Ćwiczenia 11 (12) (4 godziny). Wizualizacja i manipulacja w Matlabie
|
|
- Jacek Olszewski
- 6 lat temu
- Przeglądów:
Transkrypt
1 Ćwiczenia 11 (12) (4 godziny). Wizualizacja i manipulacja w Matlabie 1. Tworzenie animacji Wykres funkcji znajduje się poniżej: W środowisku Matlab, możemy tworzyć różnego rodzaju wykresy przy wykorzystaniu wzorów funkcyjnych. Jeżeli funkcja posiada dodatkowe parametry to możliwa jest manipulacja takim wykresem i wizualizacja jego postaci po zmianie parametry w okienku graficznym. Tworzenie wizualizacji oraz manipulacja jej może odbyć się na kilka sposobów. W niniejszym opracowaniu przedstawiono metodę tworzenia macierzy klatek (getframe) oraz metodę wykorzystującą polecenie comet. 2. Tworzenie macierzy klatek dla wykresów 2D i 3D Ponieważ każdy narysowany wykres znajduje się w elemencie figure możemy wykorzystać polecenie getframe, aby zapisać np. do macierzy wartość całego okna. W ten sposób możemy tworzyć w pętli kolejne klatki animacji odrysowywanego wykresu funkcji dla zmienności pewnych jego parametrów. Koncepcja wydaje się prosta i intuicyjna. Przyjrzyjmy się teraz pętli, która może tworzyć macierz klatek: for k = 1:10 rysowanie_wykresu();//przykładowa funkcja rysowania obraz plota do macierza. następnie poniższym poleceniem odtwarzamy powstały w ten sposób film: movie(m,20) Rozważmy funkcję sin(x), gdzie x zmienia się od [-pi;pi]. Jeżeli funkcję sinus pomnożymy przez wartość skalarną, to zmienimy jej amplitudę na mniejszą lub większą. Przykład. 1. Stwórz animację zmienności wykresu funkcji k*sin(x) dla k = Należy najpierw stworzyć macierz klatek przy pomocy polecenia getframe, a następnie przy wykorzystaniu polecenia: movie(m,n,fps); przekazać macierz klatek M, liczbę powtórzeń animacji n oraz podać liczbę klatek na sekundę fps. Poniżej znajduje się skrypt tworzący macierz M: clear; set(gcf,'numbertitle','off','menub ar','none','name','animacja funkcji k*sin(x)'); x=-pi:0.01:pi; y=w(k)*sin(x); plot(x,y); axis equal 1
2 Dodatkowo funkcja set() modyfikuje nasze okno z wykresem. Polecenie clear czyści niepotrzebne zmienne w środowisku. Teraz, macierz M jest już gotowa wystarczy więc w konsoli wpisać: movie(m,10,120) aby ujrzeć animację. Szybkością animacji możemy manipulować poprzez zmniejszenie liczby elementów w wektorze k lub manipulację parametru fps. Przykład.2. Wykorzystując animację możemy także przyjrzeć się jaki wpływ ma precyzja rysowania wykresu (liczba par (x,y)) na jego wygląd. Rozważmy poniższy skrypt: clear; set(gcf,'numbertitle','off','menub ar','none','name','animacja funkcji 2*sin(x)'); x=linspace(-2*pi,2*pi,w(k)*50); y=2*sin(x); plot(x,y); axis equal dokładności wykresu, gdzie a i b określa przedział natomiast n liczbę elementów w wektorze wynikowym. Przykład.3. Stwórz wykres konturowy dla dowolnej funkcji powierzchniowej. Najwygodniej wykorzystać gotową funkcja tworząca konturowy wykres contour(). Jako przykład powierzchni został wybrany gotowy wykres peaks. x = linspace(-2*pi,2*pi); y = linspace(0,4*pi); [X,Y,Z] = peaks; Z=Z*W(k); % figure contour(x,y,z,'showtext','on') Podczas zmiany procentowej macierzy Z możemy zaobserwować co się dzieje z powierzchnią na wykresie konturowym. Przykład.4. Przedstaw animację siatki dowolnego wykresu powierzchniowego przy zmianie wybranego parametru. Do symulacji wybrano funkcję sinc. Umieszczenie parametru zmienności jako trzeci argument funkcji linspace(a,b,n), pozwala na obserwację zmienności a=50; [X,Y] = meshgrid(-a:.5:a); R = sqrt(x.^2 + Y.^2) + eps; figure('resize','off'); 2
3 Z = sin(r*w(k))./(r*w(k)); mesh(x,y,z) axis([-a a -a a ]); Powyższy przykład manipuluje wartościami parametru R. Wartości, podobnie jak w poprzednich przykładach, są zmniejszane od 100% do 0% i z powrotem zwiększane do 100%. Warto zauważyć, że podczas animacji wykresu, osie mogą być modyfikowane. Jeżeli nie chcemy aby osie zmieniały swoją skalę należy użyć polecenia axis do ustawienia stałych wartości osi. Dzięki temu możemy zaobserwować co dzieje się z wykresem podczas manipulacji wybranych danych. 3. Tworzenie animacji wykresów. Do tworzenia animacji wykresów możemy wykorzystać też polecenie comet. dla. W Matlabie zaimplementowana jest również odmiana 3D tegoż polecenia: comet3. Przykład.6. Zaprezentuj ruch punktu po Helisie kołowej zadanej równaniem: dla a=10, b=4. Natomiast parametr t=0:0.001:10*pi; a=10; b=4; x = a*cos(t); y = a*sin(t); z=b*t; comet3(x,y,z); Przykład.5. Animacja ruchu punktu po wyznaczonej krzywej zadanej parametrycznie. t = 0:.01:2*pi; x = cos(2*t).*(cos(t).^2); y = sin(2*t).*(sin(t).^2); comet(x,y); Powyższy przykład generuje animację punktu poruszającego się zgodnie z równaniem parametrycznym. 3
