Sprawdzanie i ocena osiągnięć szkolnych uczniów przykłady zadań kontrolnych obejmujących treści programowe każdego działu
|
|
- Adam Tomasz Matuszewski
- 8 lat temu
- Przeglądów:
Transkrypt
1 76 Testy sprwzjąe 9 Sprwznie i oen osiągnięć szkolnyh uzniów przykły zń kontrolnyh oejmująyh treśi progrmowe kżego ziłu 9.1. Test sprwzjąy z ziłu: Oziływni ln i krtotek testu zs rozwiązywni: 40 minut Nr zni Sprwzne wiomośi i umiejętnośi tegori elu operyjnego oziom wymgń Op. Gr. Op. Gr Oróżni pojęi: sustnj i iło fizyzne Wyier ze zioru pojęć wielkośi fizyzne Nzyw ehę oziływń efiniuje mirę oziływń Wymieni ehy wielkośi wektorowej Wyier ze zioru jenostek jenostki siły oje nzwę przyrząu służąego o pomiru wrtośi siły Wyier ze zioru pojęć pojęie: iło fizyzne Wyier ze zioru zjwisk zjwisko fizyzne Nzyw rozj oziływni Wyier sttyzny skutek ziłni siły Wyier ynmizny skutek ziłni siły ozpoznje ehy siły Określ ehy sił równowżąyh Wyróżni siły równowżąe spośró różnyh sił ziłjąyh n iło Oliz wrtość wypkowej sił ziłjąyh n iło Oliz wrtość siły wypkowej Określ wrtość wypkowej sił równowżąyh się rzeliz jenostki Ozytuje opowienie wrtośi z wykresu Ozytuje z rysunku wrtość siły, przeliz jenostki nlizuje i uzupełni rysunek. Oliz wrtość siły wypkowej roponujemy zstosowć punktję: ż poprwn opowieź w zniu zmkniętym 1 punkt, opowieź łęn lu rk opowiezi 0 punktów orz po 2 punkty z zni otwrte. W znih: punkt z ozyt, 1 punkt z przelizenie jenostek, punkt z ponie wrtośi siły, 1 punkt z rysunek. Z wszystkie zni poprwnie rozwiązne uzeń może uzyskć mksymlnie 24 punkty. Jeżeli uzysk mksymlną lizę punktów, uzyskuje oenę elująą. o zlizeni kżego poziomu wymgń (,,, ) potrzen jest opowieni liz punktów uzysknyh z rozwiąznie zń. Norm wymgń l różnyh poziomów nie jest jenkow i nie m tu gotowyh rozwiązń. l przestwionego poniżej testu proponujemy nstępująą normę ilośiową: Znie 1, 2, 3, 4, 5, 6, 7 8, 9, 10, 11, 12 13, 14, 15, 16, 17 18, 19, 20, 21, 22 oziom Liz punktów niezęn o zlizeni wymgnego poziomu Oen Nr zni Opowieź 6 z 7 4 z 5 4 z 5 6 z 7 opuszzjąy () osttezny (+) ory (++) rzo ory (+++) rt opowiezi o testu (z. 1 20) z ziłu: Oziływni Imię i nzwisko ls Wersj testu "
2 Grup Testy sprwzjąe 77 TEST z ziłu: Oziływni W znih o 1 o 20 kże twierzenie lu pytnie m tylko jeną prwiłową opowieź. Nleży ją zznzyć. imię i nzwisko t 1 Sustnją nie jest: ) szkło, ) piłk, ) gum, ) rewno. 2 Wyierz ziór, który zwier tylko wielkośi fizyzne: ) ługość, eszz, ms, ) eszz, mgł, hmur, ) ługość, tempertur, ms, ) tempertur, ros, iśnienie. 3 w mgnesy przyiągją się. Świzy to o: ) tkiej smej ojętośi mgnesów, ) wzjemnośi oziływń, ) tkim smym ksztłie mgnesów, ) oziływniu elektrosttyznym. 4 Sił jest mirą: ) tylko oziływń mgnetyznyh, ) tylko oziływń elektrosttyznyh, ) tylko oziływń grwityjnyh, ) wzjemnego oziływni ił. 5 y określić siłę, nleży poć: ) wrtość siły, ) wrtość, kierunek, punkt przyłożeni i zwrot siły, ) skutek sttyzny ziłni siły, ) skutek ynmizny ziłni siły. 6 Wyierz ziór, który zwier tylko jenostki siły: ) metr, kiloniuton, kilogrm, ) kilogrm, niuton, kilometr, ) niuton, kiloniuton, megniuton, ) siłomierz, niuton, kiloniuton.
3 78 Testy sprwzjąe Grup 7 rzyrząem, który służy o pomiru siły, jest: ) zegrek, ) linijk z poziłką, ) siłomierz, ) termometr. 8 no iło fizyzne. iłem fizyznym mogło yć: ) rozhozenie się iepł, ) spją piłk, ) źwięk, ) skrplnie pry. 9 Wyierz opowieź, w której nie wymieniono zjwisk fizyznego: ) Słońe, topnienie, przepływ iepł, ) rewniny kloek, siłomierz, termometr, ) przepływ prąu, prownie, grwitj, ) elektryzownie ił, ló, prownie. ozs intensywnego zesni szzotk przyiąg włosy wskutek oziływni: ) grwityjnego, ) mehniznego, ) elektrosttyznego, ) mgnetyznego i elektrosttyznego. Skutkiem sttyznym ziłni siły jest: ) zmin ksztłtu ił, ) zmin prękośi ił, ) zmin kierunku ruhu poruszjąego się ił, ) ztrzymnie ił ęąego w ruhu. rzykłem ynmiznego skutku ziłni siły jest: ) rozkruszenie krey, ) złmnie ołówk, ) oiie piłki sitkowej, ) roziągnięie gumy. 13 N rysunku z pomoą wektorów przestwiono wie siły. Wspólnymi ehmi tyh sił są: ) punkt przyłożeni, ) wrtość i punkt przyłożeni, ) kierunek, zwrot i punkt przyłożeni, ) kierunek i punkt przyłożeni.
4 Grup Testy sprwzjąe wie siły równowżąe się mją: ) różne wrtośi i te sme zwroty, ) przeiwne zwroty i tkie sme wrtośi, ) różne wrtośi i przeiwne zwroty, ) tkie sme wrtośi i tkie sme zwroty. 15 oniżej przestwiono wektory sił ziłjąyh n iło. Siły równowżąe się przestwi rysunek: ) ) ) ) N rysunku przestwiono grfiznie siły ziłjąe n kloek. Wrtość siły wypkowej ziłjej n to iło wynosi: ) 0 N, ) 1 N, ) 2,5 N, ) 5 N. wj ri, hą przesunąć iurko, ziłli w tę smą stronę siłmi: 100 N i 150 N. Jką siłą musiły ziłć ih ojie, y skutek tej siły ył tki sm? ) 50 N, ) 150 N, ) 200 N, ) 250 N. 18 Wrtość siły wypkowej wóh sił równowżąyh się jest równ: ) 0 N, ) sumie wrtośi tyh sił, ) wrtośi jenej z tyh sił, ) różniy wrtośi tyh sił m 3 to: ) 0,0005 m 3, ) 0,005 m 3, ) 5 m 3, ) wrtośi pone w opowiezih: i.
