ZMIERZYĆ SIĘ Z KALKULATOREM
|
|
- Barbara Marek
- 9 lat temu
- Przeglądów:
Transkrypt
1 ZMIERZYĆ SIĘ Z KALKULATOREM Agnieszka Cieślak Wyższa Szkoła Informatyki i Zarządzania z siedzibą w Rzeszowie Streszczenie Referat w prosty sposób przedstawia niekonwencjonalne sposoby mnożenia liczb. Tematyka została przedstawiona w bardzo prosty sposób, dzięki czemu mnożenie można wykonać w znacznie krótszym czasie niż standardowe wykonanie tej operacji na kalkulatorze. 1. Standardowa tabliczka mnożenia Na początek warto przypomnieć sobie standardowy sposób mnożenia liczb. Każdy uczył się tabliczki mnożenia w szkole podstawowej. Na pytanie, ile jest 7 2, każdy w myślach szuka odpowiedzi i po kilku sekundach wykrzykuje 14. Patrząc z perspektywy czasu nauka owej tabliczki zajęła nam dość sporo cennego czasu. Jednym ze sposobów przyswojenia tabliczki mnożenia jest wykucie jej na pamięć. Metoda ta jest najczęściej stosowana, niemniej jednak posiada jedną, poważną wadę. Im rzadziej wracamy i odświeżamy to co się nauczyliśmy tym szybciej to zapominamy. Istnieje zatem prostszy sposób od owego wkuwania. Standardowe mnożenie mieści się w zakresie od 1 do 10. Dziesięć jest taką liczbą, która łatwo kojarzy się z dłońmi (suma palców obu dłoni wynosi 10) podstawowy kalkulator każdego ludzkiego ciała. Jak zatem wykorzystać 10 palców do mnożenia? Metoda ta jest skuteczna tylko w przypadku mnożenie liczb większych od 5. Każda z dłoni przedstawia liczbę w zakresie od Ilość palców wyprostowanych mówi o wartości danej liczby. Jeśli wszystkie palce są zagięte reprezentuje to liczbę 5, jeden wyprostowany liczbę 6 itp. W pierwszym kroku dodajemy ilość wyprostowanych palców na obu dłoniach do siebie. Liczbę tą mnożymy przez 10. Następnie mnożymy ilość zgiętych palców przez siebie i dodajemy te liczby do siebie. ISSN , Nr 1 (2) 2010, s. 6-14
2 Rysunek 1. Mnożenie za pomocą dłoni. 5 7=(0+2) =20+15=35 6 7=(1+2) =30+12=42 8 9=(3+4) =70+2=72 Źródło: Tę samą metodę można przedstawić w inny sposób: Naszym palcom na obu rękach, rozpoczynając od najmniejszego palca idąc w stronę kciuka, przyporządkowujemy liczby od 6 do 10 w następujący sposób: najmniejszy palec 6, palce serdeczne -7, palce środkowe 8, palce wskazujące - 9, kciuki Rysunek 2. Numeracja palców Obliczamy 7 7. W pierwszym kroku łączymy palce odpowiadające liczbie siedem, czyli palce serdeczne. Trzymając dłonie wewnętrzną stroną do siebie sumujemy palce złączone oraz te które mają mniejszą wartość od nich (w naszym przypadku będą to palce małe). Będą one oznaczały ilość dziesiątek. Razem otrzymujemy 4 palce oznaczające dziesiątki, czyli liczbę 40. Następnie mnożymy 7
3 ilość pozostałych palców, czyli tych, które są powyżej złączonych palców serdecznych. Trzy na jednej ręce i trzy na drugiej, czyli 3 3 = 9. Wyniki sumujemy 40+9=49. Numeracja palców u dłoni w przeciwnym kierunku powoduje odwrócenie działań dodajemy palce złączone i te powyżej nich oraz mnożymy ilość znajdującą się poniżej złączonych palców. Mnożenie przez 9 w inny sposób. Rysunek 3. Układ dłoni W pierwszym kroku należy rozłożyć dłonie tak, aby kciuki znajdowały się po zewnętrznych stronach. Następnie numerujemy je tak jak na Rysunku 3. W kolejnym kroku postępujemy zgodnie z zasadą przedstawioną na przykładzie zilustrowanym Rysunkiem 4. Rysunek 4. Mnożenie 9 2 Przypuśćmy, że mnożymy 9 2. Należy najpierw zamalować palec o numerze 2. Następnie obliczymy ile palców od zamalowanego znajduje się po lewej stronie. Liczba ta stanowi liczbę dziesiątek iloczynu. Ilość palców znajdująca się po prawej stronie odpowiada za liczbę jedności. Metoda ta jest prawdziwa gdy jednym z czynników iloczynu jest 9. Drugim czynnikiem jest liczba odpowiadająca za zamalowanego palca. 8
4 Trudność tego typu mnożenia polega jedynie na tym, aby zapamiętać który palec odpowiada za jaką liczbę. 2. Mnożenie liczb dwucyfrowych Można spróbować mnożenia pisemnego szybkość obliczeń jest niekiedy długa i przeznaczona dla cierpliwych. Na kalkulatorze zajęłoby to kilka sekund. Czas zależy głównie od szybkości wciskania klawiszy. Nie zawsze mamy jednak dostęp do kalkulatora. Co zrobić zatem gdy go nie mamy? Czy ostatecznie skazani jesteśmy na żmudne liczenie pisemne? Otóż okazuje się, że mnożenia tego typu można dokonać bez korzystania z mnożenia pisemnego. Zakres Pomnóżmy teraz np Rysunek 5. Mnożenie Zadany iloczyn można rozpisać w ten sposób, że drugą liczbę zapiszemy w postaci sumy 10 i pozostałej wartości, tzn =13 (10+2). Następnie dodajemy do pierwszej liczby drugi składnik naszej sumy (interesuje nas tylko liczba 2), otrzymujemy zatem 13+2=15. Liczba 10 w zapisie ma jedno zero zatem musimy dopisać do liczby z prawej strony jeszcze jedną liczbę będącą iloczynem cyfr jedności, w przedstawionym przykładzie jest to 3 2=6. Otrzymujemy zatem =
