Wprowadzenie Po co uczyć (się) teorii ekonomii?
|
|
- Arkadiusz Czyż
- 8 lat temu
- Przeglądów:
Transkrypt
1 Wprowadzenie Po co uczyć (się) teorii ekonomii? a po co uczyć matematyki? - ćwiczenie umysłu żeby oswoić studentów z terminologią później pisząc pracę magisterską czy też komunikując się z innymi nie muszą wymyślać własnej bo uczy logicznego podejścia do praktycznych problemów uwaga: uczymy tzw. neoklasycznej teorii ekonomii, nie jest to jedyne ujęcie, ale jedyne koherentne i w zasadzie kompletne
2 Mikroekonomia II Mikroekonomia II (B) Funkcje produkcji Funkcje kosztów Optymalny wybór producenta Doskonała konkurencja Monopol Teoria gier Modele oligopolu 12
3 Decyzje produkcyjne firmy Analogia z wyborem konsumenta: Preferencje Ograniczenie budżetowe Optymalny wybór maksymalizujący użyteczność Wybory produkcyjne firmy: Technologia produkcji (czynniki, produkty) Koszty (ceny czynników produkcji) Optymalny wybór czynników Jak zmieniają się łączne koszty ze zmianą wielkości produkcji Jak zmieniają się zyski ze zmianą wielkości produkcji 13
4 Funkcje produkcji Czynniki produkcji (inputs) -> produkty (outputs) Technologia to proces przemiany czynników w produkty Często do dyspozycji jest kilka alternatywnych technologii Czynniki produkcji: Kapitał a (capital, K) Praca (labor, L) Materiały Ziemia Funkcja produkcji obrazuje najwyższą możliwą produkcję z danej kombinacji czynników dla danej technologii q = f (K, L ) 14
5 Funkcje produkcji Ujęcie statyczne Jaka możliwość zmiany ilości czynników? Krótki okres (short run, SR) Przynajmniej jeden z czynników stały Najdłuższy czas w którym przynajmniej jeden z czynników produkcji stosowanych w procesie produkcji nie może się zmienić Długi okres (long run, LR) Wszystkie czynniki zmienne Najkrótszy czas konieczny do zmiany ilości wszystkich czynników produkcji stosowanych w procesie produkcji 15
6 Krótki okres jeden czynnik zmienny q = f (L) 16
7 Analiza wielkości produkcji Średnia produktywność czynnika (average product) Wielkość produkcji na jednostkę czynnika Produkcja AP = L Ilość Czynnika = q L 17
8 Analiza wielkości produkcji Krańcowa produktywność czynnika (marginal product) Dodatkowa produkcja spowodowana zwiększeniem zatrudnienia czynnika o jedną jednostkę Δ Produkcji MP = = Δq L Δ Ilości o c Czynnika a ΔL Krańcowa = w granicy = pochodna cząstkowa: MP L = lim ΔL 0 ΔL Δq = f ( L ) L 18
9 Analiza wielkości produkcji 19
10 Funkcja produkcji wykres q Całkowita produkcja 112 D 60 A B C D produkcja maksymalna AP nachy leniel ie półł proste j ze środka układu wsp. MP nachylenie stycznej w danym punkcie C AP maksymalne B AP = 20 A MP = L
11 Krańcowa i średnia produktywność wykres q E MP przecina AP w E, W E: MP = AP => maksimum AP Na l ewo od E: MP > AP => AP rośnie Na prawo od E: MP < AP => AP maleje D la L = 8, MP = 0 i q = max Krańcowa ń p produktywno y wność Średnia produktywność L 21
12 Wykresy funkcji produkcji i produktywności wnioski Gdy krańcowa produktywność większa od średniej produktywności średnia produktywność rośnie Gdy krańcowa produktywność mniejsza od średniej produktywności średnia produktywność maleje Gdy krańcowa produktywność równa zero produkcja maksymalna aksymalna(pochodna!) Gdy krańcowa produktywność większa od zera produkcja rośnie (pochodna!) Krańcowa produktywność przecina średnią produktywność w jej maksimum 22
13 Prawo malejącej produktywności czynników Zwiększając ilość jednego czynnika produkcji i przy pozostałych czynnikach produkcji na stałym poziomie, istnieje punkt, powyżej którego krańcowa produktywność tego czynnika zaczyna maleć Początkowo krańcowa produktywność może rosnąć Nie emusi spadać a poniżej e zera! (może e być y mae maleją jąca, ca,ae ale całkowita produkcja nadal będzie rosnąć) Zwykle zachodzi tylko w SR, gdy któryś z czynników stały (krańcowa produktywność jednego czynnika zależy od ilości innych czynników) Np. ilość wypitej kawy a wynik z egzaminu 24
14 Zmiany technologii, postęp techniczny Zmiany postaci funkcji Powodują np. przesunięcie całej funkcji produkcji q 100 C B O 3 50 A Przy przejściu z A do B O do C, krańcowa 2 produktywność pracy moŝe rosnąć O L
15 Case study malejąca krańcowa produktywność Thomas Robert Malthus ( ) Prawo ludności (the principle of population) Liczba ludności nieograniczona Wzrost geometryczny Produkcja żywności ograniczona Maleąca alejącaj krańcowa produktywność Przyrost co nawyże j j liniowy Wynikiem: nędza mas, ubóstwo, głód, klęski żywiołowe, wony j Zwolennik wstrzemięźliwości seksualne, j późnego zawierania małżeństw, kontroli urodzeń, ograniczenia pomocy społecznej 28
16 Case study dlaczego przepowiednie Malthusa się nie sprawdziły? Zmiany technologii 3 2 MP owacy L > MP Presja populacyjna + mechanizm rynkowy wymuszają inn jność L Substytucja jednych czynników fizycznych innymi q 2 1 MP L > MP L MP 1 L L 30
17 Case study dlaczego przepowiednie Malthusa się nie sprawdziły? Wzrost kapitałochłonności prowadzi do wzrostu stopy życiowej i kosztu alternatywnego potomstwa. W krajach rozwiniętych nastąpił spadek przyrostu naturalnego. Konwergencja -przepływu kapitału pozwalają na wyrównywanie ywaniepoziomów oziomówżycia ciamiędzy kraamibiedn krajami biednymi i bogatymi. 31
18 Funkcje produkcji wielu zmiennych graficznie q = f ( K, L ) W LR oba (wszystkie) czynniki zmienne Wartość produkcji w trzecim wymiarze 32
19 Funkcje produkcji wielu zmiennych graficznie 33