4 Zadania Zad.1. Stwórz animację zmienności parametru k dla funkcji: potęgowej, dla oraz dla Zad.7. Zaprezentuj punkt poruszający się po Spirali Archimedesa zadanej parametrycznie: dla a=0.1 i. Zad.8. Zaprezentuj ruch punktu po krzywej Lissajousa: trygonometrycznej f(x)=sin(x+k*2*pi), dla Zad.2. Korzystając z przykładu 4, gdzie zaprezentowano siatkę na wykresie, opracuj animację dla powierzchni tegoż wykresu. Skorzystaj z polecenia surf(). Zad.3. Narysuj wizualizację manipulacją parametru k dla funkcji powierzchniowej: dla, oraz: Zad.9. Dana jest krzywa Vivaniego (lemniskata sferyczna): Na przedziale oraz dla Wykorzystaj właściwości figure() do wyświetlenia animacji na oknie zmaksymalizowanym: dla. Przedstaw symulację ruchu punktu po powyższej krzywej. figure('resize','off','units','normali zed','outerposition',[ ]) Zad.4 Zaprezentuj ruch punktu po elipsie o środku i promieniach i. Zad.5. Zaprezentuj ruch punktu po krzywej zadanej w postaci parametrycznej x = cos(t) + cos(7*t)/2 + sin(17*t)/3 y = sin(t) + sin(7*t)/2 + cos(17*t)/3 dla. Podpowiedź: im mniejszy skok dla t tym wolniej będzie poruszać się punkt. Zad.6. Dana jest cykloida wydłużona: x = a*t - b*sin(t); y = a-b*cos(t); dla i. Zaprezentuj ruch punktu po zadanej krzywej dla. 4
5 5
MATLAB ŚRODOWISKO MATLABA OPIS, PODSTAWY
MATLAB ŚRODOWISKO MATLABA OPIS, PODSTAWY Poszukiwanie znaczeń funkcji i skryptów funkcja help >> help % wypisuje linki do wszystkich plików pomocy >> help plot % wypisuje pomoc dotyczą funkcji plot Znaczenie
Laboratorium Algorytmy Obliczeniowe. Lab. 9 Prezentacja wyników w Matlabie
Laboratorium Algorytmy Obliczeniowe Lab. 9 Prezentacja wyników w Matlabie 1. Wyświetlanie wyników na ekranie: W Matlabie możliwe są następujące sposoby wyświetlania wartości zmiennych: a. wpisując w programie
PODSTAWY INFORMATYKI 1 MATLAB CZ. 3
PODSTAWY INFORMATYKI 1 MATLAB CZ. 3 TEMAT: Program Matlab: Instrukcje sterujące, grafika. Wyrażenia logiczne Wyrażenia logiczne służą do porównania wartości zmiennych o tych samych rozmiarach. W wyrażeniach
Laboratorium Cel ćwiczenia Ćwiczenie ma na celu praktyczne przedstawienie grafiki 3D.
Podstawy Informatyki 1 Laboratorium 10 1. Cel ćwiczenia Ćwiczenie ma na celu praktyczne przedstawienie grafiki 3D. 2. Wprowadzenie Grafika trójwymiarowa jest to przedstawienie na płaszczyźnie ekranu monitora
Funkcje wielu zmiennych
Funkcje wielu zmiennych oraz ich wykresy Zbigniew Koza Wydział Fizyki i Astronomii Wrocław, 2016 WSTĘP Funkcje wielu zmiennych Dotychczas zajmowaliśmy się funkcjami rzeczywistymi: argumentem była jedna
Metody numeryczne. Instytut Sterowania i Systemów Informatycznych Wydział Elektrotechniki, Informatyki i Telekomunikacji Uniwersytet Zielonogórski
Metody numeryczne Instytut Sterowania i Systemów Informatycznych Wydział Elektrotechniki, Informatyki i Telekomunikacji Uniwersytet Zielonogórski Elektrotechnika stacjonarne-dzienne pierwszego stopnia
Programowanie: grafika w SciLab Slajd 1. Programowanie: grafika w SciLab
Programowanie: grafika w SciLab Slajd 1 Programowanie: grafika w SciLab Programowanie: grafika w SciLab Slajd 2 Plan zajęć 1. Wprowadzenie 2. Wykresy 2-D 3. Wykresy 3-D 4. Rysowanie figur geometrycznych
Graficzna prezentacja wyników
Graficzna prezentacja wyników Wykonał: ŁUKASZ BURDACH ETI 9.3 Przy pierwszym wywołaniu funkcji rysującej wykres otwarte zostaje okno graficzne, które jest potem wykorzystywane domyślnie (jest tzw. oknem
Przykładowo, jeśli współrzędna x zmienia się od 0 do 8 co 1, a współrzędna y od 12 co 2 do 25, to punkty powinny wyglądać następująco:
Informatyka I Przypomnienie wiadomości z poprzednich zajęć: Kolokwium!!! II Nowe wiadomości: 1 Funkcje trójwymiarowe Wykresy trójwymiarowe tworzone są na podstawie funkcji dwóch zmiennych Wejściem takich
Podstawy MATLABA, cd.