5 Kolejny przykład to Rysunek 6. Mnożenie Działania wykonujemy w ten sam sposób co poprzednio. Do 16 dodajemy 9, otrzymując 25 jest to pierwsza część wyniku. Następnie mnożymy 6 x 9 i otrzymujemy 54, a ponieważ 19 można rozpisać jako , wiemy że powinniśmy dopisać tylko jedną cyfrę (10 ma jedno zero). Pojawia się kłopot co zrobić z liczbą 5? Otóż zapisujemy liczbę w ten sposób, że jedności idą na miejsce cyfry, którą powinniśmy dopisać, a 5 dodajemy do liczby dziesiątek. Zakres Rysunek 7. Mnożenie Pomnóżmy W pierwszym kroku znajdujemy liczby będące uzupełnieniem obu czynników do liczby 100. Dla liczby 95 jest to 5, zaś dla 97 jest to 3. Następnie odejmujemy na krzyż, tzn. od liczby 95 odejmujemy 3, a od 97 odejmujemy 5. W obu przypadkach otrzymujemy to samo, czyli 92 i są to pierwsze dwie liczby wyniku. Kolejne dwie stanowi iloczyn dopełnień, czyli 5 3, co daje 15. Wynik mnożenia to Pozostałe liczby. Mnożąc dwie dowolne liczby dwucyfrowe przez siebie można skorzystać z następującej reguły. 10
6 Rysunek 8. Mnożenie W pierwszym kroku mnożymy przez siebie liczby dziesiątek (5 4=20). Otrzymujemy w ten sposób dwie pierwsze liczby wyniku. Musimy dopisać jeszcze dwie cyfry do wyniku. W następnym kroku mnożymy liczby jedności (2 7=14). Wynik zapisujemy na ostatniej pozycji. W przypadku otrzymania liczby dwucyfrowej zapisujemy ją na dwóch ostatnich pozycjach. Kolejnym krokiem jest mnożenie skrajnych cyfr, tzn. czyli cyfra dziesiętna jednej liczby jest mnożona przez cyfrę jedności drugiej liczby i odwrotnie (4 7,2 5). Następnie wyniki te należy zsumować (10+14=24) i umieścić na pozycjach środkowych w wyniku, lub na pozycji przedostatniej w przypadku jednocyfrowego wyniku. Na końcu sumujemy wszystkie otrzymane liczby w sposób opisany wyżej i przedstawiony na powyższym rysunku. 1 Mnożenie liczb o tej samej liczbie setek i dziesiątek oraz gdy suma jedności obu liczb daje 10. Takie liczby to np. 34 i 36, 112 i 118 itp. W przypadku mnożenia np postępujemy następująco: obie cyfry mają tą samą cyfrę dziesiątek: jest nią 4. Ponadto suma 2+8 daje 10. Warunki zatem są spełnione. W kolejnym kroku do liczby dziesiątek dodajemy jeden: 4+1 = 5 i liczbę tę mnożymy przez ilość dziesiątek 4 5 = 20. Jest to pierwsza część wyniku. Następnie musimy dopisać jeszcze dwie cyfry. Jest to wynik iloczynu cyfr jedności 2 8 = 16. Do liczby 20 zatem dopisujemy 16 i otrzymujemy Rysunek 9. Mnożenie z dn
7 W przypadku mnożenia liczb trzycyfrowych postępujemy podobnie. Np. mnożąc w pierwszym kroku otrzymujemy = 132 (korzystamy z metody przedstawionej wcześniej:12+1 oraz 2 1) a następnie mnożymy 2 8 = 16. Wynik końcowy to Mnożenie za pomocą rysowania linii Metoda pozwala na mnożenie dowolnych liczb przez siebie. Pomnóżmy przykładowo Rysunek 10. Układ linii W pierwszym kroku rysujemy w odpowiedni sposób pewną ilość linii. Zostało to przedstawione na Rysunku 11. Bierzemy liczbę 23. Składa się ona z 2 i 3, zatem rysujemy 2 linie i po większym odstępie równolegle 3 linie. Linie reprezentujące kolejną cyfrę rysujemy tak, aby linie przecinały się prostopadle z poprzednimi. Rysunek 11. Mnożenie za pomocą linii. Źródło: Opracowanie własne W kolejnym kroku zaznaczamy łukami miejsca przecięć oraz liczymy ilość linii przecinających się w każdym łuku. Liczby te oznaczone są kolorem czarnym. Liczby znajdujące się na dole i na górze dodajemy do siebie (8+3=11). 12
8 Rysunek 12. Sposób zapisu liczb. Źródło: Opracowanie własne Jeśli otrzymana liczba jest dwucyfrowa należy ją przesunąć w zapisie w lewo. Sposób zapisu pozostałych liczb jest przedstawiony na Rysunku 12 (liczba 2 jest liczbą z lewej strony Rysunku 11, zaś liczba 12 jest liczbą z prawej strony Rysunku 11). Wynikiem mnożenia jest więc Podnoszenie do kwadratu w zakresie Potęgowanie bazuje na mnożeniu. Na zakończenie zostanie przedstawiona szybka metoda potęgowania. Przypuśćmy, że chcemy podnieść do kwadratu liczbę 12. Cyfra 2 oznacza liczbę jedności. Cyfrę jedności dodajemy do liczby 12. W wyniku otrzymujemy cyfrę 14. Dodatkowo do wyniku dopisujemy liczbę jedności podniesioną do kwadratu 2 2 =4. Złożenie obu cyfr (14, 4) jest wynikiem potęgowania cyfry = = =4 zatem otrzymujemy > 13+3= = = > 14+4 = =16 18_ = 196 Potęgowanie w drugiej potędze w pozostałym zakresie sprowadza się do mnożenia liczb dwucyfrowych np > = 6889 (8 8 = 64, =_48_, 3 3 = _9) 2 z dn
9 5. Bibliografia 1. z dn eduseek.interklasa.pl/artykuly/artykul/ida/2411/, z dn youtube.com, z dn
Jak nie zostać niewolnikiem kalkulatora? Obliczenia pamięciowe i pisemne.