20 Funkcje produkcji wielu zmiennych Izokwanty poziomice produkcji, pokazują wszystkie kombinacje czynników, które pozwalają efektywnie wyprodukować tyle samo K 5 E 4 3 A B C 2 q 3 = q 2 = q 1 = D 75 L
21 Funkcje produkcji wielu zmiennych graficznie Mapa izokwant jest tożsama z funkcją produkcji y x 1 54
22 Substytucja między czynnikami Jaką kombinację czynników produkcji wybrać? Można zastąpić jeden czynnik innym i pozostać na tej samej izokwancie Techniczna stopa substytucji kapitału przez pracę (technical rate of substitution) ΔK TRS LK = (przy stałej produkcji q ) ΔL Zawsze ujemna O ile więcej jednostek pracy potrzeba, aby zastąpić jednostkę kapitału 57
23 Techniczna stopa substytucji K /4 1 1/3 1 1/2 TRS LK Δ K = Δ L Rezygnacja z kolejnych jednostek K wymaga zwiększenia L o coraz więcej TRS maleje wraz ze wzrostem L (co do wartości bezwzględnej) Q 3 = Q 2 = L 58
24 Krańcowa stopa technicznej substytucji Zmieniając (krańcowo) ilość jednego czynnika, jak można zmienić ilość drugiego czynnika, żeby nadal produkować tyle samo Np. krańcowa stopa technicznej substytucji pracy przez kapitał (kolejne jednostki L wymagają zwiększenia K o ) MRTS KL = f (K, L ) dl = K MP = K dk f (K, L ) MP L L Nachylenie izokwanty (gdy na osi poziomej K, na pionowej L) Analogiczna do MRS w wyborze konsumenta 60
25 Krańcowa stopa technicznej substytucji Prawo malejącej MRTS Zastępowanie kolejnych jednostek czynnika produkcji jednostkami innego czynnika daje coraz mniejsze efekty (wymaga coraz większych wzrostów drugiego czynnika dla odtworzenia produkcji). Działa dla wartości bezwzględnej MRTS (maleje po wartościach dodatnich do zera). Izokwanty są wypukłe. Działa jedynie jeśli krańcowe produkcyjności wszystkich czynników są malejące Uwaga: 64 MRTS KL K = MP L MP L MRTS LK = MP MP K
Wprowadzenie Po co uczyć (się) teorii ekonomii?
Wprowadzenie Po co uczyć (się) teorii ekonomii? a po co uczyć matematyki? - ćwiczenie umysłu żeby oswoić studentów z terminologią później pisząc pracę magisterską czy też komunikując się z innymi nie muszą
Bardziej szczegółowoTEORIA PRODUKCJI Przemysław Kusztelak
TEORIA PRODUKCJI Przemysław Kusztelak Wydział Nauk Ekonomicznych Uniwersytetu Warszawskiego Informacja wstępna Mikroekonomiczna teoria producenta zajmuje się analizą zachowań przedsiębiorstw na rynku.
Bardziej szczegółowoMikroekonomia B.1. Mikołaj Czajkowski
Mikroekonomia B.1 Mikołaj Czajkowski Materiały i informacje Mikroekonomia Wykłady: poniedziałek 09:45-11:20 aula A, dr Maciej Sobolewski środa 15:00-16:35 aula A, dr hab. Mikołaj Czajkowski, prof. UW poniedziałek
Bardziej szczegółowoPodstawy ekonomii TEORIA PRODUKCJI
Podstawy ekonomii TEORIA PRODUKCJI Opracowanie: dr Tomasz Taraszkiewicz Proces i funkcja produkcji Proces produkcji proces transformacji czynników wytwórczych na produkty gotowe, przy czym uzyskane efekty
Bardziej szczegółowoMaksymalizacja zysku
Maksymalizacja zysku Na razie zakładamy, że rynki są doskonale konkurencyjne Firma konkurencyjna traktuje ceny (czynników produkcji oraz produktów jako stałe, czyli wszystkie ceny są ustalane przez rynek
Bardziej szczegółowo3. O czym mówi nam marginalna (krańcowa) produktywność:
Ʊ1. 诲眤诲眤眪 眪 Zbiór produkcyjny: a) to zbiór wszystkich nakładów czynników produkcji, b) wykazuje możliwe techniki wytwarzania, c) pokazuje techniczne możliwości, d) poprawne są odpowiedzi a, c, e) poprawne
Bardziej szczegółowoMinimalizacja kosztu
Minimalizacja kosztu Minimalizacja kosztów polega na uzyskiwaniu danej wielkości produkcji po najniższym możliwym koszcie Graficznie która kombinacja czynników na izokwancie najtańsza? Analitycznie minimalizacja
Bardziej szczegółowoWykład VII. Równowaga ogólna
Wykład VII Równowaga ogólna Efektywnośd w produkcji Założenia: 2 czynniki produkcji: kapitał (K) i praca (L) Produkcja 2 dóbr: żywnośd (f) i ubrania (c) Doskonała konkurencja na rynku czynników produkcji,
Bardziej szczegółowoPrzychody skali. Proporcjonalne zwiększenie czynników = zwiększenie produkcji, ale czy również proporcjonalne? W zależności od odpowiedzi:
Przychody skali Proporcjonalne zwiększenie czynników = zwiększenie produkcji, ale czy również proporcjonalne? W zależności od odpowiedzi: Stałe przychody skali, CRS (constant returns to scale) Rosnące
Bardziej szczegółowoMikroekonomia A.3. Mikołaj Czajkowski
Mikroekonomia A.3 Mikołaj Czajkowski Preferencje Konsumenci mają preferencje wybierają te koszyki, które dają im najwyższe zadowolenie Relacja preferencji umożliwia porównywanie 2 koszyków xy, X x ściśle
Bardziej szczegółowoMikroekonomia B.2. Mikołaj Czajkowski
Mikroekonomia B.2 Mikołaj Czajkowski Przychody skali Proporcjonalne zwiększenie czynników = zwiększenie produkcji, ale czy również proporcjonalne? W zależności od odpowiedzi: Stałe przychody skali, CRS
Bardziej szczegółowoNazwisko i Imię zł 100 zł 129 zł 260 zł 929 zł 3. Jeżeli wraz ze wzrostem dochodu, maleje popyt na dane dobro to jest to: (2 pkt)
Nazwisko i Imię... Numer albumu... A 1. Utrata wartości dobra kapitałowego w ciągu roku będąca rezultatem wykorzystania tego dobra w procesie produkcji nazywana jest: (2 pkt) ujemnym przepływem pieniężnym
Bardziej szczegółowoTeoria produkcji i wyboru producenta Lista 8
Definicje Teoria produkcji i wyboru producenta Lista 8 krótki i długi okres stałe i zmienne czynniki produkcyjne produkt krzywa produktu całkowitego produkt krańcowy prawo malejącego produktu krańcowego
Bardziej szczegółowoPlan wykładu. Dlaczego wzrost gospodarczy? Model wzrostu Harroda-Domara.