5 80 Testy sprwzjąe Grup 20 Wykres przestwi zleżność wrtośi ziłjąej siły o lizy zwieszonyh oiążników. Wrtość siły ziłjąej n 5 oiążników wynosi: ) 1 N, ) 1,5 N, ) 2 N, ) 2,5 N. 21 N rysunku przestwiono grfiznie siłę. Ozytj jej wrtość, wynik poj w kn. 22 N wózek ziłją wie siły, tk jk n rysunku. orysuj trzeią siłę, tk y wózek pozostł w spozynku. oj jej wrtość.
6 Grup Testy sprwzjąe 81 TEST z ziłu: Oziływni W znih o 1 o 20 kże twierzenie lu pytnie m tylko jeną prwiłową opowieź. Nleży ją zznzyć. imię i nzwisko t 1 Sustnją jest: ) ołówek, ) żelzo, ) siłomierz, ) szpilk. 2 Wyierz ziór, który zwier tylko wielkośi fizyzne: ) ojętość, zs, skrplnie, ) zs, ługość, iśnienie, ) przepływ prąu, topnienie, witr, ) zs, prownie, ms. 3 otrt linijk z tworzyw sztuznego przyiąg rone skrwki ppieru. Świzy to o: ) wzjemnośi oziływń, ) oziływniu grwityjnym, ) oziływniu mgnetyznym, ) sprężystośi linijki. 4 Sił jest mirą wzjemnego oziływni: ) tylko ił nelektryzownyh, ) tylko ił nmgnesownyh, ) tylko ił mjąyh msę, ) wszystkih ił. 5 y określić wektor, nleży poć: ) jego kierunek, ) jego ługość i zwrot, ) jego pozątek, ) wszystkie ehy wymienione w punkth:,,. 6 Wyierz ziór, który zwier tylko jenostki siły: ) kiloniuton, kilogrm, kilometr, ) kilogrm, niuton, kiloniuton, ) niuton, grm, entymetr, ) kiloniuton, megniuton, niuton.
7 82 Testy sprwzjąe Grup 7 rzyrząem, który służy o pomiru siły, jest: ) linijk z poziłką, ) termometr, ) stoper, ) siłomierz. 8 no iło fizyzne. iłem fizyznym mogło yć: ) prownie, ) ługość roziągniętej sprężyny, ) topniejąy kwłek lou, ) przepływ prąu. 9 Wyierz opowieź, w której wymieniono tylko zjwisk fizyzne: ) wrzenie, przepływ prąu, grwitj, ) siłomierz, elektryzownie ił, termometr, ) prują iez, skrplnie, ló, ) komet, wg, oksztłenie sprężyny. Mgnes przyiąg żelzną sprężynę wskutek oziływni: ) mehniznego, ) grwityjnego, ) elektrosttyznego i mgnetyznego, ) mgnetyznego. rzykłem sttyznego skutku ziłni siły jest: ) rzut piłki o kosz, ) ztrzymnie roweru, ) ieg wokół oisk, ) wyłużenie sprężyny siłomierz. Skutkiem ynmiznym ziłni siły jest: ) rozkruszenie egły, ) wprwienie piłki w ruh, ) wyłużenie sprężyny, ) roziągnięie gumy. 13 N rysunku z pomoą wektorów przestwiono wie siły. Siły te mją wspólne ehy: ) punkt przyłożeni, ) punkt przyłożeni, kierunek i zwrot, ) kierunek, wrtość i punkt przyłożeni, ) punkt przyłożeni i wrtość.
8 Grup Testy sprwzjąe wie siły równowżąe się mją: ) tkie sme wrtośi i tkie sme zwroty, ) różne wrtośi i przeiwne zwroty, ) tkie sme wrtośi i przeiwne zwroty, ) różne wrtośi i tkie sme zwroty. 15 oniżej przestwiono wektory sił ziłjąyh n kloek. Siły równowżąe się przestwi rysunek: ) ) ) ) N rysunku przestwiono grfiznie siły ziłjąe n iło. Wrtość siły wypkowej ziłjąej n iło wynosi: ) 0 N, ) 1 N, ) 4 N, ) 9 N. wj ri, hą przesunąć stół, ziłli w tę smą stronę siłmi: 50 N i 200 N. Jką siłą musiły ziłć ih ojie, y skutek tej siły ył tki sm? ) 50 N, ) 150 N, ) 200 N, ) 250 N. 18 Jeżeli wrtość siły wypkowej wóh sił ziłjąyh wzłuż jenej prostej wynosi 0 N, to te siły: ) równowżą się, ) mją tkie sme zwroty, ) mją różne wrtośi i różne zwroty, ) różnią się wszystkimi ehmi m 3 to: ) 0, m 3, ) 0,00003 m 3, ) 0,3 m 3, ) wrtośi pone w opowiezih: i.
9 84 Testy sprwzjąe Grup 20 Wykres przestwi zleżność wrtośi ziłjąej siły o lizy zwieszonyh oiążników. Wrtość siły ziłjąej n 3 oiążniki wynosi: ) 1,0 N, ) 1,5 N, ) 2,5 N, ) 3,0 N. 21 N rysunku przestwiono grfiznie siłę. Ozytj jej wrtość i wynik poj w niutonh. 22 N wózek ziłją wie siły, tk jk n rysunku. orysuj trzeią siłę, tk y wózek pozostł w spozynku. oj jej wrtość.