Jak nie zostać niewolnikiem kalkulatora? Obliczenia pamięciowe i pisemne. W miarę postępu techniki w niepamięć odeszły nawyki do wykonywania pisemnych albo pamięciowych obliczeń. O suwaku logarytmicznym,
Bardziej szczegółowoB.B. 2. Sumowanie rozpoczynamy od ostatniej kolumny. Sumujemy cyfry w kolumnie zgodnie z podaną tabelką zapisując wynik pod kreską:
Dodawanie dwójkowe Do wykonywania dodawania niezbędna jest znajomość tabliczki dodawania, czyli wyników sumowania każdej cyfry z każdą inną. W systemie binarnym mamy tylko dwie cyfry 0 i 1, zatem tabliczka
Bardziej szczegółowo1. Operacje logiczne A B A OR B
1. Operacje logiczne OR Operacje logiczne są operacjami działającymi na poszczególnych bitach, dzięki czemu można je całkowicie opisać przedstawiając jak oddziałują ze sobą dwa bity. Takie operacje logiczne
Bardziej szczegółowoKurs ZDAJ MATURĘ Z MATEMATYKI MODUŁ 2 Teoria liczby rzeczywiste cz.2
1 POTĘGI Definicja potęgi ł ę ę > a 0 = 1 (każda liczba różna od zera, podniesiona do potęgi 0 daje zawsze 1) a 1 = a (każda liczba podniesiona do potęgi 1 dają tą samą liczbę) 1. Jeśli wykładnik jest
Bardziej szczegółowoMoneta 1 Moneta 2 Kostka O, R O,R 1,2,3,4,5, Moneta 1 Moneta 2 Kostka O O ( )
Nowa matura kombinatoryka i rachunek prawdopodobieństwa Zadania zamknięte (0 1 pkt) 1. Doświadczenie losowe polega na rzucie dwiema symetrycznymi monetami i sześcienną kostką do gry. Prawdopodobieństwo
Bardziej szczegółowoProjekt współfinansowany przez Unię Europejską w ramach Europejskiego Funduszu Społecznego
Projekt współfinansowany przez Unię Europejską w ramach Europejskiego Funduszu Społecznego Publikacja jest dystrybuowana bezpłatnie Program Operacyjny Kapitał Ludzki Priorytet 9 Działanie 9.1 Poddziałanie
Bardziej szczegółowoUrządzenia Techniki. Klasa I TI. System dwójkowy (binarny) -> BIN. Przykład zamiany liczby dziesiętnej na binarną (DEC -> BIN):
1. SYSTEMY LICZBOWE UŻYWANE W TECHNICE KOMPUTEROWEJ System liczenia - sposób tworzenia liczb ze znaków cyfrowych oraz zbiór reguł umożliwiających wykonywanie operacji arytmetycznych na liczbach. Do zapisu
Bardziej szczegółowoLuty 2001 Algorytmy (7) 2000/2001 s-rg@siwy.il.pw.edu.pl
System dziesiętny 7 * 10 4 + 3 * 10 3 + 0 * 10 2 + 5 *10 1 + 1 * 10 0 = 73051 Liczba 10 w tym zapisie nazywa się podstawą systemu liczenia. Jeśli liczba 73051 byłaby zapisana w systemie ósemkowym, co powinniśmy
Bardziej szczegółowoKARTY PRACY DLA SŁABYCH UCZNIÓW, CZ.6
KARTY PRACY DLA SŁABYCH UCZNIÓW, CZ.6 Wiesława Janista, Elżbieta Mrożek, Marta Szymańska W tym roku szkolnym kontynuujemy cykl materiałów przeznaczonych dla słabych uczniów. Zadania układają: Elżbieta
Bardziej szczegółowo- odnajduje część wspólną zbiorów, złączenie zbiorów - wyodrębnia podzbiory;
Edukacja matematyczna kl. II Wymagania programowe Dział programu Poziom opanowania Znajdowanie części wspólnej, złączenia zbiorów oraz wyodrębnianie podzbiorów Liczby naturalne od 0 100 A bardzo dobrze
Bardziej szczegółowoPodstawą w systemie dwójkowym jest liczba 2 a w systemie dziesiętnym liczba 10.
ZAMIANA LICZB MIĘDZY SYSTEMAMI DWÓJKOWYM I DZIESIĘTNYM Aby zamienić liczbę z systemu dwójkowego (binarnego) na dziesiętny (decymalny) należy najpierw przypomnieć sobie jak są tworzone liczby w ww systemach
Bardziej szczegółowoDZIAŁANIA NA UŁAMKACH DZIESIĘTNYCH.
DZIAŁANIA NA UŁAMKACH DZIESIĘTNYCH. Dodawanie,8 zwracamy uwagę aby podpisywać przecinek +, pod przecinkiem, nie musimy uzupełniać zerami z prawej strony w liczbie,8. Pamiętamy,że liczba to samo co,0, (
Bardziej szczegółowoLISTA 1 ZADANIE 1 a) 41 x =5 podnosimy obustronnie do kwadratu i otrzymujemy: 41 x =5 x 5 x przechodzimy na system dziesiętny: 4x 1 1=25 4x =24
LISTA 1 ZADANIE 1 a) 41 x =5 podnosimy obustronnie do kwadratu i otrzymujemy: 41 x =5 x 5 x przechodzimy na system dziesiętny: 4x 1 1=25 4x =24 x=6 ODP: Podstawą (bazą), w której spełniona jest ta zależność
Bardziej szczegółowoArytmetyka komputera. Na podstawie podręcznika Urządzenia techniki komputerowej Tomasza Marciniuka. Opracował: Kamil Kowalski klasa III TI
Arytmetyka komputera Na podstawie podręcznika Urządzenia techniki komputerowej Tomasza Marciniuka Opracował: Kamil Kowalski klasa III TI Spis treści 1. Jednostki informacyjne 2. Systemy liczbowe 2.1. System
Bardziej szczegółowoNIEDZIESIĄTKOWE SYSTEMY LICZENIA.
NIEDZIESIĄTKOWE SYSTEMY LICZENIA. Inspiracją do powstania artykułu było popularne powiedzenie :,,... to jest oczywiste jak 2 x 2 jest 4. To powiedzenie pokazuje jak bardzo system dziesiętny zakorzenił
Bardziej szczegółowoMini komputer Papy'ego
Mini komputer Papy'ego Bartłomiej Zemlik Grzegorz Pieczara Klasa Va Szkoła Podstawowa im. Bohaterów Monte Cassino w Kętach ul. Wyspiańskiego, 32-650 Kęty Opiekun- dr Katarzyna Wadoń-Kasprzak Spis Treści
Bardziej szczegółowoWYRAŻENIA ALGEBRAICZNE
WYRAŻENIA ALGEBRAICZNE Wyrażeniem algebraicznym nazywamy wyrażenie zbudowane z liczb, liter, nawiasów oraz znaków działań, na przykład: Symbole literowe występujące w wyrażeniu algebraicznym nazywamy zmiennymi.
Bardziej szczegółowoLiczby rzeczywiste. Działania w zbiorze liczb rzeczywistych. Robert Malenkowski 1
Robert Malenkowski 1 Liczby rzeczywiste. 1 Liczby naturalne. N {0, 1,, 3, 4, 5, 6, 7, 8...} Liczby naturalne to liczby używane powszechnie do liczenia i ustalania kolejności. Liczby naturalne można ustawić
Bardziej szczegółowoXXIII Krajowa Konferencja SNM. Aktywności matematyczne. Kalkulator czy głowa?
1 XXIII Krajowa Konferencja SNM Aktywności matematyczne Marta Kądziołka, Teresa Żodziewska martkad@wp.pl emerytowane nauczycielki matematyki z Bytomia Kalkulator czy głowa? Streszczenie. Celem warsztatu
Bardziej szczegółowoSystemy liczbowe używane w technice komputerowej
Systemy liczbowe używane w technice komputerowej Systemem liczenia nazywa się sposób tworzenia liczb ze znaków cyfrowych oraz zbiór reguł umożliwiających wykonywanie operacji arytmetycznych na liczbach.
