Mikroekonomia A.4. Mikołaj Czajkowski
|
|
- Alojzy Wojciechowski
- 8 lat temu
- Przeglądów:
Transkrypt
1 Mikroekonomia A.4 Mikołaj Czajkowski
2 Funkcja użyteczności Jeśli preferencje są racjonalne i ciągłe mogą zostać opisane za pomocą funkcji użyteczności Funkcja użyteczności to funkcja, która spełnia warunki: y U U y y U U y y U U y Funkcja użyteczności jest funkcją porządkową: U 6 i U y 2 to jest ściśle preferowany względem y, ale niekoniecznie trzy razy bardziej Wartości funkcji nazywamy poziomami użyteczności
3 Funkcja użyteczności Funkcja użyteczności porządkuje różne koszyki nadając im różne wartości użyteczności Każda relacja preferencji może mieć wiele funkcji użyteczności, które będą ją reprezentować Każda ściśle rosnąca transformacja funkcji użyteczności jest nową funkcją użyteczności, która reprezentuje te same preferencje Np. załóżmy, że U reprezentuje preferencje, 2 2 Wtedy 4, 4, 2,3 6, U 2, 2 4 U U Ściśle rosnąca transformacja funkcji użyteczności to np. 2 2 U, U, 0 0 Czy nowa funkcja zachowuje preferencje?
4 2 Funkcje użyteczności przykłady Krzywa obojętności zawiera wszystkie koszyki, które dają tę samą użyteczność Jak wyglądają krzywe obojętności funkcji użyteczności o U, postaci? U, 2 U
5 Funkcje użyteczności przykłady Jak wyglądają krzywe obojętności funkcji użyteczności o U, postaci? Funkcja użyteczności dóbr doskonale substytucyjnych: U, a b 5 9 3
6 Funkcje użyteczności przykłady Jak wyglądają krzywe obojętności funkcji użyteczności o postaci U, min,? a b Funkcja użyteczności dóbr doskonale komplementarnych: U, min a, b min, 9 min, 5 5 9
7 2 Funkcje użyteczności przykłady Quasi liniowa funkcja użyteczności ma postać: U, f Liniowa tylko względem (numeraire) quasi liniowa Np. 2 U, 2 2 Krzywe obojętności quasi liniowej funkcji obojętności są liniowym przesunięciem samych siebie wzdłuż osi reprezentującej quasi liniowe dobro Dla danej ilości niequasiliniowego dobra nachylenie wszystkich izokwant jednakowe
8 2 Funkcje użyteczności Funkcja użyteczności typu Cobba Douglasa U, A Wszystkie krzywe obojętności hiperbolami osie asymptotami każdej z nich
9 Funkcje użyteczności Przykłady krzywych obojętności jako izolinie funkcji użyteczności w 3D Przykłady dla różnych funkcji użyteczności (plik Maple)
10 Użyteczność krańcowa W ekonomii krańcowa (ang. marginal) oznacza wynikająca ze zmiany zmiennej o jednostkę, gdzie jednostka jest nieskończenie mała Np. jak zmienia się użyteczność na skutek (krańcowej) zmiany ilości jednego z dóbr w koszyku? Użyteczność krańcowa U du U MU lim i i 0 d i i i Więc jeśli funkcja różniczkowalna krańcowa użyteczność dobra to pochodna funkcji użyteczności po tym dobrze
11 Użyteczność krańcowa Na przykład dla funkcji: MU MU U, U U Krańcowa użyteczność danego dobra dla tej funkcji użyteczności zależy od tego jaki jest aktualnie poziom drugiego dobra w koszyku A A 2 2 A
12 Krańcowa stopa substytucji Powiedzieliśmy, że krańcowa stopa substytucji określa jak można wymieniać dobra w koszyku, pozostając na k.o. Krzywa obojętności dla użyteczności k dana jest przez: U, k Całkowita zmiana użyteczności pochodna funkcji po każdej ze zmiennych razy krańcowo mała zmiana tej zmiennej równa zero, ponieważ chcemy zostać na krzywej obojętności Przekształcając: U 2 d U d 2 d U U d 2 0 MU MU 2
13 Krańcowa stopa substytucji Pozostając na danej krzywej obojętności krańcowo małe ilości dóbr d można wymieniać w proporcji d2 określonej przez MRS: U U MU 2 MRS 2 2 MU MRS określa nachylenie krzywej obojętności w danym jej punkcie Na przykład dla funkcji użyteczności typu Cobba Douglasa o postaci MRS wynosi: U, 2 2 U U MRS 2
14 Krańcowa stopa substytucji Dla funkcji użyteczności U, : MRS 8 6 MRS 6 MRS MRS 2 2 U = 36 6 U = 8
15 Krańcowa stopa substytucji Dla quasi liniowej funkcji użytecznościu, f U MU f MU MRS 2 U Krańcowa stopa substytucji nie zależy od więc nachylenie krzywych obojętności dla tego samego będzie równe 2 f 2
16 Krańcowa stopa substytucji U, 2 Dla quasi liniowej funkcji użyteczności 2 2 MRS MRS f 2 MRS niezależna od 2
17 Krańcowa stopa substytucji Dla doskonałych substytutów: MRS U, a b U U a b MRS stałe w każdym punkcie określa nachylenie krzywych obojętności (które są prostymi) 5 9 3
18 2 Krańcowa stopa substytucji Dla dóbr doskonale komplementarnych: a b U, min a, b MRS nieokreślone (funkcja użyteczności nieróżniczkowalna) MRS? Wiele możliwych stycznych MRS Nieskończenie wiele jednostek 2 na odrobinę MRS 0 Zero jednostek 2 na odrobinę
19 Krańcowa stopa substytucji Powiedzieliśmy, że każda ściśle rosnąca transformacja funkcji użyteczności zachowuje te same preferencje Co więcej nie zmienia MRS U V f U,, 2 MRS U U 2 MRS V U U fu V U U fu MRS jest niezależne od monotonicznych transformacji funkcji
20
21
22
23
24
25
26 Praca samodzielna Literatura V: 4 SH: 6 (Differentiation), 7 (Derivatives in Use), 8 (Single Variable Optimization), (Functions of Many Variables), 3 (Multivariable Optimization), 4 (Constrained Optimization) PR: 3. P: 3.2 BB: NS: 3
27 Praca samodzielna Zadania HW4 (www) ZZV: :49:28
Mikroekonomia A.3. Mikołaj Czajkowski
Mikroekonomia A.3 Mikołaj Czajkowski Preferencje Konsumenci mają preferencje wybierają te koszyki, które dają im najwyższe zadowolenie Relacja preferencji umożliwia porównywanie 2 koszyków xy, X x ściśle
Użyteczność W. W. Norton & Company, Inc.
