Modelowanie Systemów Dynamicznych Studia zaoczne, Automatyka i Robotyka, rok II. Podstawy MATLABA, cz2.
|
|
- Dariusz Tomaszewski
- 6 lat temu
- Przeglądów:
Transkrypt
1 Akademia Górniczo-Hutnicza Wydział Elektrotechniki, Automatyki, Informatyki i Elektroniki Modelowanie Systemów Dynamicznych Studia zaoczne, Automatyka i Robotyka, rok II Podstawy MATLABA, cz2. 1. Wielomiany 1.1. Definiowanie wielomianów Zapiszmy przykładowy wielomian II rzędu: y = x moŝna go zapisać w postaci ogólnej: y = 1x 2 + 0x +10 W Matlabie wpisujemy jedynie współczynniki wielomianu poczynając od najwyŝszej potęgi, czyli: y = [1 0 10] 1.2. Obliczanie wartości wielomianów Wartości wielomianu obliczamy za pomocą funkcji polyval. Wcześniej jednak naleŝy zdefiniować zakres, dla którego chcemy obliczyć te wartości, np: t = -10:0.1:10; wektor od 10 do 10 z krokiem 0.1 p = polyval(y,t); wektor p zawiera wartości wielomianu w zakresie t plot(t,p) rysowanie wielomianu Narysuj wielomian: x 6-2x 5 + 4x 3-16x w zakresie -2 x Miejsca zerowe wielomianów Do obliczania miejsc zerowych (pierwiastków) wielomianów słuŝy funkcja roots, np. dla wielomianu: y = x 3 3x 2 20x + 10 naleŝy wpisać: y = [ ] z = roots(y) W wyniku otrzymamy informację: z =
2 czyli wartości pierwiastków. Sprawdźmy na wykresie czy są to poprawne wartości. W tym celu naleŝy narysować ten wielomian (patrz punkt 1.2) i ustawić zakres osi na: -4 x 7, -60 y 40 za pomocą funkcji axis: axis([ ]) pierwsze dwie liczby oznaczają zakres osi x, a następne dwie zakres osi y. Dla wygody moŝna włączyć siatkę na wykresie: grid Po wpisaniu w linii poleceń ginput (kursor przybierze postać krzyŝa) naleŝy wskazać myszą po kolei miejsca zerowe (wszystkie trzy) na wykresie i nacisnąć Enter: W wyniku otrzymamy informację podobną do poniŝszej (zaleŝy od dokładności trafienia w punkty): ans = Pierwsza kolumna oznacza współrzędne x a druga współrzędne y wskazanych punktów. Sprawdź czy są zbliŝone do wyników funkcji roots Obliczanie współczynników wielomianu na podstawie miejsc zerowych Z drugiej strony, moŝna znaleźć współczynniki wielomianu na podstawie miejsc zerowych za pomocą funkcji poly: y1 = poly(z) y1 = Dopasowywanie wielomianu do punktów W jaki sposób znaleźć wielomian, który przechodzi przez zadane punkty? ZałóŜmy, Ŝe chcemy przeprowadzić wielomian przez punkty o współrzędnych: (1,1), (2,2), (3,1), (4,2) widoczne na poniŝszym rysunku.