Bardziej szczegółowoUniwersytet Kazimierza Wielkiego w Bydgoszczy Zespół Szkół nr 5 Mistrzostwa Sportowego XV Liceum Ogólnokształcące w Bydgoszczy
Uniwersytet Kazimierza Wielkiego w Bydgoszczy Zespół Szkół nr 5 Mistrzostwa Sportowego XV Liceum Ogólnokształcące w Bydgoszczy Matematyka, królowa nauk Edycja X - etap 2 Bydgoszcz, 16 kwietnia 2011 Fordoński
Bardziej szczegółowoKatarzyna Bereźnicka Zastosowanie arkusza kalkulacyjnego w zadaniach matematycznych. Opiekun stypendystki: mgr Jerzy Mil
Katarzyna Bereźnicka Zastosowanie arkusza kalkulacyjnego w zadaniach matematycznych Opiekun stypendystki: mgr Jerzy Mil 1 Działania na ułamkach Wyłączanie całości z dodatnich ułamków niewłaściwych Formuła
Bardziej szczegółowoARYTMETYKA BINARNA. Dziesiątkowy system pozycyjny nie jest jedynym sposobem kodowania liczb z jakim mamy na co dzień do czynienia.
ARYTMETYKA BINARNA ROZWINIĘCIE DWÓJKOWE Jednym z najlepiej znanych sposobów kodowania informacji zawartej w liczbach jest kodowanie w dziesiątkowym systemie pozycyjnym, w którym dla przedstawienia liczb
Bardziej szczegółowoAlgorytmy i struktury danych. Wykład 4
Wykład 4 Różne algorytmy - obliczenia 1. Obliczanie wartości wielomianu 2. Szybkie potęgowanie 3. Algorytm Euklidesa, liczby pierwsze, faktoryzacja liczby naturalnej 2017-11-24 Algorytmy i struktury danych
Bardziej szczegółowoDo gimnazjum by dobrze zakończyć! Do liceum by dobrze zacząć! MATEMATYKA. Na dobry start do liceum. Zadania. Oficyna Edukacyjna * Krzysztof Pazdro
6 Na dobry start do liceum 8Piotr Drozdowski 6 Do gimnazjum by dobrze zakończyć! Do liceum by dobrze zacząć! MATEMATYKA Zadania Oficyna Edukacyjna * Krzysztof Pazdro Piotr Drozdowski MATEMATYKA. Na dobry
Bardziej szczegółowoMATEMATYKA WYMAGANIA EDUKACYJNE DLA KLASY V
MATEMATYKA WYMAGANIA EDUKACYJNE DLA KLASY V Na ocenę wyższą uczeń powinien opanować wiedzę i umiejętności na ocenę (oceny) niższą. Dział programowy: LICZBY NATURALNE podać przykład liczby naturalnej czytać
Bardziej szczegółowoPodstawy Informatyki
Podstawy Informatyki Bożena Woźna-Szcześniak bwozna@gmail.com Jan Długosz University, Poland Wykład 3 Bożena Woźna-Szcześniak (AJD) Podstawy Informatyki Wykład 3 1 / 42 Reprezentacja liczb całkowitych
Bardziej szczegółowo1. Logarytm 2. Suwak logarytmiczny 3. Historia 4. Budowa suwaka 5. Działanie suwaka 6. Jak mnożyć na suwaku 7. Jak dzielić na suwaku 8.
1. Logarytm 2. Suwak logarytmiczny 3. Historia 4. Budowa suwaka 5. Działanie suwaka 6. Jak mnożyć na suwaku 7. Jak dzielić na suwaku 8. Jak podnosić do kwadratu liczby na suwaku 9. Dokładność obliczeń
Bardziej szczegółowo4. Postęp arytmetyczny i geometryczny. Wartość bezwzględna, potęgowanie i pierwiastkowanie liczb rzeczywistych.
Jarosław Wróblewski Matematyka dla Myślących, 008/09. Postęp arytmetyczny i geometryczny. Wartość bezwzględna, potęgowanie i pierwiastkowanie liczb rzeczywistych. 15 listopada 008 r. Uwaga: Przyjmujemy,
Bardziej szczegółowoFUNKCJA KWADRATOWA. Zad 1 Przedstaw funkcję kwadratową w postaci ogólnej. Postać ogólna funkcji kwadratowej to: y = ax + bx + c;(
Zad Przedstaw funkcję kwadratową w postaci ogólnej Przykład y = ( x ) + 5 (postać kanoniczna) FUNKCJA KWADRATOWA Postać ogólna funkcji kwadratowej to: y = ax + bx + c;( a 0) Aby ją uzyskać pozbywamy się
Bardziej szczegółowowagi cyfry 7 5 8 2 pozycje 3 2 1 0
Wartość liczby pozycyjnej System dziesiętny W rozdziale opiszemy pozycyjne systemy liczbowe. Wiedza ta znakomicie ułatwi nam zrozumienie sposobu przechowywania liczb w pamięci komputerów. Na pierwszy ogień
Bardziej szczegółowo1259 (10) = 1 * * * * 100 = 1 * * * *1
Zamiana liczba zapisanych w dowolnym systemie na system dziesiętny: W systemie pozycyjnym o podstawie 10 wartości kolejnych cyfr odpowiadają kolejnym potęgom liczby 10 licząc od strony prawej i numerując
Bardziej szczegółowo1. Liczby wymierne. x dla x 0 (wartością bezwzględną liczby nieujemnej jest ta sama liczba)
1. Liczby wymierne. - wartość bezwzględna liczby. dla 0 (wartością bezwzględną liczby nieujemnej jest ta sama liczba) - dla < 0 ( wartością bezwzględną liczby ujemnej jest liczba do niej przeciwna) W interpretacji
Bardziej szczegółowoRozwiązanie: Zastosowanie twierdzenia o kątach naprzemianległych
GEOMETRYCZNE 1) Dany jest prostokąt ABCD. Bok AB podzielono na trzy równe odcinki: AX, XY i YB. Wyznaczono trójkąty DAX, DXY i DYB. Uzasadnij, że wyznaczone trójkąty mają równe pola. Wizualizacja zadania
Bardziej szczegółowoMATEMATYKA WYMAGANIA EDUKACYJNE DLA KLASY IV. Dział programowy: DZIAŁANIA W ZBIORZE LICZB NATURALNYCH