Akademia Górniczo-Hutnicza Wydział Elektrotechniki, Automatyki, Informatyki i Elektroniki Przetwarzanie Sygnałów Studia Podyplomowe, Automatyka i Robotyka Podstawy MATLABA, cd. 1. Wielomiany 1.1. Definiowanie
Laboratorium 3 Grafika 2D i 3D w Matlabie. Wprowadzenie do programowania
Uniwersytet Zielonogórski Wydział Informatyki, Elektrotechniki i Telekomunikacji Instytut Sterowania i Systemów Informatycznych Elektrotechnika niestacjonarne-zaoczne pierwszego stopnia z tyt. inżyniera
Grafika w Matlabie. Wykresy 2D
Grafika w Matlabie Obiekty graficzne wyświetlane są w specjalnym oknie, które otwiera się poleceniem figure. Jednocześnie może być otwartych wiele okien, a każde z nich ma przypisany numer. Jedno z otwartych
1 Wizualizacja danych - wykresy 2D
1 Wizualizacja danych - wykresy 2D Funkcje sterujące tworzeniem wykresów plot(x,y, KSL ) tworzy wykres 2D wraz z specyfikatorem lini K - kolor, S - symbol, L - linia figure(nr) subplot(m,n,active) hold
Metody i analiza danych
2015/2016 Metody i analiza danych Funkcje, pętle i grafika Laboratorium komputerowe 3 Anna Kiełbus Zakres tematyczny 1. Funkcje i skrypty Pętle i instrukcje sterujące 2. Grafika dwuwymiarowa 3. Grafika
Metody Numeryczne. Laboratorium 1. Wstęp do programu Matlab
Metody Numeryczne Laboratorium 1 Wstęp do programu Matlab 1. Wiadomości wstępne liczby, format Program Matlab używa konwencjonalną notację dziesiętną, z kropka dziesiętną. W przypadku notacji naukowej
MATLAB PROJEKTOWANIE GRAFICZNE. Maciej Ulman ETI 9.2. Funkcje graficzne moŝna podzielić na cztery podstawowe grupy:
MATLAB PROJEKTOWANIE GRAFICZNE Maciej Ulman ETI 9.2 Funkcje graficzne moŝna podzielić na cztery podstawowe grupy: przeznaczone do tworzenia wykresów dwu- i trójwymiarowych, prezentujące wykresy ciągłe
1 Programowanie w matlabie - skrypty i funkcje
1 Programowanie w matlabie - skrypty i funkcje 1.1 Skrypty Skrypt jest plikiem tekstowym z rozszerzeniem *.m zawierającym listę poleceń do wykonania. Aby utworzyć skrypt w matlabie wybierz File New Script,
TWORZENIE WYKRESÓW (1)
TWORZENIE WYKRESÓW (1) Pewne wykresy można wygenerować za pomocą jednego polecenia, np.: graf2d, graf2d2, peaks, membrane, penny, earthmap, xfourier, xpklein, Lorenz, graf3d. Okno graficzne można wyczyścić
Podstawowe operacje graficzne.
Podstawowe operacje graficzne. Cel ćwiczenia Celem ćwiczenia jest zapoznanie się z możliwościami graficznymi środowiska GNU octave, w tym celu: narzędziami graficznymi, sposobami konstruowania wykresów
Wizualizacja funkcji w programie MATLAB
Instytut Informatyki Uniwersytetu Śląskiego 15 listopada 2008 Funckja plot Funkcja plot3 Wizualizacja funkcji jednej zmiennej Do wizualizacji funkcji jednej zmiennej w programie MATLAB wykorzystywana jest
WYDZIAŁ ELEKTROTECHNIKI, AUTOMATYKI I INFORMATYKI INSTYTUT AUTOMATYKI I INFORMATYKI KIERUNEK AUTOMATYKA I ROBOTYKA STUDIA STACJONARNE I STOPNIA
WYDZIAŁ ELEKTROTECHNIKI, AUTOMATYKI I INFORMATYKI INSTYTUT AUTOMATYKI I INFORMATYKI KIERUNEK AUTOMATYKA I ROBOTYKA STUDIA STACJONARNE I STOPNIA PRZEDMIOT : : LABORATORIUM PODSTAW AUTOMATYKI 1. WSTĘP DO
Wykresy. Lekcja 10. Strona 1 z 11
Lekcja Strona z Wykresy Wykresy tworzymy:. Z menu Insert Graph i następnie wybieramy rodzaj wykresu jaki chcemy utworzyć;. Z menu paska narzędziowego "Graph Toolbar" wybierając przycisk z odpowiednim wykresem;
Wprowadzenie do Scilab: funkcje i wykresy
Wprowadzenie do Scilab: funkcje i wykresy Magdalena Deckert, Izabela Szczęch, Barbara Wołyńska, Bartłomiej Prędki Politechnika Poznańska, Instytut Informatyki Narzędzia Informatyki Narzędzia Informatyki
zajęcia 2 Definiowanie wektorów:
zajęcia 2 Plan zajęć: definiowanie wektorów instrukcja warunkowa if wykresy Definiowanie wektorów: Co do definicji wektora: Koń jaki jest, każdy widzi Definiowanie wektora w Octave v1=[3,2,4] lub: v1=[3
, h(x) = sin(2x) w przedziale [ 2π, 2π].