3 MoŜna w tym celu wykorzystać funkcję polyfit o następującej składni: p=polyfit([ ],[ ],3); Funkcja ta przyjmuje 3 argumenty (dwa wektory i skalar): - wektor współrzędnych x-owych zadanych punktów - wektor współrzędnych y-owych zadanych punktów - stopień wielomianu Funkcja zwraca współczynniki znalezionego wielomianu (zobacz jakie). Następnie na podstawie współczynników trzeba obliczyć wartości wielomianu aby go narysować. W tym celu tworzymy wektor zakresu: t=0:0.1:5; oraz obliczamy wartości: y=polyval(p,t); i rysujemy wielomian na tle punktów: plot([ ],[ ],'o',t,y, m ) współrzędne punktów punkty w kształcie kółek kolor wielomianu (magenta) wielomian w zakresie t MoŜna teŝ nadać wykresowi tytuł: title('dopasowywanie wielomianu') i zakres: axis([ ])
4 2. M-pliki i m-funkcje 2.1. Skrypty Dotychczas wpisywaliśmy wszystkie komendy w linii poleceń. W przypadku prostych obliczeń to wystarczy, ale dla bardziej skomplikowanych programów (wielu linii kodu) nie jest to wygodne. Zamiast mozolnego wpisywania linijki po linijce kodu moŝna utworzyć tzw. m-plik czyli skrypt (program) Matlaba. Wybierz z menu file new m-file. Otworzy się okno edytora. Wpisz tam wszystkie komendy z punktu 1.5: p=polyfit([ ],[ ],3); t=0:0.1:5; y=polyval(p,t); plot([ ],[ ],'o',t,y,'m') axis([ ]) title('dopasowywanie wielomianu') Ustaw ścieŝkę na swój katalog roboczy, np. cd f:\praca. Zapisz powyŝszy program do pliku o nazwie np. wielomian.m (plik musi mieć koniecznie rozszerzenie m). Teraz moŝesz uruchomić ten program wpisując po prostu jego nazwę (bez rozszerzenia) w linii poleceń: wielomian 2.2. Funkcje Funkcje róŝnią się od skryptów tym, Ŝe mogą przyjmować argumenty, działają trochę szybciej i zmienne nie są widoczne w przestrzeni roboczej. Przerobimy teraz skrypt z punktu 2.1. na funkcję. Przede wszystkim funkcja musi posiadać słowo kluczowe function zapisane w pierwszej linii kodu, po którym następuje nazwa funkcji (taka sama jak nazwa pliku, w którym jest ta funkcja zapisana). Wybierz z menu file new m-file. Wpisz w oknie edytora zmodyfikowany skrypt: Zapisz powyŝszą funkcję do pliku o nazwie wielomian2.m. Jak widać trzeci argument funkcji polyfit function wielomian2(n) p=polyfit([ ],[ ],n); t=0:0.1:5; y=polyval(p,t); plot([ ],[ ],'o',t,y,'m') axis([ ]) title('dopasowywanie wielomianu') (stopień wielomianu) nie jest jawnie podany tylko jest przekazywany poprzez argument funkcji wielomian2. Taką funkcję moŝna wywoływać z linii poleceń z dowolnym argumentem, np.: wielomian2(3) lub wielomian2(5)
5 3. Zapis macierzowy czy pętla for? PoniŜszy kod pokazuje na przykładzie generowania sinusa, Ŝe wiele operacji moŝna wykonać na róŝne sposoby. W szczególności operacje macierzowe zawsze moŝna zastąpić pętlą for. Utwórz i wykonaj poniŝszy kod: dt=0.1 %okres próbkowania %macierzowo: t1=0:dt:2*pi; subplot(2,1,1) %umieszcza kilka wykresów w jednym oknie plot(t1,sin(t1)), title('sinus generowany macierzowo') %pętla: for i=0:2*pi/dt y(i+1)=sin(i*dt); t2(i+1)=i*dt; end subplot(2,1,2) plot(t2,y), title('sinus generowany w petli') Zwróć uwagę na składnię pętli for i argumenty funkcji plot. Matlab jest zoptymalizowany pod względem wykonywania operacji macierzowych, więc zapis macierzowy wykonuje się duŝo szybciej. Pętle są z kolei bardziej uniwersalne nie wszystkie obliczenia moŝna wykonać w zapisie macierzowym. Uwaga: znak % oznacza komentarz taki wiersz jest ignorowany przez program. 4. Wykresy funkcji algebraicznych Wykonaj kilka wykresów funkcji algebraicznych za pomocą funkcji fplot: y = x 3 fplot('x^3',[-10 10]) y = x 3 (x 1)(x 2) 2 fplot('x^3*(x-1)*(x-2)^2',[ ]) y = x e x + x e -x fplot('x*exp(x)+x*exp(-x)',[-10 10]) 5. Wykresy trójwymiarowe Jak wykonać wykres trójwymiarowy poniŝszej funkcji? (-x^2 y^2) z = x e w zakresie: -2 x 2-2 y 2 z krokiem 0.1 Najpierw naleŝy przygotować tzw. siatkę o podanym zakresie za pomocą funkcji meshgrid:
6 [x,y]=meshgrid(-2:0.1:2,-2:0.1:2); Następnie trzeba zapisać samą funkcję: z=x.*exp(-x.^2-y.^2); i uŝyć którejś z poniŝszych funkcji: mesh(x,y,z) meshc(x,y,z) meshz(x,y,z) surf(x,y,z) surfl(x,y,z),shading interp,colormap(gray) Oglądnij wykresy i zobacz czym się róŝnią. 6. Zadania do samodzielnego wykonania a) Napisz program obliczający pierwiastki równania kwadratowego w formie skryptu (współczynniki równania wprowadzane z klawiatury wewnątrz skryptu) oraz w formie funkcji (współczynniki równania podawane jako argumenty funkcji w linii komend). b) Zapoznaj się z funkcjami do opisywania wykresów: title, xlabel, ylabel, legend, oraz z funkcją do zarządzania wykresami subplot. Skorzystaj z Help a. c) Wygeneruj sygnał sinusoidalny u = sin( 2πft) o długości N próbek. Przyjmij następujące dane: N = 1000, f = 5 (częstotliwość), t = (okres próbkowania). Wykonaj to na dwa sposoby: macierzowo i za pomocą petli FOR.