MATEMATYKA WYMAGANIA EDUKACYJNE DLA KLASY IV Na ocenę wyższą uczeń powinien opanować wiedzę i umiejętności na ocenę (oceny) niższą. Dział programowy: DZIAŁANIA W ZBIORZE LICZB NATURALNYCH dodawać w pamięci
Bardziej szczegółowoLABORATORIUM PROCESORY SYGNAŁOWE W AUTOMATYCE PRZEMYSŁOWEJ. Zasady arytmetyki stałoprzecinkowej oraz operacji arytmetycznych w formatach Q
LABORAORIUM PROCESORY SYGAŁOWE W AUOMAYCE PRZEMYSŁOWEJ Zasady arytmetyki stałoprzecinkowej oraz operacji arytmetycznych w formatach Q 1. Zasady arytmetyki stałoprzecinkowej. Kody stałopozycyjne mają ustalone
Bardziej szczegółowoMarcin Różański Zastosowanie arkusza kalkulacyjnego w zadaniach matematycznych. Opiekun stypendysty: mgr Jerzy Mil
Marcin Różański Zastosowanie arkusza kalkulacyjnego w zadaniach matematycznych Opiekun stypendysty: mgr Jerzy Mil 1 Działania na ułamkach Włączanie całości w dodatnich liczbach Obliczania licznika ułamka
Bardziej szczegółowoWYMAGANIA EDUKACYJNE Z MATEMATYKI KLASA IV
WYMAGANIA EDUKACYJNE Z MATEMATYKI KLASA IV Dostateczny LICZBY NATURALNE Wyjaśnianie znaczenia liczb w życiu codziennym. Tworzenie dowolnych liczb z podanych cyfr w zakresie 100. Wskazywanie rzędów: jedności,
Bardziej szczegółowoLiczby naturalne i ca lkowite
Chapter 1 Liczby naturalne i ca lkowite Koncepcja liczb naturalnych i proste operacje arytmetyczne by ly znane już od oko lo 50000 tysiȩcy lat temu. To wiemy na podstawie archeologicznych i historycznych
Bardziej szczegółowoMATEMATYKA W SZKOLE HELIANTUS LICZBY NATURALNE I CA LKOWITE
1 SZKO LA PODSTAWOWA HELIANTUS 0-89 WARSZAWA ul. BAŻANCIA 16 3 1 0 1 3 Oś liczbowa. Liczby ca lkowite x MATEMATYKA W SZKOLE HELIANTUS LICZBY NATURALNE I CA LKOWITE Prof. dr. Tadeusz STYŠ WARSZAWA 018 1
Bardziej szczegółowoKod znak-moduł. Wartość liczby wynosi. Reprezentacja liczb w kodzie ZM w 8-bitowym formacie:
Wykład 3 3-1 Reprezentacja liczb całkowitych ze znakiem Do przedstawienia liczb całkowitych ze znakiem stosowane są następujące kody: - ZM (znak-moduł) - U1 (uzupełnienie do 1) - U2 (uzupełnienie do 2)
Bardziej szczegółowoSamodzielnie wykonaj następujące operacje: 13 / 2 = 30 / 5 = 73 / 15 = 15 / 23 = 13 % 2 = 30 % 5 = 73 % 15 = 15 % 23 =
Systemy liczbowe Dla każdej liczby naturalnej x Î N oraz liczby naturalnej p >= 2 istnieją jednoznacznie wyznaczone: liczba n Î N oraz ciąg cyfr c 0, c 1,..., c n-1 (gdzie ck Î {0, 1,..., p - 1}) taki,
Bardziej szczegółowolic. Monika Rogulska PLAN WYNIKOWY KLASY I GIMNAZJUM SPECJALNEGO PROGRAM: J. SKOWRON DKW / 99
lic. Monika Rogulska PLAN WYNIKOWY KLASY I GIMNAZJUM SPECJALNEGO PROGRAM: J. SKOWRON DKW - 4014-304/ 99 Lp TEMAT L POZIOM WYMAGAŃ Uczeń potrafi: g P PP I LICZBY NATURALNE DO 100 1 Pamięciowe dodawanie
Bardziej szczegółowoWSZYSTKO CO CHCECIE WIEDZIEĆ O MATEMATYCE ALE BOICIE SIĘ SPYTAĆ
WSZYSTKO CO CHCECIE WIEDZIEĆ O MATEMATYCE ALE BOICIE SIĘ SPYTAĆ Dla wszystkich, których przerażają opasłe podręczniki szkolne do matematyki, opracowałem w przystępnej formie to co trzeba wiedzieć by rozpocząć
Bardziej szczegółowoCo to jest wektor? Jest to obiekt posiadający: moduł (długość), kierunek wraz ze zwrotem.
1 Wektory Co to jest wektor? Jest to obiekt posiadający: moduł (długość), kierunek wraz ze zwrotem. 1.1 Dodawanie wektorów graficzne i algebraiczne. Graficzne - metoda równoległoboku. Sprowadzamy wektory
Bardziej szczegółowox 2 = a RÓWNANIA KWADRATOWE 1. Wprowadzenie do równań kwadratowych 2. Proste równania kwadratowe Równanie kwadratowe typu:
RÓWNANIA KWADRATOWE 1. Wprowadzenie do równań kwadratowych Przed rozpoczęciem nauki o równaniach kwadratowych, warto dobrze opanować rozwiązywanie zwykłych równań liniowych. W równaniach liniowych niewiadoma
Bardziej szczegółowoOLIMPIADA MATEMATYCZNA
OLIMPIADA MATEMATYCZNA Na stronie internetowej wwwomgedupl Olimpiady Matematycznej Gimnazjalistów (OMG) ukazały się ciekawe broszury zawierające interesujące zadania wraz z pomysłowymi rozwiązaniami z
Bardziej szczegółowoWYKŁAD 3. Mnożenie i dzielenie
WYKŁAD 3 Mnożenie i dzielenie Mnożenie i dzielenie Ćwiczenie 3.8. Oblicz w ten sposób 1234 2, 111111 2, 100000 2. Z interesujących trików, które kiedyś mogły ułatwiać uczniom mnożenie, omówimy mnożenie
Bardziej szczegółowo1. Liczby naturalne, podzielność, silnie, reszty z dzielenia
1. Liczby naturalne, podzielność, silnie, reszty z dzielenia kwadratów i sześcianów przez małe liczby, cechy podzielności przez 2, 4, 8, 5, 25, 125, 3, 9. 26 września 2009 r. Uwaga: Przyjmujemy, że 0 nie