Informatyczne podstawy projektowania, IŚ, / Maima, część II. Rysowanie wykresów w dwu i trzech wymiarach (zob. 5). a. Otwórz panel okna Wykres D i zapoznaj się z nim. Wyrażenie(a) - tutaj wpisujemy funkcję
TEMAT : Przykłady innych funkcji i ich wykresy.
Elżbieta Kołodziej e-mail: efreet@pf.pl matematyka, informatyka Gimnazjum Nr 5 37-450 Stalowa Wola ul. Poniatowskiego 55 SCENARIUSZ LEKCJI PRZEPROWADZONEJ W KLASIE III TEMAT : Przykłady innych funkcji
Mathematica - podstawy
Mathematica - podstawy Artur Kalinowski Semestr letni 2011/2012 Artur Kalinowski Mathematica - podstawy 1 / 27 Spis tre±ci Program Mathematica 1 Program Mathematica 2 3 4 5 Artur Kalinowski Mathematica
Wartości x-ów : Wartości x ów można w Scilabie zdefiniować na kilka sposobów, wpisując odpowiednie polecenie na konsoli.
Notatki z sesji Scilaba Istnieje możliwość dokładnego zapisu przebiegu aktualnej sesji pracy ze Scilabem: polecenie diary('nazwa_pliku.txt') powoduje zapis do podanego pliku tekstowego wszystkich wpisywanych
Wprowadzenie do środowiska MATLAB z zastosowaniami w modelowaniu i analizie danych
Wprowadzenie do środowiska MATLAB z zastosowaniami w modelowaniu i analizie danych Daniel Wójcik Instytut Biologii Doświadczalnej PAN Szkoła Wyższa Psychologii Społecznej d.wojcik@nencki.gov.pl tel. 022
ŚRODOWISKO MATLAB cz.4 Tworzenie wykresów funkcji
Wydział Elektryczny Katedra Elektrotechniki Teoretycznej i Metrologii Instrukcja do pracowni z przedmiotu Podstawy Informatyki Kod przedmiotu: TSC 3 Ćwiczenie pt. ŚRODOWISKO MATLAB cz.4 Tworzenie wykresów
Graficzna prezentacja wyników w MATLABIE
Graficzna prezentacja wyników w MATLABIE Bondos Magdalena Eti 9.1 Obiekty graficzne KaŜdy rysunek bądź wykres składa się z szeregu obiektów graficznych KaŜdy obiekt posiada atrybuty, które moŝe ustawiać
MATLAB tworzenie własnych funkcji
MATLAB tworzenie własnych funkcji Definiowanie funkcji anonimowych Własne definicje funkcji możemy tworzyć bezpośrednio w Command Window, są to tzw. funkcje anonimowe; dla funkcji jednej zmiennej składnia
Matlab Składnia + podstawy programowania
Matlab Składnia + podstawy programowania Matlab Matrix Laboratory środowisko stworzone z myślą o osobach rozwiązujących problemy matematyczne, w których operuje się na danych stanowiących wielowymiarowe
Interpolacja i aproksymacja, pojęcie modelu regresji
27 styczeń 2009 SciLab w obliczeniach numerycznych - część 3 Slajd 1 Interpolacja i aproksymacja, pojęcie modelu regresji 27 styczeń 2009 SciLab w obliczeniach numerycznych - część 3 Slajd 2 Plan zajęć
PODSTAWY TWORZENIA WYKRESÓW ORAZ HANDLE GRAPHICS
PODSTAWY TWORZENIA WYKRESÓW ORAZ HANDLE GRAPHICS GRAFIKA ZESTAWIENIE FUNKCJI Funkcje graficzne są umieszczone w pięciu podkatalogach katalogu *Matlab\Toolbox\Matlab: \graph2d - grafika 2-wymiarowa \graph3d
Matlab II skrypty, funkcje, wizualizacja danych. Piotr Wróbel Pok. B 4.22
Matlab II skrypty, funkcje, wizualizacja danych Piotr Wróbel piotr.wrobel@igf.fuw.edu.pl Pok. B 4.22 Metody numeryczne w optyce 2017 Skrypty Pierwszy skrypt: Home->NewScript Home -> New->NewScript Zakładka
Matlab Składnia + podstawy programowania
Matlab Składnia + podstawy programowania Matlab Matrix Laboratory środowisko stworzone z myślą o osobach rozwiązujących problemy matematyczne, w których operuje się na danych stanowiących wielowymiarowe
Technologie informacyjne lab. 3
Technologie informacyjne lab. 3 Cel ćwiczenia: Poznanie podstaw środowiska MATLAB/Octave: obliczenia macierzowe, rozwiązywanie równań i układów równań, wykresy funkcji 1 i 2 zmiennych. Aktualnie Uczelnia
Logarytmy. Funkcje logarytmiczna i wykładnicza. Równania i nierówności wykładnicze i logarytmiczne.
Logarytmy. Funkcje logarytmiczna i wykładnicza. Równania i nierówności wykładnicze i logarytmiczne. Definicja. Niech a i b będą dodatnimi liczbami rzeczywistymi i niech a. Logarytmem liczby b przy podstawie
Spis rysunków Widok okien głównych Matlaba i Scilaba Edytory skryptów w Matlabie i Scilabie... 7
Spis rysunków 1.1. Widok okien głównych Matlaba i Scilaba... 6 1.2. Edytory skryptów w Matlabie i Scilabie... 7 4.1. Przebieg funkcji y =2x 3 30x 2 3x + 200 w przedziale .. 64 4.2. Powierzchnie
Modelowanie Systemów Dynamicznych Studia zaoczne, Automatyka i Robotyka, rok II. Podstawy MATLABA, cz2.