Plan wykładu Dlaczego wzrost gospodarczy? Model wzrostu Harroda-Domara. Model wzrostu Solowa. Krytyka podejścia klasycznego wstęp do endogenicznych podstaw wzrostu gospodarczego. Potrzeba analizy wzrostu
Bardziej szczegółowoMikroekonomia B.4. Mikołaj Czajkowski
Mikroekonomia B.4 Mikołaj Czajkowski Minimalizacja kosztów Minimalizacja kosztów (przy zadanej wielkości produkcji) Pozwala wyprowadzić funkcję TC i rozwiązać problem maksymalizacji zysków wykorzystując
Bardziej szczegółowoPodaż firmy. Zakładamy, że firmy maksymalizują zyski
odaż firmy Zakładamy, że firmy maksymalizują zyski Inne cele działalności firm: Maksymalizacja przychodów Maksymalizacja dywidendy Maksymalizacja zysków w krótkim okresie Maksymalizacja udziału w rynku
Bardziej szczegółowoRynek W. W. Norton & Company, Inc.
1 Rynek 2010 W. W. Norton & Company, Inc. Modelowanie Ekonomiczne uco wpływa na co w systemie ekonomicznym? una jakim poziomie uogólnienia możemy modelować zjawisko ekonomiczne? uktóre zmienne są egzogeniczne,
Bardziej szczegółowoEKONOMIA wykład 4 TEORIA POSTĘPOWANIA PRODUCENTA
EKONOMIA wykład 4 TEORIA POSTĘPOWANIA PRODUCENTA Prowadzący zajęcia: dr inż. Magdalena Węglarz Politechnika Wrocławska Wydział Informatyki i Zarządzania PLAN WYKŁADU 1. Krótkookresowa teoria produkcji
Bardziej szczegółowoTeoria produkcji pojęcie, prawa, izokwanty. Funkcja produkcji pojęcie, przykłady.
Przedmiot: EKONOMIA MATEMATYCZNA Katedra: Ekonomii Opracowanie: dr hab. Jerzy Telep Temat: Matematyczna teoria produkcji Zagadnienia: Teoria produkcji pojęcie, prawa, izokwanty. Funkcja produkcji pojęcie,
Bardziej szczegółowoMikroekonomia II: Kolokwium, grupa II
Mikroekonomia II: Kolokwium, grupa II Prowadząca: Martyna Kobus 2012-06-11 Piszemy 90 minut. Sprawdzian jest za 70 punktów. Jest 10 pytań testowych, każde za 2 punkty (łącznie 20 punktów za test) i 3 zadania,
Bardziej szczegółowoKolokwium I z Makroekonomii II Semestr zimowy 2014/2015 Grupa I
Kolokwium I z Makroekonomii II Semestr zimowy 2014/2015 Grupa I Czas trwania kolokwium wynosi 45 minut. Należy rozwiązać dwa z trzech zamieszczonych poniżej zadań. Za każde zadanie można uzyskać maksymalnie
Bardziej szczegółowoMAKROEKONOMIA 2. Wykład 14. Inwestycje. dr Dagmara Mycielska dr hab. Joanna Siwińska - Gorzelak
MAKROEKONOMIA 2 Wykład 14. Inwestycje dr Dagmara Mycielska dr hab. Joanna Siwińska - Gorzelak 2 Plan wykładu Inwestycje a oczekiwania. Neoklasyczna teoria inwestycji i co z niej wynika Teoria q Tobina
Bardziej szczegółowoMikroekonomia II Semestr Letni 2014/2015 Ćwiczenia 4, 5 & 6. Technologia
Mikroekonomia II 050-792 Semestr Letni 204/205 Ćwiczenia 4, 5 & 6 Technologia. Izokwanta produkcji to krzywa obrazująca różne kombinacje nakładu czynników produkcji, które przynoszą taki sam zysk. P/F
Bardziej szczegółowoEKONOMIA TOM 1 WYD.2. Autor: PAUL A. SAMUELSON, WILLIAM D. NORDHAUS
EKONOMIA TOM 1 WYD.2 Autor: PAUL A. SAMUELSON, WILLIAM D. NORDHAUS Przedmowa CZĘŚĆ I. PODSTAWOWE POJĘCIA Rozdział 1. Podstawy ekonomii 1.1. Wprowadzenie Niedobór i efektywność: bliźniacze tematy ekonomii
Bardziej szczegółowo1) Granica możliwości produkcyjnych Krzywa transformacji jest to zbiór punktów reprezentujących różne kombinacje ilościowe dwóch produktów, które gospodarka narodowa może wytworzyć w danym okresie przy
Bardziej szczegółowoMikroekonomia. Produkcja i koszty
Mikroekonomia Joanna Tyrowicz jtyrowicz@wne.uw.edu.pl http://www.wne.uw.edu.pl/~jtyrowicz 13.10.007r. Mikroekonomia WNE UW 1 Produkcja i koszty W BIZNESIE jest to czynność, w ramach której zasoby są przetwarzane
Bardziej szczegółowoPodstawy teorii zachowania konsumentów. mgr Katarzyna Godek
Podstawy teorii zachowania konsumentów mgr Katarzyna Godek zachowanie racjonalne wewnętrznie spójne, logiczne postępowanie zmierzające do maksymalizacji satysfakcji jednostki. Funkcje gospodarstwa domowego:
Bardziej szczegółowoInstytut Ekonomii. Produkcyjność jak działają przedsiębiorstwa?