Bardziej szczegółowoSystemy liczbowe. System dziesiętny
Systemy liczbowe System dziesiętny Dla nas, ludzi naturalnym sposobem prezentacji liczb jest system dziesiętny. Oznacza to, że wyróżniamy dziesięć cytr. Są nimi: zero, jeden, dwa, trzy, cztery, pięć, sześć,
Bardziej szczegółowoMATEMATYKA WYMAGANIA EDUKACYJNE DLA KLASY IV
MATEMATYKA WYMAGANIA EDUKACYJNE DLA KLASY IV Nauczyciel: Jacek Zoń WYMAGANIA EDUKACYJNE NA OCENĘ DOPUSZCZAJĄCĄ DLA KLASY IV : 1. przeczyta i zapisze liczbę wielocyfrową (do tysięcy) 2. zna nazwy rzędów
Bardziej szczegółowo3. Macierze i Układy Równań Liniowych
3. Macierze i Układy Równań Liniowych Rozważamy równanie macierzowe z końcówki ostatniego wykładu ( ) 3 1 X = 4 1 ( ) 2 5 Podstawiając X = ( ) x y i wymnażając, otrzymujemy układ 2 równań liniowych 3x
Bardziej szczegółowoWykład 2. Informatyka Stosowana. 10 października Informatyka Stosowana Wykład 2 10 października / 42
Wykład 2 Informatyka Stosowana 10 października 2016 Informatyka Stosowana Wykład 2 10 października 2016 1 / 42 Systemy pozycyjne Informatyka Stosowana Wykład 2 10 października 2016 2 / 42 Definicja : system
Bardziej szczegółowoSpis treści. Wstęp... 11 CZĘŚĆ I SYSTEM EDUKACYJNY MARII MONTESSORI PODSTAWY PEDAGOGICZNE
Spis treści TOM PIERWSZY Wstęp... 11 CZĘŚĆ I SYSTEM EDUKACYJNY MARII MONTESSORI PODSTAWY PEDAGOGICZNE 1. Znaczenie aktywności dziecka w procesie jego rozwoju i uczenia się... 17 2. Pedagogicznie przygotowane
Bardziej szczegółowoWykład 2. Informatyka Stosowana. 9 października Informatyka Stosowana Wykład 2 9 października / 42
Wykład 2 Informatyka Stosowana 9 października 2017 Informatyka Stosowana Wykład 2 9 października 2017 1 / 42 Systemy pozycyjne Informatyka Stosowana Wykład 2 9 października 2017 2 / 42 Definicja : system
Bardziej szczegółowo1. A 2. A 3. B 4. B 5. C 6. B 7. B 8. D 9. A 10. D 11. C 12. D 13. B 14. D 15. C 16. C 17. C 18. B 19. D 20. C 21. C 22. D 23. D 24. A 25.
1. A 2. A 3. B 4. B 5. C 6. B 7. B 8. D 9. A 10. D 11. C 12. D 13. B 14. D 15. C 16. C 17. C 18. B 19. D 20. C 21. C 22. D 23. D 24. A 25. A Najłatwiejszym sposobem jest rozpatrzenie wszystkich odpowiedzi
Bardziej szczegółowoPRZEKSZTAŁCANIE WZORÓW!
PRZEKSZTAŁCANIE WZORÓW! Przekształcanie wzorów sprawia na początku kłopoty. Wielu uczniów omija zadania gdzie trzeba to zrobić, albo uczy się niepotrzebnie na pamięć tych samych wzorów w innych postaciach.
Bardziej szczegółowoKRYTERIA OCENIANIA OPISOWEGO W NAUCZANIU ZINTEGROWANYM EDUKACJA MATEMATYCZNA KLASA II
KRYTERIA OCENIANIA OPISOWEGO W NAUCZANIU ZINTEGROWANYM EDUKACJA MATEMATYCZNA KLASA II OCENA WSPANIALE WYMAGANIA EDUKACYJNE Wiadomości i umiejętności praktyczne Szybko i bezbłędnie odczytuje wskazania zegara
Bardziej szczegółowoArytmetyka liczb binarnych
Wartość dwójkowej liczby stałoprzecinkowej Wartość dziesiętna stałoprzecinkowej liczby binarnej Arytmetyka liczb binarnych b n-1...b 1 b 0,b -1 b -2...b -m = b n-1 2 n-1 +... + b 1 2 1 + b 0 2 0 + b -1
Bardziej szczegółowoDydaktyka matematyki (II etap edukacyjny) II rok matematyki Semestr letni 2018/2019 Ćwiczenia nr 2
Dydaktyka matematyki (II etap edukacyjny) II rok matematyki Semestr letni 2018/2019 Ćwiczenia nr 2 Zadanie domowe Rozwiązanie zadania: o rozumowanie ucznia ( wzroczne, wycięcie i nałożenie, złożenie) o
Bardziej szczegółowoPrzypomnienie wiadomości dla trzecioklasisty C z y p a m i ę t a s z?
Przypomnienie wiadomości dla trzecioklasisty C z y p a m i ę t a s z? Liczby naturalne porządkowe, (0 nie jest sztywno związane z N). Przykłady: 1, 2, 6, 148, Liczby całkowite to liczby naturalne, przeciwne
Bardziej szczegółowoMatematyka, kl. 5. Konieczne umiejętności
Matematyka, kl. 5 Liczby i działania Program Matematyka z plusem Ocena Konieczne umiejętności Opanowane algorytmy pisemnego dodawania, odejmowania, mnożenia i dzielenia liczb naturalnych. Prawidłowe wykonywanie
Bardziej szczegółowoDydaktyka matematyki (II etap edukacyjny) II rok matematyki Semestr letni 2016/2017 Ćwiczenia nr 6
Dydaktyka matematyki (II etap edukacyjny) II rok matematyki Semestr letni 2016/2017 Ćwiczenia nr 6 Zasady nauczania trzech etapów naukowości poglądowości świadomego i aktywnego uczenia się trwałości wiedzy
Bardziej szczegółowo1. LICZBY DZIAŁ Z PODRĘCZNIKA L.P. NaCoBeZu kryteria sukcesu w języku ucznia
L.P. DZIAŁ Z PODRĘCZNIKA NaCoBeZu kryteria sukcesu w języku ucznia 1. LICZBY 1. Znam pojęcie liczby naturalne, całkowite, wymierne, dodatnie, ujemne, niedodatnie, odwrotne, przeciwne. 2. Potrafię zaznaczyć
Bardziej szczegółowoSystemy zapisu liczb.