Podstawy MATLABA, cd.
Akademia Górniczo-Hutnicza Wydział Elektrotechniki, Automatyki, Informatyki i Elektroniki Przetwarzanie Sygnałów Studia Podyplomowe, Automatyka i Robotyka Podstawy MATLABA, cd. 1. Wielomiany 1.1. Definiowanie
MATLAB ŚRODOWISKO MATLABA OPIS, PODSTAWY
MATLAB ŚRODOWISKO MATLABA OPIS, PODSTAWY Poszukiwanie znaczeń funkcji i skryptów funkcja help >> help % wypisuje linki do wszystkich plików pomocy >> help plot % wypisuje pomoc dotyczą funkcji plot Znaczenie
WYDZIAŁ ELEKTROTECHNIKI, AUTOMATYKI I INFORMATYKI INSTYTUT AUTOMATYKI I INFORMATYKI KIERUNEK AUTOMATYKA I ROBOTYKA STUDIA STACJONARNE I STOPNIA
WYDZIAŁ ELEKTROTECHNIKI, AUTOMATYKI I INFORMATYKI INSTYTUT AUTOMATYKI I INFORMATYKI KIERUNEK AUTOMATYKA I ROBOTYKA STUDIA STACJONARNE I STOPNIA PRZEDMIOT : : LABORATORIUM PODSTAW AUTOMATYKI 1. WSTĘP DO
Metody i analiza danych
2015/2016 Metody i analiza danych Funkcje, pętle i grafika Laboratorium komputerowe 3 Anna Kiełbus Zakres tematyczny 1. Funkcje i skrypty Pętle i instrukcje sterujące 2. Grafika dwuwymiarowa 3. Grafika
PODSTAWY INFORMATYKI 1 MATLAB CZ. 3
PODSTAWY INFORMATYKI 1 MATLAB CZ. 3 TEMAT: Program Matlab: Instrukcje sterujące, grafika. Wyrażenia logiczne Wyrażenia logiczne służą do porównania wartości zmiennych o tych samych rozmiarach. W wyrażeniach
Ćwiczenie 0 : Wprowadzenie do cyfrowego przetwarzania sygnałów. wyświetla listę tematów pomocy. wyświetla okno pomocy (Help / Product Help)
Wybr ane za gadnienia elektr oniki współczesnej Ćwiczenie 0 : Wprowadzenie do cyfrowego przetwarzania sygnałów. 1 Cel ćwiczenia Pierwsze zajęcia laboratoryjne z zakresu przetwarzania sygnałów mają na celu
1 Programowanie w matlabie - skrypty i funkcje
1 Programowanie w matlabie - skrypty i funkcje 1.1 Skrypty Skrypt jest plikiem tekstowym z rozszerzeniem *.m zawierającym listę poleceń do wykonania. Aby utworzyć skrypt w matlabie wybierz File New Script,
Laboratorium Cel ćwiczenia Ćwiczenie ma na celu praktyczne przedstawienie grafiki 3D.