Produkcyjność jak działają przedsiębiorstwa? Slajd nr 2 Amazon case J Lider rynku e-commerce otworzył nowe centrum. Obiekt Amazon w Kołbaskowie pod Szczecinem zajmuje ponad 150 tys. metrów kwadratowych.
Bardziej szczegółowoMikroekonomia A.4. Mikołaj Czajkowski
Mikroekonomia A.4 Mikołaj Czajkowski Funkcja użyteczności Jeśli preferencje są racjonalne i ciągłe mogą zostać opisane za pomocą funkcji użyteczności Funkcja użyteczności to funkcja, która spełnia warunki:
Bardziej szczegółowo7. Podatki Podstawowe pojęcia
7. Podatki - 7.1 Podstawowe pojęcia Podatki są poddzielone na dwie kategorie: 1. Bezpośrednie - nałożone bezpośrednio na dochód z pracy. 2. Pośrednie - nałożone na wydatki, np. na różne towary. 1 / 35
Bardziej szczegółowoMetoda mnożników Lagrange a i jej zastosowania w ekonomii
Maciej Grzesiak Metoda mnożników Lagrange a i jej zastosowania w ekonomii 1 Metoda mnożników Lagrange a znajdowania ekstremum warunkowego Pochodna kierunkowa i gradient Dla prostoty ograniczymy się do
Bardziej szczegółowoKorzyści i. Niekorzyści skali. produkcji
utarg (przychód) Koszt ekonomiczny utarg (przychód) Zakres tematyczny: Koszty w krótkim i długim okresie 1. Koszty pojęcie 2. Rodzaje kosztów wg różnych kryteriów 3. Krzywe kosztów 4. Zależności pomiędzy
Bardziej szczegółowo9 Funkcje Użyteczności
9 Funkcje Użyteczności Niech u(x) oznacza użyteczność wynikającą z posiadania x jednostek pewnego dobra. Z założenia, 0 jest punktem referencyjnym, czyli u(0) = 0. Należy to zinterpretować jako użyteczność
Bardziej szczegółowoPRZEWODNIK PO PRZEDMIOCIE RODZAJ ZAJĘĆ LICZBA GODZIN W SEMESTRZE WYKŁAD ĆWICZENIA LABORATORIUM PROJEKT SEMINARIUM
Politechnika Częstochowska, Wydział Zarządzania PRZEWODNIK PO PRZEDMIOCIE Nazwa przedmiotu Mikroekonomia Kierunek angielski język biznesu Forma studiów stacjonarne Poziom kwalifikacji I stopnia Rok I Semestr
Bardziej szczegółowoJEDNOCZYNNIKOWA i DWUCZYNNIKOWA FUNKCJA PRODUKCJI
JEDNOCZYNNIKOWA i DWUCZYNNIKOWA FUNKCJA PRODUKCJI Zadanie 1: Uzupełnij tabelę, gdzie: TP produkt całkowity AP produkt przeciętny MP produkt marginalny L nakład czynnika produkcji, siła robocza (liczba
Bardziej szczegółowoRzadkość. Zasoby. Potrzeby. Jedzenie Ubranie Schronienie Bezpieczeństwo Transport Podróże Zabawa Dzieci Edukacja Wyróżnienie Prestiż
Wykład: EKONOMIA Ekonomia Ekonomia - nauka badająca, jak ludzie radzą sobie z rzadkością, czyli sytuacją w której niegraniczone potrzeby zestawiamy z ograniczonymi zasobami. Rzadkość Rzadkość jest podstawowym
Bardziej szczegółowoMikroekonomia. Zadanie
Mikroekonomia Joanna Tyrowicz jtyrowicz@wne.uw.edu.pl http://www.wne.uw.edu.pl/~jtyrowicz 18.11.2007r. Mikroekonomia WNE UW 1 Funkcję produkcji pewnego produktu wyznacza wzór F(K,L)=2KL 1/2. Jakim wzorem
Bardziej szczegółowoRewolucja marginalistyczna
Rewolucja marginalistyczna Lata 70. XIX wieku Odrzucenie ekonomii klasycznej, ale zachowanie pewnej ciągłości Pomost do ekonomii neoklasycznej Rewolucja marginalistyczna, a nie marginalna Główna innowacja
Bardziej szczegółowoC~A C > B C~C Podaj relacje indyferencji, silnej i słabej preferencji. Zapisz zbiór koszyków indyferentnych
ZADANIA EGZAMIN EKONOMIA MATEMATYCZNA TEORIA POPYTU a. Podaj iloczyn kartezjański zbiorów X={,3,4}, Y={,} b. Narysuj iloczyn kartezjański zbiorów X=[,], Y=[,3]. Dane są punkty A(3,4) i B(,). Oblicz odległość
Bardziej szczegółowoRÓWNOWAGA KONSUMENTA PODSTAWOWE ZAŁOŻENIA DECYZJE KONSUMENTA TEORIA UŻYTECZNOŚCI KRAŃCOWEJ TEORIE OPTIMUM KONSUMENTA
RÓWNOWAGA KONSMENTA PODSTAWOWE ZAŁOŻENA Celem działalności konsumenta jest maksymalizacja użyteczności (satysfakcji) czerpanej ze spożycia koszyka dóbr oraz z czasu wolnego. DECZJE KONSMENTA Wybór struktury
Bardziej szczegółowo2010 W. W. Norton & Company, Inc. Minimalizacja Kosztów
010 W. W. Norton & Company, Inc. Minimalizacja Kosztów Minimalizacja Kosztów Przedsiębiorstwo minimalizuje koszty, jeśli produkuje daną wielkość produkcji y 0 według najmniejszych możliwych kosztów. c(y)
Bardziej szczegółowoPRZEWODNIK PO PRZEDMIOCIE. Mikroekonomia. niestacjonarne. I stopnia. dr Olga Ławińska. ogólnoakademicki. podstawowy
Politechnika Częstochowska, Wydział Zarządzania PRZEWODNIK PO PRZEDMIOCIE Nazwa przedmiotu Kierunek Forma studiów Poziom kwalifikacji Rok Semestr Jednostka prowadząca Osoba sporządzająca Profil Rodzaj
Bardziej szczegółowoRewolucja marginalistyczna