Systemy zapisu liczb. Cele kształcenia: Zapoznanie z systemami zapisu liczb: dziesiętny, dwójkowy, ósemkowy, szesnastkowy. Zdobycie umiejętności wykonywania działań na liczbach w różnych systemach. Zagadnienia:
Bardziej szczegółowoTemat: Pojęcie potęgi i wykładniczy zapis liczb. Część I Potęga o wykładniku naturalnym
PRZELICZANIE JEDNOSTEK MIAR Kompleks zajęć dotyczący przeliczania jednostek miar składa się z czterech odrębnych zajęć, które są jednak nierozerwalnie połączone ze sobą tematycznie w takiej sekwencji,
Bardziej szczegółowoWykład 2. Informatyka Stosowana. 8 października 2018, M. A-B. Informatyka Stosowana Wykład 2 8 października 2018, M. A-B 1 / 41
Wykład 2 Informatyka Stosowana 8 października 2018, M. A-B Informatyka Stosowana Wykład 2 8 października 2018, M. A-B 1 / 41 Elementy logiki matematycznej Informatyka Stosowana Wykład 2 8 października
Bardziej szczegółowoSZKOLNA LIGA ZADANIOWA
KLASA 4 - ZESTAW 1 W następujących działaniach wstaw w miejsce gwiazdek brakujące cyfry. Pewna liczba dwucyfrowa ma w rzędzie jedności 5. Jeżeli między jej cyfry wstawimy 0, to liczba ta zwiększy się o
Bardziej szczegółowoTytuł. Autor. Dział. Innowacyjne cele edukacyjne. Czas. Przebieg. Etap 1 - wprowadzenie. Etap 2 - algorytm 3. Sztuka szybkiego liczenia Cz.
Tytuł Sztuka szybkiego liczenia Cz. II Autor Dariusz Kulma Dział Liczby wymierne Innowacyjne cele edukacyjne Zapoznanie uczniów z technikami szybkiego liczenia w pamięci niestosowanymi na lekcjach matematyki:
Bardziej szczegółowoARCHITEKTURA KOMPUTERÓW Systemy liczbowe
ARCHITEKTURA KOMPUTERÓW Systemy liczbowe 20.10.2010 System Zakres znaków Przykład zapisu Dziesiętny ( DEC ) 0,1,2,3, 4,5,6,7,8,9 255 DEC Dwójkowy / Binarny ( BIN ) 0,1 11111 Ósemkowy ( OCT ) 0,1,2,3, 4,5,6,7
Bardziej szczegółowoOperacje arytmetyczne w systemie dwójkowym
Artykuł pobrano ze strony eioba.pl Operacje arytmetyczne w systemie dwójkowym Zasady arytmetyki w systemie binarnym są identyczne (prawie) jak w dobrze nam znanym systemie dziesiętnym. Zaletą arytmetyki
Bardziej szczegółowo93. Jaką liczbę dodatnią należy wpisać w trójkątach, a jaką w kwadratach, aby zachodziła poniższa równość? Podaj trzy różne rozwiązania.
8 Liczby rzeczywiste Liczby rzeczywiste 93. Jaką liczbę dodatnią należy wpisać w trójkątach, a jaką w kwadratach, aby zachodziła poniższa równość? Podaj trzy różne rozwiązania. ( + + ) : ( + + + + + )
Bardziej szczegółowoLICZENIE NA LICZYDLE
www..pl LICZENIE NA LICZYDLE Liczydło polskie i zapis liczb Zaokrąglanie liczb na liczydle Dodawanie na liczydle Odejmowanie na liczydle Mnożenie na liczydle Dzielenie na liczydle Bibliografia LICZYDŁO
Bardziej szczegółowoWYMAGANIA NA POSZCZEGÓLNE OCENY Z MATEMATYKI W KL. 4
WYMAGANIA NA POSZCZEGÓLNE OCENY Z MATEMATYKI W KL. 4 Na ocenę niedostateczną (1) uczeń nie spełnia wymagań koniecznych. Na ocenę dopuszczającą (2) uczeń spełnia wymagania konieczne, tzn.: 1. posiada i
Bardziej szczegółowoPracownia Komputerowa wykład IV
Pracownia Komputerowa wykład IV dr Magdalena Posiadała-Zezula http://www.fuw.edu.pl/~mposiada/pk16 1 Reprezentacje liczb i znaków! Liczby:! Reprezentacja naturalna nieujemne liczby całkowite naturalny
Bardziej szczegółowoZbiór liczb rzeczywistych, to zbiór wszystkich liczb - wymiernych i niewymiernych. Zbiór liczb rzeczywistych oznaczamy symbolem R.
Zbiór liczb rzeczywistych, to zbiór wszystkich liczb - wymiernych i niewymiernych. Zbiór liczb rzeczywistych oznaczamy symbolem R. Liczby naturalne - to liczby całkowite, dodatnie: 1,2,3,4,5,6,... Czasami
Bardziej szczegółowoDla człowieka naturalnym sposobem liczenia jest korzystanie z systemu dziesiętnego, dla komputera natomiast korzystanie z zapisu dwójkowego
Arytmetyka cyfrowa Dla człowieka naturalnym sposobem liczenia jest korzystanie z systemu dziesiętnego, dla komputera natomiast korzystanie z zapisu dwójkowego (binarnego). Zapis binarny - to system liczenia
Bardziej szczegółowoOdwrócimy macierz o wymiarach 4x4, znajdującą się po lewej stronie kreski:
Przykład 2 odwrotność macierzy 4x4 Odwrócimy macierz o wymiarach 4x4, znajdującą się po lewej stronie kreski: Będziemy dążyli do tego, aby po lewej stronie kreski pojawiła się macierz jednostkowa. Na początek
Bardziej szczegółowoMNOŻENIE W SYSTEMACH UZUPEŁNIENIOWYCH PEŁNYCH (algorytm uniwersalny)
MNOŻENIE W SYSTEMACH UZUPEŁNIENIOWYCH PEŁNYCH (algorytm uniwersalny) SPOSÓB 1 (z rozszerzeniem mnożnika): Algorytm jak zwykle jest prosty: lewostronne rozszerzenie mnożnej o kilka cyfr (na pewno wystarczy
Bardziej szczegółowoCele nauczania: a)poznawcze: Cele ogólne kształcenia: -uczeń umie odejmować ułamki dziesiętne. Aktywności matematyczne:
Konspekt lekcji matematyki: Klasa: czwarta Prowadzący: Elżbieta Kruczek, nauczyciel Samorządowej Szkoły Podstawowej w Brześciu (z wykorzystaniem podręcznika Matematyka z plusem) Temat: Odejmowanie ułamków
Bardziej szczegółowoPropozycje rozwiązań zadań otwartych z próbnej matury rozszerzonej przygotowanej przez OPERON.