4 Użyteczność 2010 W. W. Norton & Company, Inc. Funkcja Użyteczności ufunkcja użyteczności jest sposobem przypisania liczb każdemu koszykowi, bardziej preferowane koszyki otrzymują wyższe liczby. 2010
Mikroekonomia A.2. Mikołaj Czajkowski
Mikroekonomia A.2 Mikołaj Czajkowski Zbiór konsumpcyjny Konsumenci mają do wyboru różne poziomy konsumpcji różnych dóbr Zwykle zakładamy skończoną liczbę dóbr (np. L) Konsumowany koszyk x1 x x L Najczęściej
Podstawy teorii zachowania konsumentów. mgr Katarzyna Godek
Podstawy teorii zachowania konsumentów mgr Katarzyna Godek zachowanie racjonalne wewnętrznie spójne, logiczne postępowanie zmierzające do maksymalizacji satysfakcji jednostki. Funkcje gospodarstwa domowego:
Rynek W. W. Norton & Company, Inc.
1 Rynek 2010 W. W. Norton & Company, Inc. Modelowanie Ekonomiczne uco wpływa na co w systemie ekonomicznym? una jakim poziomie uogólnienia możemy modelować zjawisko ekonomiczne? uktóre zmienne są egzogeniczne,
2010 W. W. Norton & Company, Inc. Popyt
2010 W. W. Norton & Company, Inc. Popyt Własności Funkcji Popytu Statyka porównawcza funkcji popytu pokazuje jak zmienia się funkcja popytu x 1 *(p 1,p 2,y) i x 2 *(p 1,p 2,y) gdy zmianie ulegają ceny
Wykład V. Równowaga ogólna
Wykład V Równowaga ogólna Równowaga cząstkowa Równośd popytu i podaży na pojedynczym rynku (założenie: działania na jednym rynku nie mają wpływu, bądź mają bardzo mały wpływ na inne rynki) Równowaga ogólna
Metoda mnożników Lagrange a i jej zastosowania w ekonomii
Maciej Grzesiak Metoda mnożników Lagrange a i jej zastosowania w ekonomii 1. Metoda mnożników Lagrange a znajdowania ekstremum warunkowego Pochodna kierunkowa i gradient. Dla prostoty ograniczymy się do
Mikroekonomia. Wykład 5
Mikroekonomia Wykład 5 Model czystej wymiany Brak produkcji, tylko zasoby początkowe, czyli nie wiadomo jak czynniki produkcji zostały przekształcone w produkt końcowy. Równowaga ogólna: wszystkie rynki
EKONOMIA wykład 3 TEORIA WYBORU KONSUMENTA. Prowadzący zajęcia: dr inż. Magdalena Węglarz Politechnika Wrocławska Wydział Informatyki i Zarządzania
EKONOMIA wykład 3 TEORIA WYBORU KONSUMENTA Prowadzący zajęcia: dr inż. Magdalena Węglarz Politechnika Wrocławska Wydział Informatyki i Zarządzania PLAN WYKŁADU 1. Model wyboru konsumenta 1. Dochód konsumenta
Przychody skali. Proporcjonalne zwiększenie czynników = zwiększenie produkcji, ale czy również proporcjonalne? W zależności od odpowiedzi:
Przychody skali Proporcjonalne zwiększenie czynników = zwiększenie produkcji, ale czy również proporcjonalne? W zależności od odpowiedzi: Stałe przychody skali, CRS (constant returns to scale) Rosnące
Metoda mnożników Lagrange a i jej zastosowania w ekonomii
Maciej Grzesiak Metoda mnożników Lagrange a i jej zastosowania w ekonomii 1 Metoda mnożników Lagrange a znajdowania ekstremum warunkowego Pochodna kierunkowa i gradient Dla prostoty ograniczymy się do
RÓWNOWAGA KONSUMENTA PODSTAWOWE ZAŁOŻENIA DECYZJE KONSUMENTA TEORIA UŻYTECZNOŚCI KRAŃCOWEJ TEORIE OPTIMUM KONSUMENTA
RÓWNOWAGA KONSMENTA PODSTAWOWE ZAŁOŻENA Celem działalności konsumenta jest maksymalizacja użyteczności (satysfakcji) czerpanej ze spożycia koszyka dóbr oraz z czasu wolnego. DECZJE KONSMENTA Wybór struktury
Decyzje konsumenta I WYBIERZ POPRAWNE ODPOWIEDZI
Decyzje konsumenta I WYBIERZ POPRAWNE ODPOWIEDZI 1. Dobrami podrzędnymi nazywamy te dobra: a. które nie mają bliskich substytutów b. na które popyt maleje w miarę wzrostu dochodów konsumenta, przy pozostałych
Minimalizacja kosztu
Minimalizacja kosztu Minimalizacja kosztów polega na uzyskiwaniu danej wielkości produkcji po najniższym możliwym koszcie Graficznie która kombinacja czynników na izokwancie najtańsza? Analitycznie minimalizacja
Teoria wyboru konsumenta. Marta Lubieniecka Tomasz Szemraj
Teoria wyboru konsumenta Marta Lubieniecka Tomasz Szemraj Teoria wyboru konsumenta 1) Przedmiot wyboru konsumenta na rynku towarów. 2) Zmienne decyzyjne, parametry rynkowe i preferencje jako warunki wyboru.