Akademia Górniczo-Hutnicza Wydział Elektrotechniki, Automatyki, Informatyki i Elektroniki Modelowanie Systemów Dynamicznych Studia zaoczne, Automatyka i Robotyka, rok II Podstawy MATLABA, cz2. 1. Wielomiany
Badanie zależności położenia cząstki od czasu w ruchu wzdłuż osi Ox
A: 1 OK Muszę to powtórzyć... Potrzebuję pomocy Badanie zależności położenia cząstki od czasu w ruchu wzdłuż osi Ox 1. Uruchom program Modellus. 2. Wpisz x do okna modelu. 3. Naciśnij przycisk Interpretuj
Spis treści MATLAB CZ. 4 TWORZENIE WYKRESÓW FUNKCJI. Technologie Informacyjne. Instrukcja do pracowni specjalistycznej z przedmiotu
Politechnika Białostocka Wydział Elektryczny Katedra Elektrotechniki Teoretycznej i Metrologii Instrukcja do pracowni specjalistycznej z przedmiotu Technologie Informacyjne MATLAB CZ. 4 TWORZENIE WYKRESÓW
Uruchom polecenie z menu Wstaw Wykres lub ikonę Kreator wykresów na Standardowym pasku narzędzi.
Tworzenie wykresów w Excelu. Część pierwsza. Kreator wykresów Wpisz do arkusza poniższą tabelę. Podczas tworzenia wykresów nie ma znaczenia czy tabela posiada obramowanie lub inne elementy formatowania
Wykresy i obiekty graficzne w Matlabie
Wykresy i obiekty graficzne w Matlabie Dr inż. Z. Rudnicki Wykresy dwuwymiarowe (2D) - funkcja plot plot(x,y)- Dla danych wektorów x, y rysuje wykres liniowy plot(y) - Wykres liniowy wartości y, a na osi
Ćwiczenie 3. Iteracja, proste metody obliczeniowe
Ćwiczenie 3. Iteracja, proste metody obliczeniowe Instrukcja iteracyjna ( pętla liczona ) Pętla pozwala na wielokrotne powtarzanie bloku instrukcji. Liczba powtórzeń wynika z definicji modyfikowanej wartości
GNU Octave (w skrócie Octave) to rozbudowany program do analizy numerycznej.
1 GNU Octave GNU Octave (w skrócie Octave) to rozbudowany program do analizy numerycznej. Octave zapewnia: sporą bibliotęke użytecznych funkcji i algorytmów; możliwośc tworzenia przeróżnych wykresów; możliwość
Operatory arytmetyczne
Operatory arytmetyczne Działanie Znak Dodawanie + Odejmowanie - Mnożenie macierzowe * Mnożenie tablicowe.* Dzielenie macierzowe / Dzielenie tablicowe./ Potęgowanie macierzowe ^ Potęgowanie tablicowe.^
Elementy okna MatLab-a
MatLab część IV 1 Elementy okna MatLab-a 2 Elementy okna MatLab-a 3 Wykresy i przydatne polecenia Wywołanie funkcji graficznej powoduje automatyczne otwarcie okna graficznego Kolejne instrukcje graficzne
Geometria. Rozwiązania niektórych zadań z listy 2
Geometria. Rozwiązania niektórych zadań z listy 2 Inne rozwiązanie zadania 2. (Wyznaczyć równanie stycznej do elipsy x 2 a 2 + y2 b 2 = 1 w dowolnym jej punkcie (x 0, y 0 ). ) Przypuśćmy, że krzywa na
Informatyka dla klas I wykresy funkcji
2013 mgr Jerzy Wałaszek I LO w Tarnowie Informatyka dla klas I wykresy funkcji Prezentowane materiały są przeznaczone dla uczniów szkół ponadgimnazjalnych. Autor artykułu: mgr Jerzy Wałaszek, wersja1.0
PODSTAWY INŻYNIERII SYSTEMÓW TECHNICZNYCH
PODSTAWY INŻYNIERII SYSTEMÓW TECHNICZNYCH Charakterystyka programu MATLAB Dzadz Łukasz pok. 114 lukasz.dzadz@uwm.edu.pl Tel. 523-49-40 Katedra Inżynierii Systemów WNT UWM w Olsztynie TEMATYKA ĆWICZEŃ Charakterystyka
Grafika dwu- i trójwymiarowa MATLABie
Kier. MTR Programowanie w MATLABie Laboratorium Ćw. 5 Grafika dwu- i trójwymiarowa MATLABie 1. Wprowadzenie W środowisku MATLAB dostępna są bardzo szerokie możliwości wizualizacji danych w postaci różnego
1) Podstawowe obliczenia. PODSTAWY AUTOMATYKI I ROBOTYKI Laboratorium. Wykonał: Łukasz Konopacki Sala 125. Grupa: poniedziałek/p,
PODSTAWY AUTOMATYKI I ROBOTYKI Laboratorium Wykonał: Sala 125 Łukasz Konopacki 155796 Grupa: poniedziałek/p, 16.10 18.10 Prowadzący: Dr.inż.Ewa Szlachcic Termin oddania sprawozdania: Ocena: Matlab - firmy
Otwórz nowy skoroszyt. Zapisz go na dysku pod nazwą Nazwisko Imię Excel ćwiczenie 4.