RÓWNOWAGA CHEMICZNA. Reakcje chemiczne: nieodwracalne ( praktycznie nieodwracalne???) reakcje wybuchowe, np. wybuch nitrogliceryny: 2 C H 2
RÓWNOWG CHEMICZN N O 4 NO Rekje hemizne: nieowrlne ( rktyznie nieowrlne???) rekje wyuhowe, n. wyuh nitroglieryny: C 3 H 5 N 3 O 9 6 CO + 3 N + 5 H O + / O rekje rozu romieniotwórzego, n. roz urnu gy jeen
GRANIASTOSŁUPY
.. GRANIASTOSŁUPY. Grnistosłupy H Postwy grnistosłup - w równoległe i przystjąe wielokąty Śin ozn - równoległook Grnistosłup prosty grnistosłup, w którym wszystkie krwęzie ozne są prostopłe o postw. W
ANALIZA ANKIETY SKIEROWANEJ DO UCZNIÓW ZESPOŁU SZKÓŁ
ANALIZA ANKIETY SKIEROWANEJ DO UCZNIÓW ZEOŁU SZKÓŁ Bni nkietowe zostły przeprowzono w rmh relizji projektu eukyjnego Nie wyrzuj jk lei. Celem tyh ń yło uzysknie informji n temt świomośi ekologiznej uzniów
Klucz odpowiedzi do zadań zamkniętych i schemat oceniania zadań otwartych
Klucz odpowiedzi do zdń zmkniętc i scemt ocenini zdń otwrtc Klucz odpowiedzi do zdń zmkniętc 4 7 9 0 4 7 9 0 D D D Scemt ocenini zdń otwrtc Zdnie (pkt) Rozwiąż nierówność x x 0 Oliczm wróżnik i miejsc
KONKURS MATEMATYCZNY dla uczniów gimnazjów w roku szkolnym 2012/13. Propozycja punktowania rozwiązań zadań
KONKURS MATEMATYCZNY dl uczniów gimnzjów w roku szkolnym 0/ II etp zwodów (rejonowy) 0 listopd 0 r. Propozycj punktowni rozwiązń zdń Uwg: Z kżde poprwne rozwiąznie inne niż przewidzine w propozycji punktowni
Semantyka i Weryfikacja Programów - Laboratorium 2 Działania na ułamkach, krotki i rekordy
Semntyk i Weryfikj Progrmów - Lortorium Dziłni n ułmkh, krotki i rekory Cz. I. Dziłni n ułmkh Prolem. Oprowć zestw funkji o ziłń rytmetyznyh n ułmkh zwykłyh posti q, gzie, są lizmi łkowitymi i 0. Rozwiąznie
Rozwiązania maj 2017r. Zadania zamknięte
Rozwiązni mj 2017r. Zdni zmknięte Zd 1. 5 16 5 2 5 2 Zd 2. 5 2 27 2 23 2 2 2 2 Zd 3. 2log 3 2log 5log 3 log 5 log 9 log 25log Zd. 120% 8910 1,2 8910 2,2 8910 $%, 050 Zd 5. Njłtwiej jest zuwżyć że dl 1
Regionalne Koło Matematyczne
Regionlne Koło Mtemtyzne Uniwersytet Mikołj Kopernik w Toruniu Wyził Mtemtyki i Informtyki http://www.mt.umk.pl/rkm/ List rozwiązń zń nr 8, grup zwnsown (3.03.200) O izometrih (..) Wektorem uporząkownej
Spis treści: PODSTAWY TEORETYCZNE I CEL BADAŃ... 3 ANALIZA MATERIAŁU BADAWCZEGO... 6 TEST ZAINTERESOWAŃ NAUKAMI ŚCISŁYMI... 16
S t r o n Spis treśi: PODSTAWY TEORETYCZNE I CEL BADAŃ... ANALIZA MATERIAŁU BADAWCZEGO... 6 TEST ZAINTERESOWAŃ NAUKAMI ŚCISŁYMI... 6 OCENY SZKOLNE... PODSUMOWANIE... DIAGNOZA ZAINTERESOWAŃ UCZNIÓW WSTĘPNA
Co można zrobić za pomocą maszyny Turinga? Wszystko! Maszyna Turinga potrafi rozwiązać każdy efektywnie rozwiązywalny problem algorytmiczny!
TEZA CHURCHA-TURINGA Mzyn Turing: m końzenie wiele tnów zpiuje po jenym ymolu n liniowej tśmie Co możn zroić z pomoą mzyny Turing? Wzytko! Mzyn Turing potrfi rozwiązć kży efektywnie rozwiązywlny prolem
Z definicji ciśnienia siła parcia (nacisku na powierzchnię S) może być obliczona ze wzoru:
Prwo Arhiedes 1. Sił oru 2. Prwo Arhiedes. Pływnie ił i iężr ozorny 4. yznznie gęstośi ił Sił oru i rwo Arhiedes Z definiji iśnieni sił ri (nisku n owierzhnię S) oże być oblizon ze wzoru: ( h) S gdzie
2.3.1. Iloczyn skalarny
2.3.1. Ilon sklrn Ilonem sklrnm (sklrowm) dwóh wektorów i nwm sklr równ ilonowi modułów ou wektorów pre kosinus kąt wrtego międ nimi. α O Rs. 2.8. Ilustrj do definiji ilonu sklrnego Jeżeli kąt międ wektormi
TABLICE WZORÓW I TWIERDZEŃ MATEMATYCZNYCH zakres GIMNAZJUM
TABLICE WZORÓW I TWIERDZEŃ MATEMATYCZNYCH zkres GIMNAZJUM LICZBY Lizy turle: 0,1,,,4, Koleje lizy turle zwsze różią się o 1, zpis, +1, +, gdzie to dowol liz turl ozz trzy koleje lizy turle, Lizy pierwsze:
ZADANIA Z ZAKRESU SZKOŁY PODSTAWOWEJ, GIMNAZJUM I SZKOŁY ŚREDNIEJ
ZADANIA Z ZAKRESU SZKOŁY PODSTAWOWEJ, GIMNAZJUM I SZKOŁY ŚREDNIEJ Nrsowć wkres funkji: f() = + Nrsowć wkres funkji: f() = + Nrsowć wkres funkji: f() = + + Dl jkih wrtośi A, B zhodzi równość: + +5+6 = A
Wymagania edukacyjne matematyka klasa 2 zakres podstawowy 1. SUMY ALGEBRAICZNE
Wymgni edukcyjne mtemtyk kls 2 zkres podstwowy 1. SUMY ALGEBRAICZNE Uczeń otrzymuje ocenę dopuszczjącą lub dostteczną, jeśli: rozpoznje jednominy i sumy lgebriczne oblicz wrtości liczbowe wyrżeń lgebricznych
G i m n a z j a l i s t ó w
Ko³o Mtemtyzne G i m n z j l i s t ó w 1. Lizy,, spełniją wrunki: (1) ++ = 0, 1 () + + 1 + + 1 + = 1 4. Olizyć wrtość wyrżeni w = + + Rozwiąznie Stowrzyszenie n rzez Edukji Mtemtyznej Zestw 7 szkie rozwizń
Rys Wyrównanie spostrzeżeń zawarunkowanych jednakowo dokładnych C. KRAKOWIANY
Rys. 9.. Wyrównnie spostrzeżeń zwrunkownyh jednkowo dokłdnyh C. KRAKOWIANY 9.9. Informje wstępne o krkowinh Krkowin jest zespołem liz rozmieszzonyh w prostokątnej teli o k kolumnh i w wierszh, dl którego
BADANIE ZALEŻNOŚCI PRZENIKALNOŚCI MAGNETYCZNEJ
ADANIE ZAEŻNOŚCI PRZENIKANOŚCI MAGNETYCZNEJ FERRIMAGNETYKÓW OD TEMPERATURY 1. Teori Włściwości mgnetyczne sstncji chrkteryzje współczynnik przeniklności mgnetycznej. Dl próżni ten współczynnik jest równy
KLUCZ PUNKTOWANIA ODPOWIEDZI
Egzmin mturlny mj 009 INFORMATYKA POZIOM PODSTAWOWY KLUCZ PUNKTOWANIA ODPOWIEDZI Informtyk poziom podstwowy CZ I Nr zdni Nr podpunktu Mks. punktj z z zdni Mks. punktj z zdnie 1. Z poprwne uzupe nienie
Wymagania edukacyjne matematyka klasa 2b, 2c, 2e zakres podstawowy rok szkolny 2015/2016. 1.Sumy algebraiczne
Wymgni edukcyjne mtemtyk kls 2b, 2c, 2e zkres podstwowy rok szkolny 2015/2016 1.Sumy lgebriczne N ocenę dopuszczjącą: 1. rozpoznje jednominy i sumy lgebriczne 2. oblicz wrtości liczbowe wyrżeń lgebricznych
a) b) Rys. 6.1. Schemat ideowo-konstrukcyjny układu do przykładu 6.1 a) i jego schemat blokowy
04 6. Ztoownie metod hemtów lokowh do nliz włśiwośi ukłdów utomtki Shemt lokow ukłdu utomtki jet formą zpiu mtemtznego modelu dnego ukłdu, n podtwie której, wkorztują zd przedtwione rozdzile 3.7, możn
ZD-4 Sprawozdanie z pomocy doraźnej i ratownictwa medycznego za 2011 r.
