wrocławska Podstawy fizyki Wykład 11 Dr Piotr Sitarek Instytut Fizyki, Politechnika Wrocławska D. Halliday, R. Resnick, J.Walker: Podstawy Fizyki, tom 3, Wydawnictwa Naukowe PWN, Warszawa 2003. K.Sierański, K.Jezierski,

Bardziej szczegółowo

Laboratorium techniki laserowej. Ćwiczenie 1. Modulator akustooptyczny

Laboratorium techniki laserowej. Ćwiczenie 1. Modulator akustooptyczny Laboratorium techniki laserowej Ćwiczenie 1. Modulator akustooptyczny Katedra Optoelektroniki i Systemów Elektronicznych, WETI, Politechnika Gdaoska Gdańsk 2006 1. Wstęp Ogromne zapotrzebowanie na informację

Bardziej szczegółowo

Lasery. Własności światła laserowego Zasada działania Rodzaje laserów

Lasery. Własności światła laserowego Zasada działania Rodzaje laserów Lasery Własności światła laserowego Zasada działania Rodzaje laserów Lasery Laser - nazwa utworzona jako akronim od Light Amplification by Stimulated Emission of Radiation - wzmocnienie światła poprzez

Bardziej szczegółowo

Badanie dynamiki rekombinacji ekscytonów w zawiesinach półprzewodnikowych kropek kwantowych PbS

Badanie dynamiki rekombinacji ekscytonów w zawiesinach półprzewodnikowych kropek kwantowych PbS Badanie dynamiki rekombinacji ekscytonów w zawiesinach półprzewodnikowych kropek kwantowych PbS 1. Absorpcja i emisja światła w układzie dwupoziomowym. Absorpcję światła można opisać jako proces, w którym

Bardziej szczegółowo

Laboratorium techniki światłowodowej. Ćwiczenie 2. Badanie apertury numerycznej światłowodów

Laboratorium techniki światłowodowej. Ćwiczenie 2. Badanie apertury numerycznej światłowodów Laboratorium techniki światłowodowej Ćwiczenie 2. Badanie apertury numerycznej światłowodów Katedra Optoelektroniki i Systemów Elektronicznych, WETI, Politechnika Gdaoska Gdańsk 2006 1. Wprowadzenie Światłowody

Bardziej szczegółowo

Kwantowa natura promieniowania

Kwantowa natura promieniowania Kwantowa natura promieniowania Promieniowanie ciała doskonale czarnego Ciało doskonale czarne ciało, które absorbuje całe padające na nie promieniowanie bez względu na częstotliwość. Promieniowanie ciała

Bardziej szczegółowo

I. PROMIENIOWANIE CIEPLNE

I. PROMIENIOWANIE CIEPLNE I. PROMIENIOWANIE CIEPLNE - lata '90 XIX wieku WSTĘP Widmo promieniowania elektromagnetycznego zakres "pokrycia" różnymi rodzajami fal elektromagnetycznych promieniowania zawartego w danej wiązce. rys.i.1.

Bardziej szczegółowo

Podstawy Fizyki IV Optyka z elementami fizyki współczesnej. wykład 2, Radosław Chrapkiewicz, Filip Ozimek

Podstawy Fizyki IV Optyka z elementami fizyki współczesnej. wykład 2, Radosław Chrapkiewicz, Filip Ozimek Podstawy Fizyki IV Optyka z elementami fizyki współczesnej wykład 2, 17.02.2012 wykład: pokazy: ćwiczenia: Czesław Radzewicz Radosław Chrapkiewicz, Filip Ozimek Ernest Grodner Równania Maxwella r-nie falowe

Bardziej szczegółowo

Oscylacyjna relaksacja

Oscylacyjna relaksacja V. DYNAMIKA LASERÓW Oscylacyjna relaksacja Oscylacje relaksacyjne Gęstość fotonów we wnęce Czas Oscylacje relaksacyjne po włączeniu lasera Niech N 1 0, wtedy N N 2. Równania kinetyczne dn 2 W kn dt 2 N

Bardziej szczegółowo

Metody Optyczne w Technice. Wykład 5 Interferometria laserowa

Metody Optyczne w Technice. Wykład 5 Interferometria laserowa Metody Optyczne w Technice Wykład 5 nterferometria laserowa Promieniowanie laserowe Wiązka monochromatyczna Duża koherencja przestrzenna i czasowa Niewielka rozbieżność wiązki Duża moc Największa możliwa

Bardziej szczegółowo

Podstawy Akustyki. Drgania normalne a fale stojące Składanie fal harmonicznych: Fale akustyczne w powietrzu Efekt Dopplera

Podstawy Akustyki. Drgania normalne a fale stojące Składanie fal harmonicznych: Fale akustyczne w powietrzu Efekt Dopplera Jucatan, Mexico, February 005 W-10 (Jaroszewicz) 14 slajdów Podstawy Akustyki Drgania normalne a fale stojące Składanie fal harmonicznych: prędkość grupowa, dyspersja fal, superpozycja Fouriera, paczka

Bardziej szczegółowo

Optyka. Wykład V Krzysztof Golec-Biernat. Fale elektromagnetyczne. Uniwersytet Rzeszowski, 8 listopada 2017

Optyka. Wykład V Krzysztof Golec-Biernat. Fale elektromagnetyczne. Uniwersytet Rzeszowski, 8 listopada 2017 Optyka Wykład V Krzysztof Golec-Biernat Fale elektromagnetyczne Uniwersytet Rzeszowski, 8 listopada 2017 Wykład V Krzysztof Golec-Biernat Optyka 1 / 17 Plan Swobodne równania Maxwella Fale elektromagnetyczne

Bardziej szczegółowo

WSTĘP DO OPTYKI FOURIEROWSKIEJ

WSTĘP DO OPTYKI FOURIEROWSKIEJ 1100-4BW1, rok akademicki 018/19 WSTĘP DO OPTYKI FOURIEROWSKIEJ dr hab. Rafał Kasztelanic Wykład 4 Przestrzeń swobodna jako filtr częstości przestrzennych Załóżmy, że znamy rozkład pola na fale monochromatyczne

Bardziej szczegółowo

2. Światłowody. 2. TELEKOMUNIKACJA OPTOFALOWA: Światłowody Strona 1

2. Światłowody. 2. TELEKOMUNIKACJA OPTOFALOWA: Światłowody Strona 1 TELEKOMUNIKACJA OPTOFALOWA. Światłowody Spis treści:.1. Wprowadzenie... Światłowody wielo- i jednomodowe..3. Tłumienie światłowodów..4. Dyspersja światłowodów..5. Pobudzanie i łączenie światłowodów..6.

Bardziej szczegółowo

Rodzaje fal. 1. Fale mechaniczne. 2. Fale elektromagnetyczne. 3. Fale materii. dyfrakcja elektronów

Rodzaje fal. 1. Fale mechaniczne. 2. Fale elektromagnetyczne. 3. Fale materii. dyfrakcja elektronów Wykład VI Fale t t + Dt Rodzaje fal 1. Fale mechaniczne 2. Fale elektromagnetyczne 3. Fale materii dyfrakcja elektronów Fala podłużna v Przemieszczenia elementów spirali ( w prawo i w lewo) są równoległe

Bardziej szczegółowo