Propozycje rozwiązań zadań otwartych z próbnej matury rozszerzonej przygotowanej przez OPERON. Zadanie 6. Dane są punkty A=(5; 2); B=(1; -3); C=(-2; -8). Oblicz odległość punktu A od prostej l przechodzącej
Bardziej szczegółowoWYMAGANIA KONIECZNE - OCENA DOPUSZCZAJĄCA:
WYMAGANIA KONIECZNE - OCENA DOPUSZCZAJĄCA: zna pojęcie liczby naturalnej, całkowitej, wymiernej rozumie rozszerzenie osi liczbowej na liczby ujemne umie zaznaczać liczbę wymierną na osi liczbowej umie
Bardziej szczegółowoArytmetyka stałopozycyjna
Wprowadzenie do inżynierii przetwarzania informacji. Ćwiczenie 3. Arytmetyka stałopozycyjna Cel dydaktyczny: Nabycie umiejętności wykonywania podstawowych operacji arytmetycznych na liczbach stałopozycyjnych.
Bardziej szczegółowoDZIAŁ 1. LICZBY NATURALNE I DZIESIĘTNE. DZIAŁANIA NA LICZBACH NATURALNYCH I DZIESIĘTNYCH (40 GODZ.)
Matematyka w otaczającym nas świecie Gra tabliczka mnożenia Karta pracy 1 Po IV klasie szkoły podstawowej Ślimak gra edukacyjna z tabliczką mnożenia 1. Zastosowania matematyki w sytuacjach praktycznych
Bardziej szczegółowoDZIELENIE SIĘ WIEDZĄ I POMYSŁAMI SPOTKANIE ZESPOŁU SAMOKSZTAŁCENIOWEGO
DZIELENIE SIĘ WIEDZĄ I POMYSŁAMI SPOTKANIE ZESPOŁU SAMOKSZTAŁCENIOWEGO Mariusz Pielucha nauczyciel nauczania początkowego Szkoła Podstawowa w Kaźmierzu. CEL: Wykorzystanie szablonów kratkowych do wprowadzenia
Bardziej szczegółowoDydaktyka matematyki (II etap edukacyjny) II rok matematyki Semestr letni 2018/2019 Ćwiczenia nr 7
Dydaktyka matematyki (II etap edukacyjny) II rok matematyki Semestr letni 2018/2019 Ćwiczenia nr 7 Zadanie domowe 0 = 4 4 + 4 4, 2 = 4: 4 + 4: 4, 3 = 4 4: 4 4, 4 = 4 4 : 4 + 4, 6 = 4 + (4 + 4): 4, 7 =
Bardziej szczegółowoKryteria ocen z matematyki w klasie IV
Kryteria ocen z matematyki w klasie IV odejmuje liczby w zakresie 100 z przekroczeniem progu dziesiętnego, zna kolejność wykonywania działań, gdy nie występuję nawiasy, odczytuje współrzędne punktu na
Bardziej szczegółowoScenariusz lekcji Ozobot w klasie: Tabliczka mnożenia
Scenariusz lekcji Ozobot w klasie: Tabliczka mnożenia Opracowanie scenariusza: Richard Born Adaptacja scenariusza na język polski: mgr Piotr Szlagor Tematyka: Informatyka, matematyka, obliczenia, algorytm
Bardziej szczegółowoDodawanie liczb binarnych
1.2. Działania na liczbach binarnych Liczby binarne umożliwiają wykonywanie operacji arytmetycznych (ang. arithmetic operations on binary numbers), takich jak suma, różnica, iloczyn i iloraz. Arytmetyką
Bardziej szczegółowoDydaktyka matematyki (II etap edukacyjny) II rok matematyki Semestr letni 2016/2017 Ćwiczenia nr 7
Dydaktyka matematyki (II etap edukacyjny) II rok matematyki Semestr letni 2016/2017 Ćwiczenia nr 7 Zadanie domowe Zadanie domowe Liczby naturalne (Sztuka nauczania matematyki w szkole podstawowej i gimnazjum,
Bardziej szczegółowoWYMAGANIA EDUKACYJNE Z MATEMATYKI DLA KLASY V wg podstawy programowej z VIII 2008 r.
WYMAGANIA EDUKACYJNE Z MATEMATYKI DLA KLASY V wg podstawy programowej z VIII 2008 r. Ocena niedostateczna: I. Liczby naturalne. Uczeń Rozumie dziesiątkowy system pozycyjny Rozumie różnicę miedzy cyfrą
Bardziej szczegółowoPodział sieci na podsieci wytłumaczenie
Podział sieci na podsieci wytłumaczenie Witam wszystkich z mojej grupy pozdrawiam wszystkich z drugiej grupy. Tematem tego postu jest podział sieci na daną ilość podsieci oraz wyznaczenie zakresów IP tychże
Bardziej szczegółowoMgr Kornelia Uczeń. WYMAGANIA na poszczególne oceny-klasa VII-Szkoła Podstawowa
Mgr Kornelia Uczeń WYMAGANIA na poszczególne oceny-klasa VII-Szkoła Podstawowa Oceny z plusem lub minusem otrzymują uczniowie, których wiadomości i umiejętności znajdują się na pograniczu wymagań danej
Bardziej szczegółowoWYMAGANIA EDUKACYJNE Z MATEMATYKI DLA KLASY IV
WYMAGANIA EDUKACYJNE Z MATEMATYKI DLA KLASY IV Dział I Liczby naturalne część 1 Uczeń otrzymuje ocenę dopuszczającą, jeśli: 1. odczytuje współrzędne punktów zaznaczonych na osi liczbowej (proste przypadki)
Bardziej szczegółowoMatematyka z kluczem
Matematyka z kluczem Wymagania edukacyjne z matematyki Klasa 4 rok szkolny 2017/2018 Danuta Górak Dział I Liczby naturalne część 1 Wymagania na poszczególne oceny 1. odczytuje współrzędne punktów zaznaczonych
Bardziej szczegółowoWYMAGANIA EDUKACYJNE Z MATEMATYKI KLASA IV
WYMAGANIA EDUKACYJNE Z MATEMATYKI KLASA IV Ocena Dopuszczający Osiągnięcia ucznia odczytuje współrzędne punktów zaznaczonych na osi liczbowej (proste przypadki) odczytuje i zapisuje słownie liczby zapisane
Bardziej szczegółowoWYMAGANIA na poszczególne oceny-klasa I Gimnazjum
WYMAGANIA na poszczególne oceny-klasa I Gimnazjum Oceny z plusem lub minusem otrzymują uczniowie, których wiadomości i umiejętności znajdują się na pograniczu wymagań danej oceny głównej. (Znaki + i -
Bardziej szczegółowoWymagania na poszczególne oceny szkolne w klasie V
Wymagania na poszczególne oceny szkolne w klasie V Wymagania Dział 1. Liczby naturalne i dziesiętne. Działania na liczbach naturalnych i dziesiętnych Uczeń: Zastosowania matematyki praktycznych liczbę
Bardziej szczegółowo