Podstawy Informatyki 1 Laboratorium 10 1. Cel ćwiczenia Ćwiczenie ma na celu praktyczne przedstawienie grafiki 3D. 2. Wprowadzenie Grafika trójwymiarowa jest to przedstawienie na płaszczyźnie ekranu monitora
Metody Numeryczne. Laboratorium 1. Wstęp do programu Matlab
Metody Numeryczne Laboratorium 1 Wstęp do programu Matlab 1. Wiadomości wstępne liczby, format Program Matlab używa konwencjonalną notację dziesiętną, z kropka dziesiętną. W przypadku notacji naukowej
Mathcad c.d. - Macierze, wykresy 3D, rozwiązywanie równań, pochodne i całki, animacje
Mathcad c.d. - Macierze, wykresy 3D, rozwiązywanie równań, pochodne i całki, animacje Opracował: Zbigniew Rudnicki Powtórka z poprzedniego wykładu 2 1 Dokument, regiony, klawisze: Dokument Mathcada realizuje
1) Podstawowe obliczenia. PODSTAWY AUTOMATYKI I ROBOTYKI Laboratorium. Wykonał: Łukasz Konopacki Sala 125. Grupa: poniedziałek/p,
PODSTAWY AUTOMATYKI I ROBOTYKI Laboratorium Wykonał: Sala 125 Łukasz Konopacki 155796 Grupa: poniedziałek/p, 16.10 18.10 Prowadzący: Dr.inż.Ewa Szlachcic Termin oddania sprawozdania: Ocena: Matlab - firmy
Programowanie: grafika w SciLab Slajd 1. Programowanie: grafika w SciLab
Programowanie: grafika w SciLab Slajd 1 Programowanie: grafika w SciLab Programowanie: grafika w SciLab Slajd 2 Plan zajęć 1. Wprowadzenie 2. Wykresy 2-D 3. Wykresy 3-D 4. Rysowanie figur geometrycznych
Przykładowo, jeśli współrzędna x zmienia się od 0 do 8 co 1, a współrzędna y od 12 co 2 do 25, to punkty powinny wyglądać następująco:
Informatyka I Przypomnienie wiadomości z poprzednich zajęć: Kolokwium!!! II Nowe wiadomości: 1 Funkcje trójwymiarowe Wykresy trójwymiarowe tworzone są na podstawie funkcji dwóch zmiennych Wejściem takich
Politechnika Gdańska Wydział Elektrotechniki i Automatyki Katedra Inżynierii Systemów Sterowania
Politechnika Gdańska Wydział Elektrotechniki i Automatyki Katedra Inżynierii Systemów Sterowania Teoria sterowania MATLAB funkcje zewnętrzne (m-pliki, funkcje) Materiały pomocnicze do ćwiczeń laboratoryjnych
Wartości x-ów : Wartości x ów można w Scilabie zdefiniować na kilka sposobów, wpisując odpowiednie polecenie na konsoli.
Notatki z sesji Scilaba Istnieje możliwość dokładnego zapisu przebiegu aktualnej sesji pracy ze Scilabem: polecenie diary('nazwa_pliku.txt') powoduje zapis do podanego pliku tekstowego wszystkich wpisywanych
WPROWADZENIE DO ŚRODOWISKA SCILAB
Politechnika Gdańska Wydział Elektrotechniki i Automatyki WPROWADZENIE DO ŚRODOWISKA SCILAB Materiały pomocnicze do ćwiczeń laboratoryjnych Opracowanie: Paweł Lieder Gdańsk, 007 Podstawy pracy z Scilab.
MATLAB wprowadzenie śycie jest zbyt krótkie, aby tracić czas na pisanie pętli!
Modele układów dynamicznych - laboratorium MATLAB wprowadzenie śycie jest zbyt krótkie, aby tracić czas na pisanie pętli! 1 2 MATLAB MATLAB (ang. matrix laboratory) to pakiet przeznaczony do wykonywania
Graficzna prezentacja wyników
Graficzna prezentacja wyników Wykonał: ŁUKASZ BURDACH ETI 9.3 Przy pierwszym wywołaniu funkcji rysującej wykres otwarte zostaje okno graficzne, które jest potem wykorzystywane domyślnie (jest tzw. oknem
Pętle iteracyjne i decyzyjne
Pętle iteracyjne i decyzyjne. Pętla iteracyjna for Pętlę iteracyjną for stosuje się do wykonywania wyrażeń lub ich grup określoną liczbę razy. Licznik pętli w pakiecie MatLab może być zwiększany bądź zmniejszany
do MATLABa programowanie WYKŁAD Piotr Ciskowski