Zadania z ekonomii matematycznej Teoria konsumenta
Paweł Kliber Zadania z ekonomii matematycznej Teoria konsumenta Zad Dla podanych niżej funcji użyteczności: (a u (x x = x + x (b u (x x = x x (c u (x x = x x (d u (x x = x x 4 (e u (x x = x + x = x + x
IV. Relacje. Grzegorz Kosiorowski. Uniwersytet Ekonomiczny w Krakowie. rzegorz Kosiorowski (Uniwersytet Ekonomiczny w Krakowie) IV.
IV. Relacje Grzegorz Kosiorowski Uniwersytet Ekonomiczny w Krakowie rzegorz Kosiorowski (Uniwersytet Ekonomiczny w Krakowie) IV. Relacje 1 / 32 1 Relacje - wstępne definicje 2 Relacje preferencji i obojętności
Podstawy ekonomii TEORIA PRODUKCJI
Podstawy ekonomii TEORIA PRODUKCJI Opracowanie: dr Tomasz Taraszkiewicz Proces i funkcja produkcji Proces produkcji proces transformacji czynników wytwórczych na produkty gotowe, przy czym uzyskane efekty
Mikroekonomia. Wykład 4
Mikroekonomia Wykład 4 Ekonomia dobrobytu Na rynku doskonale konkurencyjnym, na którym występuje dwóch konsumentów scharakteryzowanych wypukłymi krzywymi obojętności, równowaga ustali się w prostokącie
2010 W. W. Norton & Company, Inc. Minimalizacja Kosztów
010 W. W. Norton & Company, Inc. Minimalizacja Kosztów Minimalizacja Kosztów Przedsiębiorstwo minimalizuje koszty, jeśli produkuje daną wielkość produkcji y 0 według najmniejszych możliwych kosztów. c(y)
Mikro II: Użyteczność, Ograniczenie budżetowe i Wybór
Mikro II: Użyteczność, Ograniczenie budżetowe i Wybór Jacek Suda (slajdy: Krzysztof Makarski) 1 / 49 Użyteczność Wst ep Przypomnijmy: Podstawy teoria konsumenta. Zastosowanie wsz edzie. W szczególności
Teoria popytu. Popyt indywidualny konsumenta
Teoria popytu Popyt indywidualny konsumenta Koszyk towarów Definicja 1 Wektor x=(x 1,x 2,x 3,...,x n ) taki, że x i 0 dla każdego i,w którym i-ta współrzędna oznacza ilość towaru nr i, którą konsument
C~A C > B C~C Podaj relacje indyferencji, silnej i słabej preferencji. Zapisz zbiór koszyków indyferentnych
ZADANIA EGZAMIN EKONOMIA MATEMATYCZNA TEORIA POPYTU a. Podaj iloczyn kartezjański zbiorów X={,3,4}, Y={,} b. Narysuj iloczyn kartezjański zbiorów X=[,], Y=[,3]. Dane są punkty A(3,4) i B(,). Oblicz odległość
I. Pochodna i różniczka funkcji jednej zmiennej. 1. Definicja pochodnej funkcji i jej interpretacja fizyczna. Istnienie pochodnej funkcji.
I. Pochodna i różniczka funkcji jednej zmiennej. 1. Definicja pochodnej funkcji i jej interpretacja fizyczna. Istnienie pochodnej funkcji. Niech x 0 R i niech f będzie funkcją określoną przynajmniej na
Mikroekonomia B.4. Mikołaj Czajkowski
Mikroekonomia B.4 Mikołaj Czajkowski Minimalizacja kosztów Minimalizacja kosztów (przy zadanej wielkości produkcji) Pozwala wyprowadzić funkcję TC i rozwiązać problem maksymalizacji zysków wykorzystując
Mikroekonomia. Wykład 7
Mikroekonomia Wykład 7 Dobra wspólne Przykład: publiczne pastwisko, na którym okoliczni mieszkańcy wypasają krowy (c). Całkowita produkcja mleka: f(c) gdzie f >0 oraz f
Mikroekonomia. Wykład 3
Mikroekonomia Wykład 3 Model czystej wymiany Jednostki dysponują stałymi zasobami dóbr i dobra te mogą wymieniać między sobą (proces produkcji zostaje pominięty) Dwóch konsumentów (lub dwa rodzaje konsumentów):
Wstęp do wydania polskiego Od tłumacza Przedmowa 1. Rynek 1.1. Budowanie modelu 1.2. Optymalizacja i równowaga 1.3. Krzywa popytu 1.4.