Ćwiczenie 1. Otwórz nowy skoroszyt. Zapisz go na dysku pod nazwą Nazwisko Imię Excel ćwiczenie 1. Wprowadź do komórek B1:B6 wartość 0,1924578. Sformatuj odpowiednie komórki tak, aby wyświetlanie danych
Maple i wykresy. 1.1 Najpierw należy się zalogować. Jak to zrobić zostało opisane w moim poprzednim tutorialu.
Maple i wykresy 1 Program Maple 1.1 Najpierw należy się zalogować. Jak to zrobić zostało opisane w moim poprzednim tutorialu. 1.2 Uruchomienie programu Maple Uruchamiamy go, wpisując w konsoli maple, potwierdzając
Ćwiczenie 4. Matlab - funkcje, wielomiany, obliczenia symboliczne
Ćwiczenie 4. Matlab - funkcje, wielomiany, obliczenia symboliczne Obliczenia z wykorzystaniem tzw. funkcji anonimowej Składnia funkcji anonimowej: nazwa_funkcji=@(lista_argumentów)(wyrażenie) gdzie: -
Klasyfikator liniowy Wstęp Klasyfikator liniowy jest najprostszym możliwym klasyfikatorem. Zakłada on liniową separację liniowy podział dwóch klas między sobą. Przedstawia to poniższy rysunek: 5 4 3 2
Rachunek wektorowy - wprowadzenie. dr inż. Romuald Kędzierski
Rachunek wektorowy - wprowadzenie dr inż. Romuald Kędzierski Graficzne przedstawianie wielkości wektorowych Długość wektora jest miarą jego wartości Linia prosta wyznaczająca kierunek działania wektora
Rozwiązywanie równań różniczkowych z niezerowymi warunkami początkowymi
. Cele ćwiczenia Laboratorium nr Rozwiązywanie równań różniczkowych z niezerowymi warunkami początkowymi zapoznanie się z metodami symbolicznego i numerycznego rozwiązywania równań różniczkowych w Matlabie,
Matlab III Instrukcje, interpolacja, dopasowanie krzywych,
Matlab III Instrukcje, interpolacja, dopasowanie krzywych, Metody numeryczne w optyce 2017 Typy danych cd.. cell macierz komórkowa (blokowa) pojedynczymi elementami takiej macierzy mogą być nie tylko liczby
Zadania. Rozdział Wektory i macierze. 1.Podajpolecenie 1,któreutworzywektor: v = [100, 95, 90,..., 95, 100].
Rozdział 1 Zadania 11 Wektory i macierze 1Podajpolecenie 1,któreutworzywektor: v = [100, 95, 90,, 95, 100] 2 Podaj polecenie, które utworzy wektor: v = [cos(pi), cos(2 pi), cos(3 pi),,cos(100 pi)] 3 Podaj
Wprowadzenie do środowiska
Wprowadzenie do środowiska www.mathworks.com Piotr Wróbel piotr.wrobel@igf.fuw.edu.pl Pok. B 4.22 Metody numeryczne w optyce 2017 Czym jest Matlab Matlab (matrix laboratory) środowisko obliczeniowe oraz
Informatyka Arkusz kalkulacyjny Excel 2010 dla WINDOWS
Wyższa Szkoła Ekologii i Zarządzania Excel Informatyka Arkusz kalkulacyjny Excel 2010 dla WINDOWS cz.4 Slajd 1 Slajd 2 Najlepszym sposobem prezentacji danych jest prezentacja graficzna. Z pomocą wykresu
Ćwiczenie: "Rezonans w obwodach elektrycznych"
Ćwiczenie: "Rezonans w obwodach elektrycznych" Opracowane w ramach projektu: "Informatyka mój sposób na poznanie i opisanie świata realizowanego przez Warszawską Wyższą Szkołę Informatyki. Zakres ćwiczenia:
Mathcad c.d. - Macierze, wykresy 3D, rozwiązywanie równań, pochodne i całki, animacje
Mathcad c.d. - Macierze, wykresy 3D, rozwiązywanie równań, pochodne i całki, animacje Opracował: Zbigniew Rudnicki Powtórka z poprzedniego wykładu 2 1 Dokument, regiony, klawisze: Dokument Mathcada realizuje
Spis treści Szybki start... 4 Podstawowe informacje opis okien... 6 Tworzenie, zapisywanie oraz otwieranie pliku... 23
Spis treści Szybki start... 4 Podstawowe informacje opis okien... 6 Plik... 7 Okna... 8 Aktywny scenariusz... 9 Oblicz scenariusz... 10 Lista zmiennych... 11 Wartości zmiennych... 12 Lista scenariuszy/lista
Dokąd on zmierza? Przemieszczenie i prędkość jako wektory
A: 1 OK Muszę to powtórzyć... Potrzebuję pomocy Dokąd on zmierza? Przemieszczenie i prędkość jako wektory Łódź żegluje po morzu... Płynie z szybkością 10 węzłów (węzeł to 1 mila morska na godzinę czyli
Metody sztucznej inteligencji Zadanie 1: Perceptron Rosenblatt a w wersji nieliniowej
Metody sztucznej inteligencji Zadanie : Perceptron Rosenblatt a w wersji nieliniowej dr inż. Przemysław Klęsk Zbiór danych dla zadania do wykonania w domu Zgodnie z tym, co zostało podane na laboratoriach,
Funkcja kwadratowa. f(x) = ax 2 + bx + c,
Funkcja kwadratowa. Funkcją kwadratową nazywamy funkcję f : R R określoną wzorem gdzie a, b, c R, a 0. f(x) = ax 2 + bx + c, Szczególnym przypadkiem funkcji kwadratowej jest funkcja f(x) = ax 2, a R \
Macierz A nazywamy macierzą systemu, a B macierzą wejścia.