GŁÓWNY URZĄD STATYSTYCZNY, l. Niepoległośi 208, 00-925 Wrszw Nzw i res jenostki sprwozwzej Numer inentyfikyjny REGON ZD-4 Sprwoznie z pomoy orźnej i rtownitw meyznego z 20 r. Portl sprwozwzy GUS www.stt.gov.pl
Ł Ź Ź Ł Ź Ę Ś Ę Ę Ś Ą Ę Ś Ą Ć Ć ć Ę Ą Ł Ś ć ń ć Ł ć Ź ć Ę Ą Ą Ź ź ź ć ć ć ć ć ń ń ć ć ń Ó ź Ę Ą ć ć ć Ź ć Ź ć ć ń ń ć ń Ó ć Ą ń ć Ę Ą Ą ń ń ń ń ć ń ć ć Ź ć ń Ź ń ń Ć ń ń ń Ę Ą Ś Ą ń ć ń ć ź ń Ę Ś Ą Ąć
WYZNACZANIE OGNISKOWEJ SOCZEWEK CIENKICH ZA POMOCĄ ŁAWY OPTYCZNEJ
ĆWICZENIE 9 WYZNACZANIE OGNISKOWEJ SOCZEWEK CIENKICH ZA POMOCĄ ŁAWY OPTYCZNEJ Opis kł pomirowego A) Wyzzie ogiskowej sozewki skpijąej z pomir oległośi przemiot i obrz o sozewki Szzególie proste, rówoześie
WYZNACZANIE OGNISKOWEJ SOCZEWEK CIENKICH ZA POMOCĄ ŁAWY OPTYCZNEJ
Ćwiczenie 9 WYZNACZANIE OGNISKOWEJ SOCZEWEK CIENKICH ZA POMOCĄ ŁAWY OPTYCZNEJ 9.. Opis teoretyczny Soczewką seryczną nzywmy przezroczystą bryłę ogrniczoną dwom powierzchnimi serycznymi o promienich R i
2. Funktory TTL cz.2
2. Funktory TTL z.2 1.2 Funktory z otwrtym kolektorem (O.. open olletor) ysunek poniżej przedstwi odnośny frgment płyty zołowej modelu. Shemt wewnętrzny pojedynzej rmki NAND z otwrtym kolektorem (O..)
T W O R Z Y M Y. 15 godzin w cyklu 3-godzinnym
T W O R Z Y M Y 5 godzin -godzinnym Szzegółowe ele ksztłeni i wyhowni: doskonlenie umiejętnośi pry z edytorem grfiznym poznnie zsd poprwnego tworzeni prezentji multimedilnyh nyie umiejętnośi smodzielnego
Scenariusz lekcji matematyki dla klasy III gimnazjum. Temat: Powtórzenie i utrwalenie wiadomości dotyczących figur geometrycznych.
Senriusz lekji mtemtyki dl klsy III gimnzjum Temt: owtórzenie i utrwlenie widomośi dotyząy figur geometryzny Cel ogólny lekji: Uporządkownie i utrwlenie widomośi o figur płski i przestrzenny Cele operyjne:
ZD-4 Sprawozdanie z pomocy doraźnej i ratownictwa medycznego za 2013 r.
GŁÓWNY URZĄD STATYSTYCZNY, l. Niepoległośi 208, 00-925 Wrszw Nzw i res jenostki sprwozwzej Numer inentyfikyjny REGON ZD-4 Sprwoznie z pomoy orźnej i rtownitw meyznego z 203 r. Portl sprwozwzy GUS www.stt.gov.pl
Klucz odpowiedzi do zadań zamkniętych i schemat oceniania zadań otwartych
Klucz odpowiedzi do zdń zmkniętych i schemt ocenini zdń otwrtych Klucz odpowiedzi do zdń zmkniętych 4 5 6 7 8 9 0 4 5 6 7 8 9 0 D D D Schemt ocenini zdń otwrtych Zdnie (pkt) Rozwiąż nierówność x + x+ 0
Konkurs dla gimnazjalistów Etap szkolny 9 grudnia 2016 roku
Konkurs dl gimnzjlistów Etp szkolny 9 grudni 016 roku Instrukcj dl uczni 1. W zdnich o numerch od 1. do 1. są podne cztery wrinty odpowiedzi: A, B, C, D. Dokłdnie jedn z nich jest poprwn. Poprwne odpowiedzi
Doskonałe... 1 Bardzo dobre Dobre... 3 Niezbyt dobre Złe... 5
Kwestionriusz SF-36 Poniżej znjują się pytni otyząe Twojego zrowi. Uzielenie opowiezi pomoże zorientowć się jk zujesz się i jk potrfisz wykonywć zwykłe zynnośi. 1. Ogólnie powieziłbym/łbym, że moje zrowie
WOJEWÓDZKI KONKURS MATEMATYCZNY
WOJEWÓDZKI KONKURS MATEMATYCZNY DLA UCZNIÓW SZKOŁY PODSTAWOWEJ W ROKU SZKOLNYM 08/09 Schemt punktowni zdni zmknięte Z kżdą poprwną odpowiedź uczeń otrzymuje punkt Numer zdni Poprwn odpowiedź 5 6 7 8 9
FUNKCJA KWADRATOWA. RÓWNANIA I NIERÓWNOŚCI DRUGIEGO STOPNIA.