Wstęp do wydania polskiego Od tłumacza Przedmowa 1. Rynek 1.1. Budowanie modelu 1.2. Optymalizacja i równowaga 1.3. Krzywa popytu 1.4. Krzywa podaży 1.5. Równowaga rynkowa 1.6. Statyka porównawcza 1.7.
Wprowadzenie Po co uczyć (się) teorii ekonomii?
Wprowadzenie Po co uczyć (się) teorii ekonomii? a po co uczyć matematyki? - ćwiczenie umysłu żeby oswoić studentów z terminologią później pisząc pracę magisterską czy też komunikując się z innymi nie muszą
Użyteczność całkowita
Teoria konsumenta 1.Użyteczność całkowita i krańcowa 2.Preferencje konsumenta, krzywa obojętności i mapa obojętności 3.Równowaga konsumenta, nadwyżka konsumenta 4.Zmiany dochodów i zmiany cen dóbr oraz
Mikroekonomia B.2. Mikołaj Czajkowski
Mikroekonomia B.2 Mikołaj Czajkowski Przychody skali Proporcjonalne zwiększenie czynników = zwiększenie produkcji, ale czy również proporcjonalne? W zależności od odpowiedzi: Stałe przychody skali, CRS
Teoria produkcji pojęcie, prawa, izokwanty. Funkcja produkcji pojęcie, przykłady.
Przedmiot: EKONOMIA MATEMATYCZNA Katedra: Ekonomii Opracowanie: dr hab. Jerzy Telep Temat: Matematyczna teoria produkcji Zagadnienia: Teoria produkcji pojęcie, prawa, izokwanty. Funkcja produkcji pojęcie,
Wprowadzenie Po co uczyć (się) teorii ekonomii?
Wprowadzenie Po co uczyć (się) teorii ekonomii? a po co uczyć matematyki? - ćwiczenie umysłu żeby oswoić studentów z terminologią później pisząc pracę magisterską czy też komunikując się z innymi nie muszą
3. O czym mówi nam marginalna (krańcowa) produktywność:
Ʊ1. 诲眤诲眤眪 眪 Zbiór produkcyjny: a) to zbiór wszystkich nakładów czynników produkcji, b) wykazuje możliwe techniki wytwarzania, c) pokazuje techniczne możliwości, d) poprawne są odpowiedzi a, c, e) poprawne
Teoria zachowania konsumenta. dr Sylwia Machowska
Teoria zachowania konsumenta dr Sylwia Machowska Plan wykładu Podstawy teorii zachowania konsumenta Teoria malejącej użyteczności krańcowej Teoria krzywych obojętności Krzywa dochodowo-konsumpcyjna Krzywa
ZESTAWY ZADAŃ Z EKONOMII MATEMATYCZNEJ
ZESTAWY ZADAŃ Z EKONOMII MATEMATYCZNEJ Zestaw 5 1.Narynkuistniejądwajhandlowcyidwatowary,przyczymtowarupierwszegosą3sztuki,adrugiego 2sztuki. a). Jak wygląda zbiór alokacji dopuszczalnych, jeśli towary
Krańcowa stopa substytucji. Linia ograniczenia budżetowego konsumenta. Zmiana położenia linii ograniczenia budżetowego
211-2-21 UŻTCZNOŚĆ CŁKOWIT I MRGINLN Krzywa obojętności konsumenta Mapa krzywych obojętności konsumenta UC UM Krzywa użyteczności całkowitej Krzywa użyteczności marginalnej C I 1 I 2 I 3 obro X obro X
DODATEK DO Przykładu 1. 1) Do czego doprowadzi zmiana relacji między PL a cenami dóbr przy niezmienionej. relacji PX/PY: Wniosek: zmiana technologii
DODATEK DO Przykładu 1 W oryginalnym przykładzie relacja cen odzwierciedla następującą technologie produkcji dóbr: 1 2 2 1) Do czego doprowadzi zmiana relacji między PL a cenami dóbr przy niezmienionej
MIKROEKONOMIA. Dr hab. Prof. UW Marek Bednarski
MIKROEKONOMIA Dr hab. Prof. UW Marek Bednarski EKONOMIA to nauka zajmująca się badanie zachowań podmiotów gospodarczych w dziedzinie wykorzystywania ograniczonych zasobów, które mogą być w rozmaity sposób
MIKROEKONOMIA. mgr Maciej Szczepankiewicz. Katedra Nauk Ekonomicznych. semestr zimowy 2015/2016
MIKROEKONOMIA semestr zimowy 2015/2016 mgr Maciej Szczepankiewicz Katedra Nauk Ekonomicznych Kontakt E: maciej@szczepankiewicz.net Dyżury: Wtorek 12-13.30 nieparzyste 10.15-11.45 parzyste Środa 13.15-14.45
WKLĘSŁOŚĆ I WYPUKŁOŚĆ KRZYWEJ. PUNKT PRZEGIĘCIA.