Wprowadzenie do MATLABa programowanie WYKŁAD Piotr Ciskowski instrukcje sterujące instrukcja warunkowa: if instrukcja wyboru: switch instrukcje iteracyjne: for, while instrukcje przerwania: continue, break,
zajęcia 2 Definiowanie wektorów:
zajęcia 2 Plan zajęć: definiowanie wektorów instrukcja warunkowa if wykresy Definiowanie wektorów: Co do definicji wektora: Koń jaki jest, każdy widzi Definiowanie wektora w Octave v1=[3,2,4] lub: v1=[3
Laboratorium Algorytmy Obliczeniowe. Lab. 9 Prezentacja wyników w Matlabie
Laboratorium Algorytmy Obliczeniowe Lab. 9 Prezentacja wyników w Matlabie 1. Wyświetlanie wyników na ekranie: W Matlabie możliwe są następujące sposoby wyświetlania wartości zmiennych: a. wpisując w programie
Modelowanie Systemów Dynamicznych Studia zaoczne, Automatyka i Robotyka, rok II. Podstawy SIMULINKA
Akademia Górniczo-Hutnicza Wydział Elektrotechniki, Automatyki, Informatyki i Elektroniki Modelowanie Systemów Dynamicznych Studia zaoczne, Automatyka i Robotyka, rok II Podstawy SIMULINKA Simulink jest
MATLAB tworzenie własnych funkcji
MATLAB tworzenie własnych funkcji Definiowanie funkcji anonimowych Własne definicje funkcji możemy tworzyć bezpośrednio w Command Window, są to tzw. funkcje anonimowe; dla funkcji jednej zmiennej składnia
, h(x) = sin(2x) w przedziale [ 2π, 2π].
Informatyczne podstawy projektowania, IŚ, / Maima, część II. Rysowanie wykresów w dwu i trzech wymiarach (zob. 5). a. Otwórz panel okna Wykres D i zapoznaj się z nim. Wyrażenie(a) - tutaj wpisujemy funkcję
Podstawy Automatyki ćwiczenia Cz.1. Środowisko Matlab
Podstawy Automatyki ćwiczenia Cz.1 Środowisko Matlab Podstawową jednostką obliczeniową w programie Matlab jest macierz. Wektory i skalary mogą być tutaj rozpatrywane jako specjalne typy macierzy. Elementy
Program na zaliczenie: Odejmowanie widm
Piotr Chojnacki: MATLAB Program na zaliczenie: Odejmowanie widm {Poniższy program ma za zadanie odjęcie dwóch widm od siebie. Do poprawnego działania programu potrzebne są trzy funkcje: odejmowaniewidm.m
ŚRODOWISKO MATLAB cz.4 Tworzenie wykresów funkcji
Wydział Elektryczny Katedra Elektrotechniki Teoretycznej i Metrologii Instrukcja do pracowni z przedmiotu Podstawy Informatyki Kod przedmiotu: TSC 3 Ćwiczenie pt. ŚRODOWISKO MATLAB cz.4 Tworzenie wykresów
Scilab - podstawy. Wersje instalacyjne programu Scilab mogą zostać pobrane ze strony
Scilab - podstawy Scilab jest środowiskiem numerycznym, programistycznym i numerycznym dostępnym za darmo z INRIA (Institut Nationale de Recherche en Informatique et Automatique). Jest programem podobnym
Ćwiczenia nr 4. Arkusz kalkulacyjny i programy do obliczeń statystycznych
Ćwiczenia nr 4 Arkusz kalkulacyjny i programy do obliczeń statystycznych Arkusz kalkulacyjny składa się z komórek powstałych z przecięcia wierszy, oznaczających zwykle przypadki, z kolumnami, oznaczającymi
Usługi Informatyczne "SZANSA" - Gabriela Ciszyńska-Matuszek ul. Świerkowa 25, Bielsko-Biała
Usługi Informatyczne "SZANSA" - Gabriela Ciszyńska-Matuszek ul. Świerkowa 25, 43-305 Bielsko-Biała NIP 937-22-97-52 tel. +48 33 488 89 39 zwcad@zwcad.pl www.zwcad.pl Aplikacja do rysowania wykresów i oznaczania
WYDZIAŁ ELEKTROTECHNIKI, AUTOMATYKI I INFORMATYKI INSTYTUT AUTOMATYKI I INFORMATYKI KIERUNEK AUTOMATYKA I ROBOTYKA STUDIA STACJONARNE I STOPNIA
WYDZIAŁ ELEKTROTECHNIKI, AUTOMATYKI I INFORMATYKI INSTYTUT AUTOMATYKI I INFORMATYKI KIERUNEK AUTOMATYKA I ROBOTYKA STUDIA STACJONARNE I STOPNIA PRZEDMIOT : : LABORATORIUM PODSTAW AUTOMATYKI 3. Charakterystyki
GNU Octave (w skrócie Octave) to rozbudowany program do analizy numerycznej.