Oprownie: Elżiet Mlnowsk FUNKCJA KWADRATOWA. RÓWNANIA I NIERÓWNOŚCI DRUGIEGO STOPNIA. Określeni podstwowe: Jeżeli kżdej lizie x z pewnego zioru lizowego X przporządkown jest dokłdnie jedn liz, to mówim,
KRYTERIA OCENIANIA ODPOWIEDZI Próbna Matura z OPERONEM. Matematyka. Poziom rozszerzony. Listopad Wskazówki do rozwiązania zadania =
Vdemecum GIELDAMATURALNA.PL ODBIERZ KOD DOSTĘPU* Mtemtyk - Twój indywidulny klucz do wiedzy! *Kod n końcu klucz odpowiedzi KRYTERIA OCENIANIA ODPOWIEDZI Prón Mtur z OPERONEM Operon 00% MATURA 07 VA D EMECUM
Elektroniczna aparatura w Laboratorium Metrologii, cz. I
Lortorium Metrologii I Politehnik Rzeszowsk Zkł Metrologii i Systemów Pomirowyh Lortorium Metrologii I Elektronizn prtur w Lortorium Metrologii, z. I Grup Nr ćwiz.... kierownik...... 4... Dt Oen I. Cel
Projektas Standartizuotų mokinių pasiekimų vertinimo ir įsivertinimo įrankių bendrojo lavinimo mokykloms kūrimas, II etapas
Projekts Stnrtizuotų mokinių psiekimų vertinimo ir įsivertinimo įrnkių enrojo lvinimo mokykloms kūrims, II etps 2015 MOKSLAS EKONOMIKA SANGLAUDA EUROPOS SĄJUNGA EUROPOS SOCIALINIS FONDAS Kurime Lietuvos
KARTA WZORÓW MATEMATYCZNYCH. (a + b) c = a c + b c. p% liczby a = p a 100 Liczba x, której p% jest równe a 100 a p
KRT WZORÓW MTEMTYZNY WŁSNOŚI DZIŁŃ Pwo pzemiennośi dodwni + = + Pwo łąznośi dodwni + + = ( + ) + = + ( + ) Pwo zemiennośi mnoŝeni = Pwo łąznośi mnoŝeni = ( ) = ( ) Pwo ozdzielnośi mnoŝeni względem dodwni
SCHEMAT PUNKTOWANIA. Wojewódzki Konkurs Przedmiotowy z Matematyki dla uczniów gimnazjów. Rok szkolny 2012/2013. Etap rejonowy
SCHEMAT UNKTOWANIA Wojewódzki Konkurs rzedmiotowy z Mtemtyki dl uczniów gimnzjów Rok szkolny 0/03 Etp rejonowy rzy punktowniu zdń otwrtych nleży stosowć nstępujące ogólne reguły: Ocenimy rozwiązni zdń
Projekt współfinansowany przez Unię Europejską w ramach Europejskiego Funduszu Społecznego. best in training PRE TEST
Projekt współfinnsowny przez Unię Europejską w rmh Europejskiego Funuszu Społeznego est in trining E-Pr@ownik ojrzłe kry społezeństw informyjnego n Mzowszu Numer Projektu: POKL.08.01.01-14-217/09 PRE TEST
Trapez. w trapezie przynamniej jedna para boków jest równoległa δ γ a, b podstawy trapezu. c h d c, d - ramiona trapezu α β h wysokość trapezu
9. 5. WŁASNOŚCI MIAROWE CZWOROKĄTÓW Trpez w trpezie przynmniej jen pr oków jest równoległ δ γ, postwy trpezu c h c, - rmion trpezu α β h wysokość trpezu + 80 α δ β + γ 80 x `Ocinek łączący śroki rmion
Komisja Egzaminacyjna dla Aktuariuszy LII Egzamin dla Aktuariuszy z 15 marca 2010 r. Część I Matematyka finansowa
Mtemtyk finnsow 15.0.010 r. Komisj Egzmincyjn dl Akturiuszy LII Egzmin dl Akturiuszy z 15 mrc 010 r. Część I Mtemtyk finnsow WERSJA TESTU A Imię i nzwisko osoy egzminownej:... Czs egzminu: 100 minut 1
WEKTORY skalary wektory W ogólnym przypadku, aby określić wektor, należy znać:
WEKTORY Wśród wielkości fizycznych występujących w fizyce możn wyróżnić sklry i wektory. Aby określić wielkość sklrną, wystrczy podć tylko jedną liczbę. Wielkościmi tkimi są ms, czs, tempertur, objętość
Montaż żaluzji i rolet
Montż żluzji i rolet Nrzędzi Uwg! W większośi przypdków śruby moująe są złązone do rolet i żluzji. NIEZBĘDNE NARZĘDZIA I MATERIAŁY Êrubokr t Êruby i ko ki poziomni wiertrk o ówek mirk linijk Zdejmownie
Analiza matematyczna i algebra liniowa
Anliz mtemtyczn i lgebr liniow Mteriły pomocnicze dl studentów do wykłdów Mcierze liczbowe i wyznczniki. Ukłdy równń liniowych. Mcierze. Wyznczniki. Mcierz odwrotn. Równni mcierzowe. Rząd mcierzy. Ukłdy
Katalog wymagań programowych na poszczególne stopnie szkolne. Matematyka. Poznać, zrozumieć
Ktlog wymgń progrmowych n poszczególne stopnie szkolne Mtemtyk. Poznć, zrozumieć Ksztłcenie w zkresie podstwowym. Kls 2 Poniżej podjemy umiejętności, jkie powinien zdobyć uczeń z kżdego dziłu, by uzyskć
MATURA 2014 z WSiP. Zasady oceniania zadań
MATURA z WSiP Mtemtyk Poziom podstwowy Zsdy ocenini zdń Copyright by Wydwnictw Szkolne i Pedgogiczne sp. z o.o., Wrszw Krtotek testu Numer zdni 6 7 8 9 6 7 8 9 Uczeń: Sprwdzn umiejętność (z numerem stndrdu)
Całki oznaczone. wykład z MATEMATYKI
Cłki oznzone wkłd z MATEMATYKI Budownitwo, studi niestjonrne sem. I, rok k. 28/29 Ktedr Mtemtki Wdził Informtki Politehnik Biłostok 1 Podstwowe pojęi 1.1 Podził P przedziłu, Nieh f ędzie funkją ogrnizoną
P=2kN. ød=4cm. E= MPa, ν=0.3. l=1m
1 2 3 Z.1. o końc rury utwierzonej w przekroju przyspwno sztywne rmię w ceu wprowzeni siły. W czsie procesu obciążni rmię może oprzeć się n roce w przekroju. 1) Wyznczyć wrtość siły min, przy której rmię
ROZWIĄZYWANIE MAŁYCH TRÓJKĄTÓW SFERYCZNYCH
Mteriły dydktyzne Geodezj geometryzn Mrin Ligs, Ktedr Geomtyki, Wydził Geodezji Górnizej i Inżynierii Środowisk OZWIĄZYWANIE MAŁYCH TÓJKĄTÓW SFEYCZNYCH rezentowne metody rozwiązywni młyh trójkątów sferyznyh
ZADANIE I OPIS PRZEDMIOTU ZAMÓWENIA SPECYFIKACJA TECHNICZNA (OPIS) OFEROWANEGO SPRZĘTU
ZADANIE I OPIS PRZEDMIOTU ZAMÓWENIA SPECYFIKACJA TECHNICZNA (OPIS) OFEROWANEGO SPRZĘTU Nzw i rs Wykonwy:. I. Systm o ony i trningu koorynji nrwowo-mięśniowj i momntów sił mięśniowyh rozwijnyh w stwh końzyn
2. FUNKCJE WYMIERNE Poziom (K) lub (P)
Kls drug poziom podstwowy 1. SUMY ALGEBRAICZNE Uczeń otrzymuje ocenę dopuszczjącą lub dostteczną, jeśli: rozpoznje jednominy i sumy lgebriczne oblicz wrtości liczbowe wyrżeń lgebricznych redukuje wyrzy
Przepisy Hokeja na Trawie Hala
Przepisy Hokej n Trwie Hl Stn n 1 listop 2014 Tłumzenie: Anrzej Busz, Szymon Dolt 2 Spis treśi I Słownizek... 3 II Gr... 5 1 Boisko... 5 2 Skł rużyn... 5 3 Kpitnowie... 8 4 Uiór i wyposżenie zwonik...