WKLĘSŁOŚĆ I WYPUKŁOŚĆ KRZYWEJ. PUNKT PRZEGIĘCIA. Załóżmy, że funkcja y f jest dwukrotnie różniczkowalna w Jeżeli Jeżeli przedziale a;b. Punkt P, f nazywamy punktem przegięcia funkcji y f wtedy i tylko
2010 W. W. Norton & Company, Inc. Wybór Międzyokresowy
2010 W. W. Norton & Company, Inc. Wybór Międzyokresowy Wybór Międzyokresowy Dochód często jest otrzymywany w stałych kwotach, np. miesięczna pensja. Jaki jest podział dochodu na kolejne miesiące? (oszczędności
Funkcje elementarne. Ksenia Hladysz Własności 2. 3 Zadania 5
Funkcje elementarne Ksenia Hladysz 16.10.014 Spis treści 1 Funkcje elementarne. 1 Własności 3 Zadania 5 1 Funkcje elementarne. Są to funkcje określone wzorami zawierającymi skończoną ilość operacji algebraicznych
Nazwisko i Imię zł 100 zł 129 zł 260 zł 929 zł 3. Jeżeli wraz ze wzrostem dochodu, maleje popyt na dane dobro to jest to: (2 pkt)
Nazwisko i Imię... Numer albumu... A 1. Utrata wartości dobra kapitałowego w ciągu roku będąca rezultatem wykorzystania tego dobra w procesie produkcji nazywana jest: (2 pkt) ujemnym przepływem pieniężnym
1 Metody rozwiązywania równań nieliniowych. Postawienie problemu
1 Metody rozwiązywania równań nieliniowych. Postawienie problemu Dla danej funkcji ciągłej f znaleźć wartości x, dla których f(x) = 0. (1) 2 Przedział izolacji pierwiastka Będziemy zakładać, że równanie
Teoria wyboru konsumenta (model zachowań konsumenta) Gabriela Przesławska Uniwersytet Wrocławski Instytut Nauk Ekonomicznych Zakład Polityki
Teoria wyboru konsumenta (model zachowań konsumenta) Gabriela Przesławska Uniwersytet Wrocławski Instytut Nauk Ekonomicznych Zakład Polityki Gospodarczej Analiza postępowania konsumenta może być prowadzona
Mikroekonomia. Wykład 6
Mikroekonomia Wykład 6 Rodzaje dóbr Dobra Publiczne Konsumpcję takich dóbr charakteryzują zasady niewykluczalności oraz niekonkurencyjności. Zasada niewykluczalności wszyscy konsumenci mogą wykorzystywać
11. Pochodna funkcji
11. Pochodna funkcji Definicja pochodnej funkcji w punkcie. Niech X R będzie zbiorem niepustym, f:x >R oraz niech x 0 X. Funkcję określoną wzorem, nazywamy ilorazem różnicowym funkcji f w punkcie Mówimy,
MECHANIZM RYNKOWY. dr Sylwia Machowska
MECHANIZM RYNKOWY dr Sylwia Machowska 1 Plan wykładu Rynek Popyt, wielkość popytu, prawo popytu Podaż, wielkość podaży, prawo podaży Równowaga rynkowa 2 Rynek 3 Rynek Rynek to proces wzajemnego oddziaływania
Elementy rachunku różniczkowego i całkowego
Elementy rachunku różniczkowego i całkowego W paragrafie tym podane zostaną elementarne wiadomości na temat rachunku różniczkowego i całkowego oraz przykłady jego zastosowania w fizyce. Małymi literami
Mikroekonomia II: Kolokwium, grupa II
Mikroekonomia II: Kolokwium, grupa II Prowadząca: Martyna Kobus 2012-06-11 Piszemy 90 minut. Sprawdzian jest za 70 punktów. Jest 10 pytań testowych, każde za 2 punkty (łącznie 20 punktów za test) i 3 zadania,
Mikro II: Popyt, Preferencje Ujawnione i Równanie S luckiego
Mikro II: Popyt, Preferencje Ujawnione i Równanie S luckiego Jacek Suda (slajdy: Krzysztof Makarski) 1 / 47 Popyt Wst ep Przypomnijmy: Podstawy teoria konsumenta. Zastosowanie wsz edzie. W szczególności
9 Funkcje Użyteczności
9 Funkcje Użyteczności Niech u(x) oznacza użyteczność wynikającą z posiadania x jednostek pewnego dobra. Z założenia, 0 jest punktem referencyjnym, czyli u(0) = 0. Należy to zinterpretować jako użyteczność
Zestaw 3 Optymalizacja międzyokresowa
Zestaw 3 Optymalizacja międzyokresowa W modelu tym rozważamy optymalny wybór konsumenta dotyczący konsumpcji w okresie obecnym i w przyszłości. Zakładając, że nasz dochód w okresie bieżącym i przyszłym
Każde pytanie zawiera postawienie problemu/pytanie i cztery warianty odpowiedzi, z których tylko jedna jest prawidłowa.