Rewolucja marginalistyczna Lata 70. XIX wieku Odrzucenie ekonomii klasycznej, ale zachowanie pewnej ciągłości Pomost do ekonomii neoklasycznej Rewolucja marginalistyczna, a nie marginalna Główna innowacja
Bardziej szczegółowoFunkcja produkcji jak z czynników powstaje produkt Ta sama produkcja możliwa przy różnych kombinacjach czynników
Koszty produkcji Funkcja produkcji jak z czynników powstaje produkt Ta sama produkcja możliwa przy różnych kombinacjach czynników Którą wybrać ceny czynników Funkcja produkcji + ceny czynników -> funkcja
Bardziej szczegółowoĆwiczenia 3, Makroekonomia II, Listopad 2017, Odpowiedzi
Ćwiczenia 3, Makroekonomia II, Listopad 2017, Odpowiedzi Pytanie 1. a) Jeśli gospodarstwo domowe otrzyma spadek, będzie miało dodatkowe możliwości konsumpcji bez konieczności dalszej pracy. Jego linia
Bardziej szczegółowoEKONOMIA wykład 3 TEORIA WYBORU KONSUMENTA. Prowadzący zajęcia: dr inż. Magdalena Węglarz Politechnika Wrocławska Wydział Informatyki i Zarządzania
EKONOMIA wykład 3 TEORIA WYBORU KONSUMENTA Prowadzący zajęcia: dr inż. Magdalena Węglarz Politechnika Wrocławska Wydział Informatyki i Zarządzania PLAN WYKŁADU 1. Model wyboru konsumenta 1. Dochód konsumenta
Bardziej szczegółowoMetoda mnożników Lagrange a i jej zastosowania w ekonomii
Maciej Grzesiak Metoda mnożników Lagrange a i jej zastosowania w ekonomii 1. Metoda mnożników Lagrange a znajdowania ekstremum warunkowego Pochodna kierunkowa i gradient. Dla prostoty ograniczymy się do
Bardziej szczegółowoPRZEWODNIK PO PRZEDMIOCIE. Katedra Ekonomii, Inwestycji i Nieruchomości Osoba sporządzająca
Politechnika Częstochowska, Wydział Zarządzania PRZEWODNIK PO PRZEDMIOCIE Nazwa przedmiotu Mikroekonomia E Kierunek Logistyka studia inżynierskie Forma studiów niestacjonarne Poziom kwalifikacji I stopnia
Bardziej szczegółowoZadania z ekonomii matematycznej Teoria konsumenta
Paweł Kliber Zadania z ekonomii matematycznej Teoria konsumenta Zad Dla podanych niżej funcji użyteczności: (a u (x x = x + x (b u (x x = x x (c u (x x = x x (d u (x x = x x 4 (e u (x x = x + x = x + x
Bardziej szczegółowoMakroekonomia 1 Wykład 12: Naturalna stopa bezrobocia i krzywa AS
Makroekonomia 1 Wykład 12: Naturalna stopa bezrobocia i krzywa AS Gabriela Grotkowska Katedra Makroekonomii i Teorii Handlu Zagranicznego NATURALNA STOPA BEZROBOCIA Naturalna stopa bezrobocia Ponieważ
Bardziej szczegółowoFunkcja produkcji jak z czynników powstaje produkt Ta sama produkcja możliwa przy różnych kombinacjach czynników
Koszty produkcji Funkcja produkcji jak z czynników powstaje produkt Ta sama produkcja możliwa przy różnych kombinacjach czynników Którą wybrać ceny czynników Funkcja produkcji + ceny czynników -> funkcja
Bardziej szczegółowoOpis efektów kształcenia dla modułu zajęć
Nazwa modułu: Mikroekonomia Rok akademicki: 2013/2014 Kod: GIP-1-103-s Punkty ECTS: 4 Wydział: Górnictwa i Geoinżynierii Kierunek: Zarządzanie i Inżynieria Produkcji Specjalność: - Poziom studiów: Studia
Bardziej szczegółowoI. Podstawowe pojęcia ekonomiczne. /6 godzin /
PROPOZYCJA ROZKŁADU MATERIAŁU NAUCZANIA PRZEDMIOTU PODSTAWY EKONOMII dla zawodu: technik ekonomista-23,02,/mf/1991.08.09 liceum ekonomiczne, wszystkie specjalności, klasa I, semestr pierwszy I. Podstawowe
Bardziej szczegółowoZESTAWY ZADAŃ Z EKONOMII MATEMATYCZNEJ
ZESTAWY ZADAŃ Z EKONOMII MATEMATYCZNEJ Zestaw 5 1.Narynkuistniejądwajhandlowcyidwatowary,przyczymtowarupierwszegosą3sztuki,adrugiego 2sztuki. a). Jak wygląda zbiór alokacji dopuszczalnych, jeśli towary
Bardziej szczegółowo(b) Oblicz zmianę zasobu kapitału, jeżeli na początku okresu zasób kapitału wynosi kolejno: 4, 9 oraz 25.
Zadanie 1 W pewnej gospodarce funkcja produkcji może być opisana jako Y = AK 1/2 N 1/2, przy czym A oznacza poziom produktywności, K zasób kapitału, a N liczbę zatrudnionych. Stopa oszczędności s wynosi
Bardziej szczegółowo88. Czysta stopa procentowa. 89. Rynkowa (nominalna) stopa procentowa. 90. Efektywna stopa procentowa. 91. Oprocentowanie składane. 92.
34 Podstawowe pojęcia i zagadnienia mikroekonomii 88. zysta stopa procentowa zysta stopa procentowa jest teoretyczną ceną pieniądza, która ukształtowałaby się na rynku pod wpływem oddziaływania popytu
Bardziej szczegółowoKażde pytanie zawiera postawienie problemu/pytanie i cztery warianty odpowiedzi, z których tylko jedna jest prawidłowa.