PRZEŁĄCZNIK MIEJSC POMIAROWYCH PMP
CZAKI THERMO-PRODUCT ul. 19 Kwietni 58 05-090 Rszyn-Ryie tel. (22) 7202302 fx. (22) 7202305 www.zki.pl hndlowy@zki.pl PRZEŁĄCZNIK MIEJSC POMIAROWYCH PMP-201-10 INSTRUKCJA OBSŁUGI GWARANCJA Spis treśi 1.
Wektor kolumnowy m wymiarowy macierz prostokątna o wymiarze n=1 Wektor wierszowy n wymiarowy macierz prostokątna o wymiarze m=1
Rchunek mcierzowy Mcierzą A nzywmy funkcję 2-zmiennych, któr prze liczb nturlnych (i,j) gdzie i = 1,2,3,4.,m; j = 1,2,3,4,n przyporządkowuje dokłdnie jeden element ij. 11 21 A = m1 12 22 m2 1n 2n mn Wymirem
MODEL ODPOWIEDZI I SCHEMAT OCENIANIA ARKUSZA EGZAMINACYJNEGO II
Egzmin mturlny z informtyki MODEL ODPOWIEDZI I SCHEMAT OCENIANIA ARKUSZA EGZAMINACYJNEGO II Numer zdni Numer punktu Etpy rozwiązni Z podnie poprwnego przedziłu dl firmy D1: [1 ; 3617,62] 2 punkty. W przypdku
Instrukcje dla zawodników
Płok, 12 mr 2016 r. Instrukje l zwoników Arkusze otwiermy n wyrźne poleenie komisji. Wszystkie poniższe instrukje zostną ozytne i wyjśnione. 1. Arkusz skł się z 3 zń. 2. Kże znie skł się z wprowzeni orz
Wykład 2. Granice, ciągłość, pochodna funkcji i jej interpretacja geometryczna
1 Wykłd Grnice, ciągłość, pocodn unkcji i jej interpretcj geometryczn.1 Grnic unkcji. Grnic lewostronn i grnic prwostronn unkcji Deinicj.1 Mówimy, że liczb g jest grnicą lewostronną unkcji w punkcie =,
Zwróć uwagę. Czytaj uważnie treści zadań i polecenia. W razie potrzeby przeczytaj je kilka razy.
Zwróć uwgę Poniżej znjdziesz kilk wskzówek, którą mogą ci ułtwić npisnie sprwdzinu szóstoklsisty. Njwżniejsz z nich to: Czytj uwżnie treści zdń i poleceni. W rzie potrzey przeczytj je kilk rzy. Zwrcj uwgę
1. LINIE WPŁYWOWE W UKŁADACH STATYCZNIE WYZNACZALNYCH
zęść. LINIE WPŁYWOWE W UKŁH STTYZNIE WYZNZLNYH.. LINIE WPŁYWOWE W UKŁH STTYZNIE WYZNZLNYH.. Zdnie l belki przedstwionej n poniższym rysunku wyznczyć linie wpływowe zznczonych wielkości sttycznych (linie
INSTRUKCJA. - Jak rozwiązywać zadania wysoko punktowane?
INSTRUKCJA - Jk rozwiązywć zdni wysoko punktowne? Mturzysto! Zdni wysoko punktowne to tkie, z które możesz zdobyć 4 lub więcej punktów. Zdni z dużą ilość punktów nie zwsze są trudniejsze, często ich punktcj
KRYTERIA OCENIANIA ODPOWIEDZI Próbna Matura z OPERONEM. Matematyka Poziom podstawowy
KRYTERIA OCENIANIA ODPOWIEDZI Próbn Mtur z OPERONEM Mtemtyk Poziom podstwowy Mrzec 7 Zdni zmknięte Z kżdą poprwną odpowiedź zdjący otrzymuje punkt. Poprwn odpowiedź Wskzówki do rozwiązni. B 5 5 6 5 = =
1Coulomb 1Volt. Rys. 1. Schemat kondensatora płaskiego. Jednostką pojemności w układzie SI, jest Farad (F):
POJEMNOŚĆ ELEKTRYZNA Konenstor służy o mgzynowni energii potencjlnej w polu elektrycznym. Typowy konenstor płski, skł się z wóch równoległych, przewozących okłek o polu przekroju S umieszczonych w oległości
Mosiężne (do pary wodnej) Elektrozawory 2/2 z serwo-wspomaganiem (N.Z.) Ciśnienie różnicowe Nominalny pobór Cewka mocy
Typ 119W Elektrozwory 2/2 z serwo-wspomgniem (N.Z.) o pry o temperturze o 180 C Korpus Tulej rzeni elektromgnesu Rzeń Sprężyn Tłozek Uszzelk tłozk Mosiąz wzmoniony PTFE główne PTFE inne FPM imlne iśnienie
Fizyka. Kurs przygotowawczy. na studia inżynierskie. mgr Kamila Haule
Fizyk Kurs przygotowwczy n studi inżynierskie mgr Kmil Hule Dzień 3 Lbortorium Pomir dlczego mierzymy? Pomir jest nieodłączną częścią nuki. Stopień znjomości rzeczy często wiąże się ze sposobem ich pomiru.