Każde pytanie zawiera postawienie problemu/pytanie i cztery warianty odpowiedzi, z których tylko jedna jest prawidłowa. 1. Możliwości finansowe konsumenta opisuje równanie: 2x + 4y = 1. Jeżeli dochód konsumenta
Ekonomia matematyczna - 1.2
Ekonomia matematyczna - 1.2 6. Popyt Marshalla, a popyt Hicksa. Poruszać się będziemy w tzw. standardowym polu preferencji X,, gdzie X R n i jest relacją preferencji, która jest: a) rosnąca (tzn. x y x
wielkosci czynnika popytu dobra wielkosci ceny popytu na dobrox popytu ceny
ELASTYCZNOŚCI POPYTU: Elastyczności i podaży 1. cenowa elastyczność mierzy, o ile procent zmieni się wielkość pod wpływem jednoprocentowej zmiany dobra lub usługi 2. dochodowa elastyczność mierzy, o ile
1) Granica możliwości produkcyjnych Krzywa transformacji jest to zbiór punktów reprezentujących różne kombinacje ilościowe dwóch produktów, które gospodarka narodowa może wytworzyć w danym okresie przy
Ekonometria. Model nieliniowe i funkcja produkcji. Jakub Mućk. Katedra Ekonomii Ilościowej
Ekonometria Model nieliniowe i funkcja produkcji Jakub Mućk Katedra Ekonomii Ilościowej Jakub Mućk Ekonometria Wykład 7 i funkcja produkcji 1 / 23 Agenda 1 2 3 Jakub Mućk Ekonometria Wykład 7 i funkcja
Analiza matematyczna - pochodna funkcji 5.8 POCHODNE WYŻSZYCH RZĘDÓW
5.8 POCHODNE WYŻSZYCH RZĘDÓW Drugą pochodną nazywamy pochodną funkcji pochodnej f () i zapisujemy f () = [f ()] W ten sposób możemy też obliczać pochodne n-tego rzędu. Obliczmy wszystkie pochodne wielomianu
dr Bartłomiej Rokicki Katedra Makroekonomii i Teorii Handlu Zagranicznego Wydział Nauk Ekonomicznych UW
Katedra Makroekonomii i Teorii Handlu Zagranicznego Wydział Nauk Ekonomicznych UW Międzyokresowy handel i konsumpcja Międzyokresowy handel występuje gdy zasoby mogą być transferowane w czasie, czyli gdy
Księgarnia PWN: Hal R. Varian Mikroekonomia. Kurs średni ujęcie nowoczesne
Księgarnia PWN: Hal R. Varian Mikroekonomia. Kurs średni ujęcie nowoczesne Przedmowa do wydania polskiego 17 Przedmowa 23 Rozdział 1. Rynek 31 1.1. Budowanie modelu 31 1.2. Optymalizacja i równowaga 32
Teoria produkcji i wyboru producenta Lista 8
Definicje Teoria produkcji i wyboru producenta Lista 8 krótki i długi okres stałe i zmienne czynniki produkcyjne produkt krzywa produktu całkowitego produkt krańcowy prawo malejącego produktu krańcowego
Wykład 4 Przebieg zmienności funkcji. Badanie dziedziny oraz wyznaczanie granic funkcji poznaliśmy na poprzednich wykładach.
Wykład Przebieg zmienności funkcji. Celem badania przebiegu zmienności funkcji y = f() jest poznanie ważnych własności tej funkcji na podstawie jej wzoru. Efekty badania pozwalają naszkicować wykres badanej
MAKROEKONOMIA II K A T A R Z Y N A Ś L E D Z I E W S K A
MAKROEKONOMIA II KATA RZYNA ŚLEDZIEWSKA MAKROKONOMIAII Organizacja zajęć Zasady zaliczenia Struktura wykładu Podręcznik ORGANIZACJA ZAJĘĆ Wykładowca dr hab. Katarzyna Śledziewska Katedra Makroekonomii
PRZEWODNIK PO PRZEDMIOCIE RODZAJ ZAJĘĆ LICZBA GODZIN W SEMESTRZE WYKŁAD ĆWICZENIA LABORATORIUM PROJEKT SEMINARIUM
Politechnika Częstochowska, Wydział Zarządzania PRZEWODNIK PO PRZEDMIOCIE Nazwa przedmiotu Mikroekonomia Kierunek angielski język biznesu Forma studiów stacjonarne Poziom kwalifikacji I stopnia Rok I Semestr
Mikro II: Popyt, Preferencje Ujawnione i Równanie S luckiego
Mikro II: Popyt, Preferencje Ujawnione i Równanie S luckiego Krzysztof Makarski 6 Popyt Wstep Przypomnijmy: Podstawy teoria konsumenta. Zastosowanie wszedzie. W szczególności poszukiwanie informacji zawartych
1. Pochodna funkcji. 1.1 Pierwsza pochodna - definicja i własności Definicja pochodnej
. Pierwsza pochodna - definicja i własności.. Definicja pochodnej Definicja Niech f : a, b) R oraz niech 0 a, b). Mówimy, że funkcja f ma pochodna w punkcie 0, którą oznaczamy f 0 ), jeśli istnieje granica
Ekonomiczny Uniwersytet Dziecięcy
Ekonomiczny Uniwersytet Dziecięcy Budżet konsumenta i podejmowanie decyzji prof. Piotr Banaszyk Uniwersytet Ekonomiczny w Poznaniu 30 listopada 2018 r. EKONOMICZNY UNIWERSYTET DZIECIĘCY Copywrite Błażej
Czym jest użyteczność?