Każde pytanie zawiera postawienie problemu/pytanie i cztery warianty odpowiedzi, z których tylko jedna jest prawidłowa. 1. Możliwości finansowe konsumenta opisuje równanie: 2x + 4y = 1. Jeżeli dochód konsumenta
Bardziej szczegółowoIstota funkcjonowania przedsiębiorstwa produkcyjnego. dr inż. Andrzej KIJ
Istota funkcjonowania przedsiębiorstwa produkcyjnego dr inż. Andrzej KIJ 1 Popyt rynkowy agregacja krzywych popytu P p2 p1 D1 q1 D2 q2 Q 2 Popyt rynkowy agregacja krzywych popytu P p2 p1 D1 +D2 D1 D2 q1
Bardziej szczegółowoPAŃSTWOWA WYŻSZA SZKOŁA ZAWODOWA W NOWYM SĄCZU SYLABUS PRZEDMIOTU. Obowiązuje od roku akademickiego: 2010/2011
PAŃSTWOWA WYŻSZA SZKOŁA ZAWODOWA W NOWYM SĄCZU SYLABUS PRZEDMIOTU Obowiązuje od roku akademickiego: 2010/2011 Instytut Ekonomiczny Kierunek studiów: Ekonomia Kod kierunku: 04.9 Specjalność: brak 1. PRZEDMIOT
Bardziej szczegółowoMikroekonomia. Joanna Tyrowicz POWTORZENIE ZADAN Mikroekonomia WNE UW 1
Mikroekonomia Joanna Tyrowicz jtyrowicz@wne.uw.edu.pl http://www.wne.uw.edu.pl/~jtyrowicz POWTORZENIE ZADAN Mikroekonomia WNE UW 1 Funkcję produkcji pewnego produktu wyznacza wzór F(K,L)=2KL 1/2. Jakim
Bardziej szczegółowoWykład III Przewaga komparatywna
Wykład III Przewaga komparatywna W prezentacji zostały wykorzystane slajdy pomocnicze do książki: Microeconomics, R.S.Pindyck D.L.Rubinfeld. Możliwości produkcyjne - Dwa dobra, które Robinson może produkować:
Bardziej szczegółowo6. Teoria Podaży Koszty stałe i zmienne
6. Teoria Podaży - 6.1 Koszty stałe i zmienne Koszty poniesione przez firmę zwykle są podzielone na dwie kategorie. 1. Koszty stałe - są niezależne od poziomu produkcji, e.g. stałe koszty energetyczne
Bardziej szczegółowoPodstawy ekonomii TEORIA POPYTU TEORIA PODAśY
Podstawy ekonomii TEORIA POPYTU TEORIA PODAśY Opracowanie: dr Tomasz Taraszkiewicz Teoria popytu Teoria popytu Wielkość popytu zgłaszane zapotrzebowanie na określony towar przy danej jego cenie w określonym
Bardziej szczegółowo5. Teoria Popytu. 5.1 Różne Rodzaje Konkurencji
5. Teoria Popytu. 5.1 Różne Rodzaje Konkurencji a. Konkurencja doskonała Producenci sprzedają nierozróżnialne towary, e.g. zboże pierwszej klasy. Zakładamy że jest dużo producentów, a żaden nie ma wpływu
Bardziej szczegółowoKONKURENCJA DOSKONAŁA. dr Sylwia Machowska
KONKURENCJA DOSKONAŁA dr Sylwia Machowska Definicja Konkurencja doskonała jest modelem teoretycznym opisującym jedną z form konkurencji na rynku; cechą charakterystyczną konkurencji doskonałej w odróŝnieniu
Bardziej szczegółowoTEST. [2] Funkcja długookresowego kosztu przeciętnego przedsiębiorstwa
Przykładowe zadania na kolokwium: TEST [1] Zmniejszenie przeciętnych kosztów stałych zostanie spowodowane przez: a. wzrost wielkości produkcji, b. spadek wielkości produkcji, c. wzrost kosztów zmiennych,
Bardziej szczegółowoMikroekonomia. Wykład 5
Mikroekonomia Wykład 5 Model czystej wymiany Brak produkcji, tylko zasoby początkowe, czyli nie wiadomo jak czynniki produkcji zostały przekształcone w produkt końcowy. Równowaga ogólna: wszystkie rynki
Bardziej szczegółowoPodhalańska Państwowa Wyższa Szkoła Zawodowa w Nowym Targu
Wygenerowano: 2019-02-08 14:03:46.915568, FIR-1-18-19 DUALNE Podhalańska Państwowa Wyższa Szkoła Zawodowa w Nowym Targu Informacje ogólne Nazwa Mikroekonomia Kod FIRsd-1-1,3 Status Obowiązkowy Wydział
Bardziej szczegółowoZachowanie się producenta. Analiza czynników produkcji. Funkcja produkcji (2) Funkcja produkcji (1) Funkcja Cobba-Douglas a (1) Funkcja produkcji (3)
Zachowanie się producenta naliza czynników produkcji Producenci w swojej działalnosci gospodarczej posługują się róŝnymi czynnikami produkcji kapitałem i pracą. Kapitał występuje w róŝnych formach. W ujęciu
Bardziej szczegółowoMAKROEKONOMIA 2. Wykład 10. Złota reguła. Model Solowa - wersja pełna. dr Dagmara Mycielska dr hab. Joanna Siwińska - Gorzelak
MAKROEKONOMIA 2 Wykład 10. Złota reguła. Model Solowa - wersja pełna dr Dagmara Mycielska dr hab. Joanna Siwińska - Gorzelak 2 Plan wykładu Złota reguła problem maksymalizacji konsumpcji per capita. Model
Bardziej szczegółowoEkonomia. Wykład dla studentów WPiA
Ekonomia Wykład dla studentów WPiA Wykład 8: Podstawy popytu na czynniki produkcji: pracę i kapitał. Technologia produkcji. Decyzje konsumentów: podaż pracy i kapitału. Współzależność działania rynków
Bardziej szczegółowoZadania z ekonomii matematycznej Teoria produkcji
Paweł Kliber Zadania z ekonomii matematycznej Teoria produkcji Zadania Zad Dla podanych funkcji produkcji a fk z k + z b fk z 6k z c fk z k z d fk z k 4 z e fk z k + z wykonaj następujące polecenia: A
Bardziej szczegółowoZestaw 3 Optymalizacja międzyokresowa
Zestaw 3 Optymalizacja międzyokresowa W modelu tym rozważamy optymalny wybór konsumenta dotyczący konsumpcji w okresie obecnym i w przyszłości. Zakładając, że nasz dochód w okresie bieżącym i przyszłym
Bardziej szczegółowoPRZEWODNIK PO PRZEDMIOCIE
Politechnika Częstochowska, Wydział Zarządzania Nazwa przedmiotu: Ekonomia Ekonomy Kierunek: Rodzaj przedmiotu: obieralny Rodzaj zajęć: wykład, ćwiczenia Matematyka Poziom kwalifikacji: I stopnia Liczba
Bardziej szczegółowoTeoria wyboru konsumenta. Marta Lubieniecka Tomasz Szemraj
Teoria wyboru konsumenta Marta Lubieniecka Tomasz Szemraj Teoria wyboru konsumenta 1) Przedmiot wyboru konsumenta na rynku towarów. 2) Zmienne decyzyjne, parametry rynkowe i preferencje jako warunki wyboru.