Metoda superpozycji: Sesja poprawkowa. Wykład 1
Elektrotehnik wykłd Metod superpozyji: E i 8V, E i V Sesj poprwkow Wykłd Zdni Wykłd e d e d E U U E e d 0.77..087 0.7 0.9 0.9.7... Grup : d pkt, d pkt, dst 8 pkt Termin 0. Symole stosowne n shemth. Zsdy
WYZNACZNIKI. . Gdybyśmy rozważali układ dwóch równań liniowych, powiedzmy: Takie układy w matematyce nazywa się macierzami. Przyjmijmy definicję:
YZNACZNIKI Do opisu pewnh oiektów nie wstrz użć liz. ie n przkłd, że do opisni sił nleż użć wektor. Sił to przeież nie tlko wielkość le i jej punkt przłożeni, zwrot orz kierunek dziłni. Zte jedną lizą
WYMAGANIA I KRYTERIA OCENIANIA DO EGZAMINU POPRAWKOWEGO MATEMATYKA. Zakresie podstawowym i rozszerzonym. Klasa II rok szkolny 2011/2012
mgr Jolnt Chlebd mgr Mri Mślnk mgr Leszek Mślnk mgr inż. Rent itl mgr inż. Henryk Stępniowski Zespół Szkół ondgimnzjlnych Młopolsk Szkoł Gościnności w Myślenicch WYMAGANIA I RYTERIA OCENIANIA DO EGZAMINU
DZIAŁ 2. Figury geometryczne
1 kl. 6, Scenriusz lekcji Pole powierzchni bryły DZAŁ 2. Figury geometryczne Temt w podręczniku: Pole powierzchni bryły Temt jest przeznczony do relizcji podczs 2 godzin lekcyjnych. Zostł zplnowny jko
Oznaczenia: K wymagania konieczne; P wymagania podstawowe; R wymagania rozszerzające; D wymagania dopełniające; W wymagania wykraczające
Wymgni edukcyjne z mtemtyki ls 2 b lo Zkres podstwowy Oznczeni: wymgni konieczne; wymgni podstwowe; R wymgni rozszerzjące; D wymgni dopełnijące; W wymgni wykrczjące Temt lekcji Zkres treści Osiągnięci
ZADANIA DO SAMODZIELNEGO ROZWIĄZANIA
ZNI SMZIELNE RZWIĄZNI łski ukłd sił zbieżnych Zdnie 1 Jednoodn poziom belk połączon jest pzegubowo n końcu z nieuchomą ściną oz zwieszon n końcu n cięgnie twozącym z poziomem kąt. Znleźć ekcję podpoy n
PROJEKT: Technologie multimedialne drogą do przyjaznej edukacji przyszłości realizowany w Szkole Podstawowej nr 11 w Będzinie
Posumowni nkity wluyjnj l złonków Ry Pgogiznj po zkońzniu projktu Ersmus+: Thnologi multimiln rogą o przyjznj ukji przyszłośi. Ankit skłł się z 10 pytń, w tym jngo otwrtgo. Zostł przprowzon pozs szkolniowj
Metoda sił jest sposobem rozwiązywania układów statycznie niewyznaczalnych, czyli układów o nadliczbowych więzach (zewnętrznych i wewnętrznych).
Metod sił jest sposoem rozwiązywni ukłdów sttycznie niewyznczlnych, czyli ukłdów o ndliczowych więzch (zewnętrznych i wewnętrznych). Sprowdz się on do rozwiązni ukłdu sttycznie wyznczlnego (ukłd potwowy
WEKTORY skalary wektory W ogólnym przypadku, aby określić wektor, należy znać:
WEKTORY Wśród wielkości fizycznych występujących w fizyce możn wyróżnić sklry i wektory. Aby określić wielkość sklrną, wystrczy podć tylko jedną liczbę. Wielkościmi tkimi są ms, czs, tempertur, objętość
Wspomaganie obliczeń za pomocą programu MathCad
Wprowdzenie do Mthcd' Oprcowł:M. Detk P. Stąpór Wspomgnie oliczeń z pomocą progrmu MthCd Definicj zmiennych e f g h 8 Przykłd dowolnego wyrŝeni Ay zdefinowc znienną e wyierz z klwitury kolejno: e: e f
2. Tensometria mechaniczna
. Tensometri mechniczn Wstęp Tensometr jk wskzywłby jego nzw to urządzenie służące do pomiru nprężeń. Jk jednk widomo, nprężeni nie są wielkościmi mierzlnymi i stnowią jedynie brdzo wygodne pojęcie mechniki
Rachunek prawdopodobieństwa i statystyka matematyczna.
Rchunek rwdoodobieństw i sttystyk mtemtyczn. Zd 8. {(, : i } Zleżność tą możn rzedstwić w ostci nstęującej interretcji grficznej: Arkdiusz Kwosk Rfł Kukliński Informtyk sem.4 gr. Srwdźmy, czy odne zmienne
Algebra Boola i podstawy systemów liczbowych. Ćwiczenia z Teorii Układów Logicznych, dr inż. Ernest Jamro. 1. System dwójkowy reprezentacja binarna
lger Bool i podstwy systemów liczowych. Ćwiczeni z Teorii Ukłdów Logicznych, dr inż. Ernest Jmro. System dwójkowy reprezentcj inrn Ukłdy logiczne operują tylko n dwóch stnch ozncznymi jko zero (stn npięci
2. Na ich rozwiązanie masz 90 minut. Piętnaście minut przed upływem tego czasu zostaniesz o tym poinformowany przez członka Komisji Konkursowej.
Kod uczni... MAŁOPOLSKI KONKURS MATEMATYCZNY dl uczniów gimnzjów Rok szkolny 03/0 ETAP SZKOLNY - 5 pździernik 03 roku. Przed Tobą zestw zdń konkursowych.. N ich rozwiąznie msz 90 minut. Piętnście minut
KRYTERIA OCENIANIA ODPOWIEDZI Próbna Matura z OPERONEM. Fizyka i astronomia Poziom podstawowy
KRYTERIA OCEIAIA ODPOWIEDZI Próbn Mtur z OPEROEM izyk i tronoi Pozio podtwowy Litopd 0 W niniejzy heie oenini zdń otwrtyh ą prezentowne przykłdowe poprwne odpowiedzi. W tego typu h nleży również uznć odpowiedzi
Sprawozdanie z pomocy doraźnej i ratownictwa medycznego za 2010 r.