Czym jest użyteczność? W teorii gier: Ilość korzyści (czy też dobrobytu ), którą gracz osiąga dla danego wyniku gry. W ekonomii: Zdolność dobra do zaspokajania potrzeb. Określa subiektywną przyjemność,
Wykład 5. Zagadnienia omawiane na wykładzie w dniu r
Wykład 5. Zagadnienia omawiane na wykładzie w dniu 14.11.2018r Definicja (iloraz różnicowy) Niech x 0 R oraz niech funkcja f będzie określona przynajmnniej na otoczeniu O(x 0 ). Ilorazem różnicowym funkcji
88. Czysta stopa procentowa. 89. Rynkowa (nominalna) stopa procentowa. 90. Efektywna stopa procentowa. 91. Oprocentowanie składane. 92.
34 Podstawowe pojęcia i zagadnienia mikroekonomii 88. zysta stopa procentowa zysta stopa procentowa jest teoretyczną ceną pieniądza, która ukształtowałaby się na rynku pod wpływem oddziaływania popytu
Pochodną funkcji w punkcie nazywamy granicę ilorazu różnicowego w punkcie gdy przyrost argumentu dąży do zera: lim
Definicja pochodnej Niech będzie funkcją określoną w pewnym przedziale i niech będzie punktem wewnętrznym tego przedziału. Liczbę dowolną, ale taką, że nazywamy przyrostem argumentu, a różnicę nazywamy
Mikro II: Popyt, Preferencje Ujawnione i Równanie S luckiego
Mikro II: Popyt, Preferencje Ujawnione i Równanie S luckiego Krzysztof Makarski 6 Popyt Wstep Przypomnijmy: Podstawy teoria konsumenta. Zastosowanie wszedzie. W szczególności poszukiwanie informacji zawartych
Mikro II: Technologia, Maksymalizacja zysku i Minimalizacja kosztów.
Mikro II: Technologia, Maksymalizacja zysku i Minimalizacja kosztów. Jacek Suda (slajdy: Krzysztof Makarski) 1 / 39 Technologia Wst ep. Przypomnijmy: Teoria konsumenta. w szczególności krzywa popytu. Teraz
Ćwiczenia 3, Makroekonomia II, Listopad 2017, Odpowiedzi
Ćwiczenia 3, Makroekonomia II, Listopad 2017, Odpowiedzi Pytanie 1. a) Jeśli gospodarstwo domowe otrzyma spadek, będzie miało dodatkowe możliwości konsumpcji bez konieczności dalszej pracy. Jego linia
Ekonometria. Model nieliniowe i funkcja produkcji. Jakub Mućk. Katedra Ekonomii Ilościowej. Modele nieliniowe Funkcja produkcji
Ekonometria Model nieliniowe i funkcja produkcji Jakub Mućk Katedra Ekonomii Ilościowej Jakub Mućk Ekonometria Ćwiczenia 7 Modele nieliniowe i funkcja produkcji 1 / 19 Agenda Modele nieliniowe 1 Modele
Jak mierzyć reakcję popytu lub podaży na zmianę ceny?
Jak mierzyć reakcję popytu lub podaży na zmianę ceny? Oczywistym miernikiem jest nachylenie krzywych popytu i podaży Np. obniżka ceny o 1 zł każdorazowo powoduje zwiększenie popytu na kajzerki o 20 sztuk
Co się dzieje kiedy dobro zmienia cenę?
Równanie Słuckiego Co się dzieje kiedy dobro zmienia cenę? Efekt substytucyjny w wyniku zmiany ceny jednego z dóbr zmienia się relacja cen pomiędzy dobrami, np. dobro, którego cena spada staje się relatywnie
Zadania z analizy matematycznej - sem. I Pochodne funkcji, przebieg zmienności funkcji
Zadania z analizy matematycznej - sem. I Pochodne funkcji przebieg zmienności funkcji Definicja 1. Niech f : (a b) R gdzie a < b oraz 0 (a b). Dla dowolnego (a b) wyrażenie f() f( 0 ) = f( 0 + ) f( 0 )
MIKROEKONOMIA 1 ĆWICZENIA BARTOSZ KOPCZYŃSKI KATEDRA MIKROEKONOMII
MIKROEKONOMIA 1 ĆWICZENIA BARTOSZ KOPCZYŃSKI KATEDRA MIKROEKONOMII O CZYM BĘDZIEMY SIĘ UCZYĆ 1. Główne zagadnienia mikroekonomii (rynek, konsumenci, producenci, modele, efektywność Pareto, rynek konkurencyjny,
Mikro II: Rynek i Preferencje
Mikro II: Rynek i Preferencje Krzysztof Makarski 1 Rynek Wst ep W tym rozdziale zasygnalizowane sa problemy jakimi bedziemy sie zajmować. Pytania jakie b edziemy sobie zadawać. Sposób w jaki b edziemy
Rzadkość. Zasoby. Potrzeby. Jedzenie Ubranie Schronienie Bezpieczeństwo Transport Podróże Zabawa Dzieci Edukacja Wyróżnienie Prestiż
Wykład: EKONOMIA Ekonomia Ekonomia - nauka badająca, jak ludzie radzą sobie z rzadkością, czyli sytuacją w której niegraniczone potrzeby zestawiamy z ograniczonymi zasobami. Rzadkość Rzadkość jest podstawowym
Bardzo dobra Dobra Dostateczna Dopuszczająca
ELEMENTY EKONOMII PRZEDMIOTOWY SYSTEM OCENIANIA Klasa: I TE Liczba godzin w tygodniu: 3 godziny Numer programu: 341[02]/L-S/MEN/Improve/1999 Prowadzący: T.Kożak- Siara I Ekonomia jako nauka o gospodarowaniu
Mikro II: Rynek i Preferencje
Mikro II: Rynek i Preferencje Jacek Suda (slajdy: Krzysztof Makarski) 1 / 40 Rynek Wst ep W tym rozdziale zasygnalizowane sa problemy jakimi bedziemy sie zajmować. Pytania jakie b edziemy sobie zadawać.