Bardziej szczegółowoEkonomia. turystyka i rekreacja. Jednostka organizacyjna: Kierunek: Kod przedmiotu: TR L - 4. Rodzaj studiów i profil: Nazwa przedmiotu:
Jednostka organizacyjna: Rodzaj studiów i profil: Nazwa przedmiotu: Akademia Wychowania Fizycznego i Sportu w Gdańsku SYLABUS W ROKU AKADEMICKIM 2012/2013 i 2013/2014 Wydział Turystyki i Rekreacji I stopień,
Bardziej szczegółowoTechnikum Nr 2 im. gen. Mieczysława Smorawińskiego w Zespole Szkół Ekonomicznych w Kaliszu
Technikum Nr 2 im. gen. Mieczysława Smorawińskiego w Zespole Szkół Ekonomicznych w Kaliszu Wymagania edukacyjne niezbędne do uzyskania poszczególnych śródrocznych i rocznych ocen klasyfikacyjnych z obowiązkowych
Bardziej szczegółowoEkonomia rozwoju wykład 11 Wzrost ludnościowy i jego powiązanie z rozwojem. dr Piotr Białowolski Katedra Ekonomii I
Ekonomia rozwoju wykład 11 Wzrost ludnościowy i jego powiązanie z rozwojem gospodarczym. dr Piotr Białowolski Katedra Ekonomii I Plan wykładu Powiązanie rozwoju gospodarczego i zmian w poziomie ludności
Bardziej szczegółowoEkonomia. Wykład dla studentów WPiA. Wykład 5: Firma, produkcja, koszty
Ekonomia Wykład dla studentów WPiA Wykład 5: Firma, produkcja, koszty Popyt i podaż kategorie rynkowe Popyt i podaż to dwa słowa najczęściej używane przez ekonomistów Popyt i podaż to siły, które regulują
Bardziej szczegółowoKOSZTY, PRZYCHODY I ZYSKI W RÓŻNYCH STRUKTURACH RYNKOWYCH. I. Koszty całkowite, przeciętne i krańcowe. Pojęcie kosztów produkcji
KOSZTY, PRZYCHODY I ZYSKI W RÓŻNYCH STRUKTURACH RYNKOWYCH Opracowanie: mgr inż. Dorota Bargieł-Kurowska I. Koszty całkowite, przeciętne i krańcowe. Pojęcie kosztów produkcji Producent, podejmując decyzję:
Bardziej szczegółowoTeoria wyboru konsumenta (model zachowań konsumenta) Gabriela Przesławska Uniwersytet Wrocławski Instytut Nauk Ekonomicznych Zakład Polityki
Teoria wyboru konsumenta (model zachowań konsumenta) Gabriela Przesławska Uniwersytet Wrocławski Instytut Nauk Ekonomicznych Zakład Polityki Gospodarczej Analiza postępowania konsumenta może być prowadzona
Bardziej szczegółowoEkonometria. Model nieliniowe i funkcja produkcji. Jakub Mućk. Katedra Ekonomii Ilościowej. Modele nieliniowe Funkcja produkcji
Ekonometria Model nieliniowe i funkcja produkcji Jakub Mućk Katedra Ekonomii Ilościowej Jakub Mućk Ekonometria Ćwiczenia 7 Modele nieliniowe i funkcja produkcji 1 / 19 Agenda Modele nieliniowe 1 Modele
Bardziej szczegółowo6.4. Wieloczynnikowa funkcja podaży Podsumowanie RÓWNOWAGA RYNKOWA Równowaga rynkowa w ujęciu statycznym
Spis treœci Przedmowa do wydania ósmego... 11 Przedmowa do wydania siódmego... 12 Przedmowa do wydania szóstego... 14 1. UWAGI WSTĘPNE... 17 1.1. Przedmiot i cel ekonomii... 17 1.2. Ekonomia pozytywna
Bardziej szczegółowoPRODUCENT (PRZEBSIĘBIORSTWO) państwowe lokalne indywidualne zbiorowe (spółki ) 3. Jak należy rozumieć prawo zmniejszającego się przychodu?