Dwiczenia 3 Automatyka i robotyka Równaniem stanu. Macierz A nazywamy macierzą systemu, a B macierzą wejścia. Równaniem wyjścia. Do opisu układu możemy użyd jednocześnie równania stanu i równania wyjścia
RÓWNANIA RÓŻNICZKOWE WYKŁAD 15
RÓWNANIA RÓŻNICZKOWE WYKŁAD 15 Niech r ( t ) [ x( t), y( t), z( t)], t I ( r ( t ) x( t) i y( t) j z( t) k, t I ) będzie równaniem wektorowym krzywej w R 3. Definicja Krzywą o równaniu r ( t ) [ a cost,
Ruch jednostajnie zmienny prostoliniowy
Ruch jednostajnie zmienny prostoliniowy Przyspieszenie w ruchu jednostajnie zmiennym prostoliniowym Jest to taki ruch, w którym wektor przyspieszenia jest stały, co do wartości (niezerowej), kierunku i
Informatyka Arkusz kalkulacyjny Excel 2010 dla WINDOWS
Wyższa Szkoła Ekologii i Zarządzania Informatyka Arkusz kalkulacyjny Excel 2010 dla WINDOWS cz.4 Slajd 1 Excel Slajd 2 Wykresy Najlepszym sposobem prezentacji danych jest prezentacja graficzna. Z pomocą
PętlaforwOctave. Roman Putanowicz 13 kwietnia 2008
PętlaforwOctave Roman Putanowicz kwietnia 008 Zakresyioperator : Zakresy(ang. ranges) są wygodnym sposobem definiowania wektorów reprezentujących ciągi arytmetyczne, czyli ciągi w których różnica pomiędzy
L1 - WPROWADZENIE DO MATLABA
L1 - WPROWADZENIE DO MATLABA 1. Krótkie wprowadzenie do Matlaba (wektory, macierze, help) 2. Zapisywanie danych save file a b c d save file a b c d ascii 3. Generacja wektorów i macierzy wpisywanie ręczne
Wizualizacja płomienia
Politechnika Wrocławska Instytut Informatyki Automatyki i Robotyki Wizualizacja danych sensorycznych Wizualizacja płomienia Autor: Weronika Matlakiewicz Opiekun projektu: dr inż. Bogdan Kreczmer 4 czerwca
WPROWADZENIE DO ŚRODOWISKA SCILAB
Politechnika Gdańska Wydział Elektrotechniki i Automatyki WPROWADZENIE DO ŚRODOWISKA SCILAB Materiały pomocnicze do ćwiczeń laboratoryjnych Opracowanie: Paweł Lieder Gdańsk, 007 Podstawy pracy z Scilab.
MATLAB Prowadzący: dr hab. inż. Marek Jaszczur Poziom: początkujący
MATLAB Prowadzący: dr hab. inż. Marek Jaszczur Poziom: początkujący Laboratorium 13: GUI - Graficzny interfejs użytkownika Cel: Projektowanie z wykorzystaniem Graficzny Interfejs Użytkownika Czas: Wprowadzenia
PLAN WYNIKOWY Z MATEMATYKI DLA KLASY II TECHNIKUM 5 - LETNIEGO
Lp. I PLAN WYNIKOWY Z MATEMATYKI DLA KLASY II TECHNIKUM 5 - LETNIEGO Temat lekcji Umiejętności Podstawowe Ponadpodstawowe Funkcja kwadratowa Uczeń: Uczeń: 1 Wykres i własności funkcji y = ax 2. - narysuje
Scilab - podstawy. Wersje instalacyjne programu Scilab mogą zostać pobrane ze strony
Scilab - podstawy Scilab jest środowiskiem numerycznym, programistycznym i numerycznym dostępnym za darmo z INRIA (Institut Nationale de Recherche en Informatique et Automatique). Jest programem podobnym
Skrypt 7. Funkcje. Opracowanie: L1
Projekt Innowacyjny program nauczania matematyki dla liceów ogólnokształcących współfinansowany ze środków Unii Europejskiej w ramach Europejskiego Funduszu Społecznego Skrypt 7 Funkcje 8. Miejsce zerowe
Repetytorium z matematyki ćwiczenia
Spis treści 1 Liczby rzeczywiste 1 2 Geometria analityczna. Prosta w układzie kartezjańskim Oxy 4 3 Krzywe drugiego stopnia na płaszczyźnie kartezjańskiej 6 4 Dziedzina i wartości funkcji 8 5 Funkcja liniowa
PRZYKŁADOWE SKRYPTY (PROGRAMY W MATLABIE Z ROZSZERZENIEM.m): 1) OBLICZANIE WYRAŻEŃ 1:
PRZYKŁADOWE SKRYPTY (PROGRAMY W MATLABIE Z ROZSZERZENIEM.m): 1) OBLICZANIE WYRAŻEŃ 1: clear % usunięcie zmiennych z pamięci roboczej MATLABa % wyczyszczenie okna kom % nadanie wartości zmiennym x1 i x2
========================= Zapisujemy naszą funkcję kwadratową w postaci kanonicznej: 2
Leszek Sochański Arkusz przykładowy, poziom podstawowy (A1) Zadanie 1. Wykresem funkcji kwadratowej f jest parabola o wierzchołku 5,7 Wówczas prawdziwa jest równość W. A. f 1 f 9 B. f 1 f 11 C. f 1 f 1
Podstawy analizy matematycznej II
Podstawy analizy matematycznej II Andrzej Marciniak Zajęcia finansowane z projektu "Rozwój i doskonalenie kształcenia na Politechnice Poznańskiej w zakresie technologii informatycznych i ich zastosowań
TEMAT: Ilustracja graficzna układu równań.