Matematyka z el. statystyki, # 4 /Geodezja i kartografia I/
Matematyka z el. statystyki, # 4 /Geodezja i kartografia I/ dr n. mat. Zdzisław Otachel Uniwersytet Przyrodniczy w Lublinie Katedra Zastosowań Matematyki i Informatyki ul. Akademicka 15, p.211a, bud. Agro
Mikroekonomia : kurs średni - ujęcie nowoczesne / Hal. R. Varian. wyd. 4 zm., dodr. 1. Warszawa, Spis treści
Mikroekonomia : kurs średni - ujęcie nowoczesne / Hal. R. Varian. wyd. 4 zm., dodr. 1. Warszawa, 2016 Spis treści Przedmowa do wydania polskiego 21 Przedmowa 29 Rozdział 1. Rynek 37 1.1. Budowanie modelu
Ekonomia. matematyczna. Materia y do çwiczeƒ. Joanna Górka Witold Orzeszko Marcin Wata
Ekonomia matematyczna Materia y do çwiczeƒ Joanna Górka Witold Orzeszko Marcin Wata Ekonomia matematyczna Ekonomia matematyczna Materia y do çwiczeƒ Joanna Górka Witold Orzeszko Marcin Wata WYDAWNICTWO
Pochodna funkcji: definicja, podstawowe własności wykład 5
Pochodna funkcji: definicja, podstawowe własności wykład 5 dr Mariusz Grządziel Rok akademicki 214/15, semestr zimowy Problem obliczanie prędkości chwilowej Droga s, jaką przemierzy kulka ołowiana upuszczona
PRZEWODNIK PO PRZEDMIOCIE. Mikroekonomia. niestacjonarne. I stopnia. dr Olga Ławińska. ogólnoakademicki. podstawowy
Politechnika Częstochowska, Wydział Zarządzania PRZEWODNIK PO PRZEDMIOCIE Nazwa przedmiotu Kierunek Forma studiów Poziom kwalifikacji Rok Semestr Jednostka prowadząca Osoba sporządzająca Profil Rodzaj
Wprowadzenie Metoda bisekcji Metoda regula falsi Metoda siecznych Metoda stycznych RÓWNANIA NIELINIOWE
Transport, studia niestacjonarne I stopnia, semestr I Instytut L-5, Wydział Inżynierii Lądowej, Politechnika Krakowska Ewa Pabisek Adam Wosatko Postać ogólna równania nieliniowego Zazwyczaj nie można znaleźć
Teoria wyboru konsumenta
Teoria wyboru konsumenta Bibliografia M. Nasiłowski System Rynkowy D. Begg Ekonomia tom 1 E. Czarny E. Nojszewska mikroekonomia Ograniczenie budżetowe Założenia: Konsument wybiera spośród dwóch dóbr xi
Zestaw nr 6 Pochodna funkcji jednej zmiennej. Styczna do krzywej. Elastyczność funkcji. Regu la de l Hospitala
Zestaw nr 6 Pochodna funkcji jednej zmiennej. Styczna do krzywej. Elastyczność funkcji. Regu la de l Hospitala November 12, 2009 Przyk ladowe zadania z rozwi azaniami Zadanie 1. Oblicz pochodne nastȩpuj
22 Pochodna funkcji definicja
22 Pochodna funkcji definicja Rozważmy funkcję f : (a, b) R, punkt x 0 b = +. (a, b), dopuszczamy również a = lub Definicja 33 Mówimy, że funkcja f jest różniczkowalna w punkcie x 0, gdy istnieje granica
Model Davida Ricardo
Model Davida Ricardo mgr eszek incenciak 15 lutego 2005 r. 1 Założenia modelu Analiza w modelu Ricardo opiera się na następujących założeniach: istnieje doskonała konkurencja na rynku dóbr i rynku pracy;
Opis efektów kształcenia dla modułu zajęć
Nazwa modułu: Mikroekonomia Rok akademicki: 2013/2014 Kod: GIP-1-103-s Punkty ECTS: 4 Wydział: Górnictwa i Geoinżynierii Kierunek: Zarządzanie i Inżynieria Produkcji Specjalność: - Poziom studiów: Studia
Analiza matematyczna - Przykładowe zestawy egzaminacyjne
Analiza matematyczna - Przykładowe zestawy egzaminacyjne Ogólne informacje Egzamin będzie trwać 90 minut. Zestaw egzaminacyjny składa się z pięciu zadań: czterech praktycznych i jednego teoretycznego.
Ekonometria Wykład 7 Modele nieliniowe, funkcja produkcji. Dr Michał Gradzewicz Katedra Ekonomii I KAE
Ekonometria Wykład 7 Modele nieliniowe, funkcja produkcji Dr Michał Gradzewicz atedra Ekonomii I AE Plan wykładu (Nie)liniowość modeli ekonomerycznych iniowość modeli ekonometrycznych Efekty krańcowe Elastyczności