A) Pytania sprawdzające: 1. Kogo uważamy za producenta? PRODUCENT zorganizowany w formie przedsiębiorstwa. Powstał w drodze ewolucji. To podmiot sfery realnej. Aktywny uczestnik procesów rynkowych. Realizuje
Bardziej szczegółowoTeoria zachowania konsumenta. dr Sylwia Machowska
Teoria zachowania konsumenta dr Sylwia Machowska Plan wykładu Podstawy teorii zachowania konsumenta Teoria malejącej użyteczności krańcowej Teoria krzywych obojętności Krzywa dochodowo-konsumpcyjna Krzywa
Bardziej szczegółowoEkonometria. Model nieliniowe i funkcja produkcji. Jakub Mućk. Katedra Ekonomii Ilościowej
Ekonometria Model nieliniowe i funkcja produkcji Jakub Mućk Katedra Ekonomii Ilościowej Jakub Mućk Ekonometria Wykład 7 i funkcja produkcji 1 / 23 Agenda 1 2 3 Jakub Mućk Ekonometria Wykład 7 i funkcja
Bardziej szczegółowoSYLABUS. 4.Studia Kierunek studiów/specjalność Poziom kształcenia Forma studiów Ekonomia Studia pierwszego stopnia Studia stacjonarne i niestacjonarne
SYLABUS 1.Nazwa przedmiotu Mikroekonomia 2.Nazwa jednostki prowadzącej Katedra Mikroekonomii przedmiot 3.Kod przedmiotu E/I/A.1 4.Studia Kierunek studiów/specjalność Poziom Forma studiów Ekonomia Studia
Bardziej szczegółowoWykład 3: Między podejściem ricardiańskim a podejściem neoklasycznym model czynników specyficznych
Handel międzynarodowy Wykład 3: Między podejściem ricardiańskim a podejściem neoklasycznym model czynników specyficznych Dr Gabriela Grotkowska Plan wykładu 3 1. Różne ujęcia modelu neoklasycznego 2. Założenia
Bardziej szczegółowoZbio r zadan Makroekonomia II c wiczenia 2016/2017
Zbio r zadan Makroekonomia II c wiczenia 2016/2017 ZESTAW 1 FUNKCJA PRODUKCJI Zadanie 1.1 Przyjmuje się, że funkcja produkcji musi charakteryzować się stałymi przychodami skali oraz dodatnią i malejącą
Bardziej szczegółowoLeasing maszyn 500 500 500 500 500 500 500 500 Nylon 0 400 1150 1700 2450 3200 4650 6300 Energia elektryczna 0 100 150 200 250 300 350 400
Ćwiczenia z mikroekonomii Koszty produkcji I WYBIERZ POPRAWNE ODPOWIEDZI 1. Koszty stałe w przedsiębiorstwie: a. rosną wraz ze wzrostem produkcji b. zależą od wartości środków trwałych w przedsiębiorstwie
Bardziej szczegółowoEfektywność przedsiębiorstwami publicznymi a prywatnymi w regulowanym otoczeniu: Na przykładzie elektrowni w USA. Marysia Skwarek i Agata Kaczanowska
Efektywność między przedsiębiorstwami publicznymi a prywatnymi w regulowanym otoczeniu: Na przykładzie elektrowni w USA Marysia Skwarek i Agata Kaczanowska Wstęp: Efektywność ść, ceteris paribus: Prywatne
Bardziej szczegółowoFunkcja liniowa - podsumowanie
Funkcja liniowa - podsumowanie 1. Funkcja - wprowadzenie Założenie wyjściowe: Rozpatrywana będzie funkcja opisana w dwuwymiarowym układzie współrzędnych X. Oś X nazywana jest osią odciętych (oś zmiennych
Bardziej szczegółowoPRZEWODNIK PO PRZEDMIOCIE. Katedra Regionalistyki i Zarządzania Ekorozwojem Osoba sporządzająca
Politechnika Częstochowska, Wydział Zarządzania PRZEWODNIK PO PRZEDMIOCIE Nazwa przedmiotu Mikroekonomia Kierunek Logistyka Forma studiów stacjonarne Poziom kwalifikacji I stopnia Rok I Semestr I Jednostka
Bardziej szczegółowoZESTAW 5 FUNKCJA PRODUKCJI. MODEL SOLOWA (Z ROZSZERZENIAMI)
ZESTAW 5 FUNKCJA PRODUKCJI. MODEL SOLOWA (Z ROZSZERZENIAMI) Zadanie 5.1 Dla podanych funkcji produkcji sprawdź, czy spełniają one warunki stawiane neoklasycznym funkcjom produkcji. Jeśli tak, zapisz je
Bardziej szczegółowoMikroekonomia A.2. Mikołaj Czajkowski
Mikroekonomia A.2 Mikołaj Czajkowski Zbiór konsumpcyjny Konsumenci mają do wyboru różne poziomy konsumpcji różnych dóbr Zwykle zakładamy skończoną liczbę dóbr (np. L) Konsumowany koszyk x1 x x L Najczęściej
Bardziej szczegółowoMAKROEKONOMIA 2. Wykład 9. Dlaczego jedne kraje są bogate, a inne biedne? Model Solowa, wersja prosta. Dagmara Mycielska Joanna Siwińska - Gorzelak
MAKROEKONOMIA 2 Wykład 9. Dlaczego jedne kraje są bogate, a inne biedne? Model Solowa, wersja prosta Dagmara Mycielska Joanna Siwińska - Gorzelak 2 Plan wykładu Funkcja produkcji - własności. Model Solowa
Bardziej szczegółowoWPROWADZENIE DO EKONOMII MENEDŻERSKIEJ.
Wykład 1 Wprowadzenie do ekonomii menedżerskiej 1 WPROWADZENIE DO EKONOMII MENEDŻERSKIEJ. PODEJMOWANIE OPTYMALNYCH DECYZJI NA PODSTAWIE ANALIZY MARGINALNEJ. 1. EKONOMIA MENEDŻERSKA ekonomia menedżerska
Bardziej szczegółowoUżyteczność całkowita
Teoria konsumenta 1.Użyteczność całkowita i krańcowa 2.Preferencje konsumenta, krzywa obojętności i mapa obojętności 3.Równowaga konsumenta, nadwyżka konsumenta 4.Zmiany dochodów i zmiany cen dóbr oraz
Bardziej szczegółowoNastępnie przypominamy (dla części studentów wprowadzamy) podstawowe pojęcia opisujące funkcje na poziomie rysunków i objaśnień.
Zadanie Należy zacząć od sprawdzenia, co studenci pamiętają ze szkoły średniej na temat funkcji jednej zmiennej. Na początek można narysować kilka krzywych na tle układu współrzędnych (funkcja gładka,
Bardziej szczegółowodr Bartłomiej Rokicki Katedra Makroekonomii i Teorii Handlu Zagranicznego Wydział Nauk Ekonomicznych UW
Katedra Makroekonomii i Teorii Handlu Zagranicznego Wydział Nauk Ekonomicznych UW Model klasyczny podstawowe założenia W modelu klasycznym wielkość PKB jest określana przez stronę podażową. Mamy 2 czynniki
Bardziej szczegółowo