GŁÓWNY URZĄD STATYSTYCZNY, l. Niepoległośi 208, 00-925 Wrszw www.stt.gov.pl Nzw i res jenostki sprwozwzej Numer inentyfikyjny REGON ZD-4 Sprwoznie z pomoy orźnej i rtownitw z 200 r. Portl sprwozwzy GUS
Metoda prądów obwodowych
Metod prądów owodowyh Zmenmy wszystke rzezywste źródł prądowe n npęowe, Tworzymy kłd równń lnowyh opsjąyh poszzególne owody. Dowolną seć lnową skłdjąą sę z elementów skponyh możn opsć z pomoą kłd równń
5. Zadania tekstowe.
5. Zni tekstowe. Przykł. Kolrz połowę rogi pokonł ze śrenią prękością 0 km/, rugą połowę z prękością 50 km /. Wyzncz śrenią prękość kolrz n cłej trsie. nliz : pierwsz połow rogi rug połow rogi 0 km/ prękość
Katalog produktów. Kuźnia Batory
Ktlog prouktów Ktlog prouktów Kuźni Btory Kuźni Btory wytwrz różnego rozju wyroby kute z pon 100 gtunków stli. łównymi obiorcmi są brnże: mszynow, energetyczn, motoryzcyjn i okrętow. N liście Klientów
i na matematycznej wyspie materiały dla ucznia, pakiet 89, s. KARTA:... Z KLASY:...
A@ i J@ś n mtemtycznej wyspie mteriły l uczni, pkiet 89, s. Eolonistyczn p Etemtyczn Strżk m Zzncz znkiem n obrzku te elementy, w których nzwie występuje głosk w. own ychzyczne ie W fi uktyccjzn E pls
Zadania. I. Podzielność liczb całkowitych
Zdni I. Podzielność liczb cłkowitych. Pewn liczb sześciocyfrow kończy się cyfrą 5. Jeśli tę cyfrę przestwimy n miejsce pierwsze ze strony lewej to otrzymmy nową liczbę cztery rzy większą od poprzedniej.
4. RACHUNEK WEKTOROWY
4. RACHUNEK WEKTOROWY 4.1. Wektor zczepiony i wektor swoodny Uporządkowną prę punktów (A B) wyznczjącą skierowny odcinek o początku w punkcie A i końcu w punkcie B nzywmy wektorem zczepionym w punkcie
Wyznacznikiem macierzy kwadratowej A stopnia n nazywamy liczbę det A określoną następująco:
Def.8. Wyzncznikiem mcierzy kwdrtowej stopni n nzywmy liczbę det określoną nstępująco:.det.det dl n n det det n det n, gdzie i j ozncz mcierz, którą otrzymujemy z mcierzy przez skreślenie i- tego wiersz
Dla danego czynnika termodynamicznego i dla określonej przemiany ciepło właściwe w ogólności zależy od dwóch niezależnych
Ciepło włśiwe Nieh zynnik ermodynmizny m sn określony przez emperurę orz iśnienie p. Dl dowolnej elemenrnej przeminy zzynjąej się od ego snu możemy npisć dq [J/kg] ( Równnie ( wiąże pohłninie lub oddwnie
KONKURS MATEMATYCZNY. Model odpowiedzi i schematy punktowania
KONKURS MATEMATYCZNY dl uczniów gimnzjów orz oddziłów gimnzjlnych województw mzowieckiego w roku szkolnym 2018/2019 Model odpowiedzi i schemty punktowni Z kżde poprwne i pełne rozwiąznie, inne niż przewidzine
Komisja Egzaminacyjna dla Aktuariuszy LIX Egzamin dla Aktuariuszy z 12 marca 2012 r. Część I Matematyka finansowa
Mtemtyk finnsow 12.03.2012 r. Komisj Egzmincyjn dl Akturiuszy LIX Egzmin dl Akturiuszy z 12 mrc 2012 r. Część I Mtemtyk finnsow WERSJA TESTU A Imię i nzwisko osoby egzminownej:... Czs egzminu: 100 minut
Wprowadzenie do Sieci Neuronowych Łańcuchy Markowa
Projekt pn. Wzmonienie potenjłu dydktyznego UMK w Toruniu w dziedzinh mtemtyzno-przyrodnizyh relizowny w rmh Poddziłni 4.1.1 Progrmu Operyjnego Kpitł Ludzki Wprowdzenie do Siei Neuronowyh Łńuhy Mrkow Mj
a a a ; ; ; (1.2) przez [ a ij ], czyli zbiór elementów w i-tym wierszu i w j-tej kolumnie. Wymiary ( n m) stanowią stopień macierzy.
. PODSWY LGEBY CIEZY.. Ukły równń liniowyh Ukł n równń o m niewiomyh x K x m m L L L L L x K x n nm m n możn zpisć w posti tli liz (mierzy): (.) x x x x x x x x x x zpisć w posti mierzowej. Wprowzją nstępująe
matematyka Matura próbna
Gazeta Edukacja Sprawdź, cz zdasz! Egzamin maturaln matematka MTEMTYK zas prac: minut Matura próbna Maturzsto! Po raz pierwsz napiszesz obowiązkową maturę z matematki na poziomie podstawowm Rozwiąż zadania
kywysokiej jakości gama Mixproof
. kywysokiej jkości gm Mixproof lf Lvl Zwór Mixproof SMP- Koncepcj SMP- to snitrny, pneumtyczny zwór grzybowy, przeznczony do bezpiecznego wykrywni przecieków kiedy dw różne produkty przepływją przez jeden
Matematyka finansowa 10.03.2014 r. Komisja Egzaminacyjna dla Aktuariuszy. LXVI Egzamin dla Aktuariuszy z 10 marca 2014 r. Część I
Mtemtyk finnsow.03.2014 r. Komisj Egzmincyjn dl Akturiuszy LXVI Egzmin dl Akturiuszy z mrc 2014 r. Część I Mtemtyk finnsow WERSJA TESTU A Imię i nzwisko osoby egzminownej:... Czs egzminu: 0 minut 1 Mtemtyk
MATeMAtyka 3 inf. Przedmiotowy system oceniania wraz z określeniem wymagań edukacyjnych. Zakres podstawowy i rozszerzony. Dorota Ponczek, Karolina Wej
Dorot Ponczek, Krolin Wej MATeMAtyk 3 inf Przedmiotowy system ocenini wrz z określeniem wymgń edukcyjnych Zkres podstwowy i rozszerzony Wyróżnione zostły nstępujące wymgni progrmowe: konieczne (K), podstwowe
Definicje. r r r r. Struktura kryształu. Sieć Bravais go. Baza
Definije Sieć Brvis'go - Nieskońzon sieć punktów przestrzeni tkih, że otozenie kżdego punktu jest identyzne Nieskońzon sieć punktów przestrzeni otrzymnyh wskutek przesunięi jednego punktu o wszystkie możliwe
Wymagania na ocenę dopuszczającą z matematyki klasa II Matematyka - Babiański, Chańko-Nowa Era nr prog. DKOS 4015-99/02
Wymgni n ocenę dopuszczjącą z mtemtyki kls II Mtemtyk - Bbiński, Chńko-Now Er nr prog. DKOS 4015-99/02 Temt lekcji Zkres treści Osiągnięci uczni WIELOMIANY 1. Stopień i współczynniki wielominu 2. Dodwnie