SCENARIUSZ LEKCJI PRZEPROWADZONEJ W KLASIE III TEMAT: Ilustracja graficzna układu równań. Cel ogólny: Uczeń rozwiązuje metodą graficzną układy równań przy użyciu komputera. Cele operacyjne: Uczeń: - zna
LABORATORIUM 3 ALGORYTMY OBLICZENIOWE W ELEKTRONICE I TELEKOMUNIKACJI. Wprowadzenie do środowiska Matlab
LABORATORIUM 3 ALGORYTMY OBLICZENIOWE W ELEKTRONICE I TELEKOMUNIKACJI Wprowadzenie do środowiska Matlab 1. Podstawowe informacje Przedstawione poniżej informacje maja wprowadzić i zapoznać ze środowiskiem
Przetwarzanie sygnałów
Spis treści Przetwarzanie sygnałów Ćwiczenie 1 Wprowadzenie do programu Octave 1 Operatory 1 1.1 Operatory arytmetyczne...................... 1 1.2 Operatory relacji.......................... 1 1.3 Operatory
Laboratorium 1. Rozwiązywanie równań różniczkowych z niezerowymi warunkami początkowymi
Laboratorium 1 1. Cel ćwiczenia Rozwiązywanie równań różniczkowych z niezerowymi warunkami początkowymi Zapoznanie się z metodami symbolicznego i numerycznego rozwiązywania równań różniczkowych w Matlabie,
Laboratorium MATLA. Ćwiczenie 1
Laboratorium MATLA Ćwiczenie 1 Opracowali: - dr inż. Beata Leśniak-Plewińska - dr inż. Jakub Żmigrodzki Zakład Inżynierii Biomedycznej, Instytut Metrologii i Inżynierii Biomedycznej, Wydział Mechatroniki
Zad. 6: Sterowanie robotem mobilnym
Zad. 6: Sterowanie robotem mobilnym 1 Cel ćwiczenia Utrwalenie umiejętności modelowania kluczowych dla danego problemu pojęć. Tworzenie diagramu klas, czynności oraz przypadków użycia. Wykorzystanie dziedziczenia
Laboratorium Komputerowego Wspomagania Analizy i Projektowania
Laboratorium Komputerowego Wspomagania Analizy i Projektowania Ćwiczenie 5. Podstawowe operacje graficzne. Opracował: dr inż. Sebastian Dudzik. Cel ćwiczenia Celem ćwiczenia jest zapoznanie się z możliwościami
7. Szybka transformata Fouriera fft
7. Szybka transformata Fouriera fft Dane pomiarowe sygnałów napięciowych i prądowych często obarczone są dużym błędem, wynikającym z istnienia tak zwanego szumu. Jedną z metod wspomagających analizę sygnałów
Drugi sposób definiowania funkcji polega na wykorzystaniu polecenia:
ĆWICZENIE 6. Scilab: Obliczenia symboliczne i numeryczne Uwaga: Podczas operacji kopiowania i wklejania potrzeba skasować wklejone pojedyńcze cudzysłowy i wpisać je ręcznie dla każdego ich wystąpienia
Zastosowanie GeoGebry w realizacji zagadnień związanych z trygonometrią 13. Wykresy funkcji sin x i cos x Paweł Perekietka 13
. Spis treści 1. 2. 2.1. 2.2. 2.3. 2.4. 2.5. 2.6. 2.7. 2.8. 2.9. 2.10. 3. 3.1. Wstęp Katarzyna Winkowska-Nowak, Edyta Pobiega, Robert Skiba 11 Zastosowanie GeoGebry w realizacji zagadnień związanych z
Materiał dotyczy generowania różnego typu wykresów w środowisku R.
Materiał dotyczy generowania różnego typu wykresów w środowisku R. Pamiętajmy, że niektóre typy wykresów są dedykowane do pewnych typów danych. Na potrzeby ćwiczeń początkowych załadujemy sobie zbiór danych
Badanie ruchu złożenia
Badanie ruchu złożenia W wersji Standard programu SolidWorks mamy do dyspozycji dwie aplikacje: Podstawowy ruch symulacja ruchu z użyciem grawitacji, sprężyn, napędów oraz kontaktu między komponentami.
Tworzenie nowego rysunku Bezpośrednio po uruchomieniu programu zostanie otwarte okno kreatora Nowego Rysunku.
1 Spis treści Ćwiczenie 1...3 Tworzenie nowego rysunku...3 Ustawienia Siatki i Skoku...4 Tworzenie rysunku płaskiego...5 Tworzenie modeli 3D...6 Zmiana Układu Współrzędnych...7 Tworzenie rysunku płaskiego...8
Funkcja liniowa - podsumowanie
Funkcja liniowa - podsumowanie 1. Funkcja - wprowadzenie Założenie wyjściowe: Rozpatrywana będzie funkcja opisana w dwuwymiarowym układzie współrzędnych X. Oś X nazywana jest osią odciętych (oś zmiennych