1 GNU Octave GNU Octave (w skrócie Octave) to rozbudowany program do analizy numerycznej. Octave zapewnia: sporą bibliotęke użytecznych funkcji i algorytmów; możliwośc tworzenia przeróżnych wykresów; możliwość
Instrukcja korzystania ze skryptu kroswalidacja.py
Instrukcja korzystania ze skryptu kroswalidacja.py 1) Wczytać do SGeMS plik z danymi pomiarowymi dwukrotnie (Menu Objects Load Object): raz jako dane, a za drugim razem pod inną nazwą, np. punkty jako
Różniczkowanie numeryczne
Różniczkowanie numeryczne Przyjmijmy, że funkcja ciągła y = f(x) = 4sin(3x)e -x/2, gdzie x 0,2π, dana jest w postaci dyskretnej jako ciąg wartości y odpowiadających zmiennej niezależnej x, również danej
Matlab MATrix LABoratory Mathworks Inc.
Małgorzata Jakubowska Matlab MATrix LABoratory Mathworks Inc. MATLAB pakiet oprogramowania matematycznego firmy MathWorks Inc. (www.mathworks.com) rozwijany od roku 1984 język programowania i środowisko
AKADEMIA MORSKA W SZCZECINIE WI-ET / IIT / ZTT. Instrukcja do zajęc laboratoryjnych nr 6 AUTOMATYKA
AKADEMIA MORSKA W SZCZECINIE WI-ET / IIT / ZTT Instrukcja do zajęc laboratoryjnych nr 6 AUTOMATYKA II rok Kierunek Transport Temat: Transmitancja operatorowa. Badanie odpowiedzi układów automatyki. Opracował
PREZENTACJE MULTIMEDIALNE cz.2
Wydział Elektryczny Katedra Elektrotechniki Teoretycznej i Metrologii Instrukcja do pracowni z przedmiotu Podstawy Informatyki Kod przedmiotu: TS1C 100 003 Ćwiczenie pt. PREZENTACJE MULTIMEDIALNE cz.2
Akademia Górniczo-Hutnicza Wydział Elektrotechniki, Automatyki, Informatyki i Elektroniki
Akademia Górniczo-Hutnicza Wydział Elektrotechniki, Automatyki, Informatyki i Elektroniki Przetwarzanie Sygnałów Studia Podyplomowe, Automatyka i Robotyka. Wstęp teoretyczny Zmienne losowe Zmienne losowe
Egzamin ustny z matematyki semestr II Zakres wymaganych wiadomości i umiejętności
Egzamin ustny z matematyki semestr II Zakres wymaganych wiadomości i umiejętności I. Pojęcie funkcji definicja różne sposoby opisu funkcji określenie dziedziny, zbioru wartości, miejsc zerowych. Należy
Matlab (5) Matlab równania różniczkowe, aproksymacja
Matlab (5) Matlab równania różniczkowe, aproksymacja Równania różniczkowe - funkcja dsolve() Funkcja dsolve oblicza symbolicznie rozwiązania równań różniczkowych zwyczajnych. Równania są określane przez
SCENARIUSZ LEKCJI. Wielomiany komputerowe wykresy funkcji wielomianowych
Autorzy scenariusza: SCENARIUSZ LEKCJI OPRACOWANY W RAMACH PROJEKTU: INFORMATYKA MÓJ SPOSÓB NA POZNANIE I OPISANIE ŚWIATA. PROGRAM NAUCZANIA INFORMATYKI Z ELEMENTAMI PRZEDMIOTÓW MATEMATYCZNO-PRZYRODNICZYCH
Skrypty i funkcje Zapisywane są w m-plikach Wywoływane są przez nazwę m-pliku, w którym są zapisane (bez rozszerzenia) M-pliki mogą zawierać
MatLab część III 1 Skrypty i funkcje Zapisywane są w m-plikach Wywoływane są przez nazwę m-pliku, w którym są zapisane (bez rozszerzenia) M-pliki mogą zawierać komentarze poprzedzone znakiem % Skrypty
Akademia Górniczo-Hutnicza Wydział Elektrotechniki, Automatyki, Informatyki i Elektroniki
Akademia Górniczo-Hutnicza Wydział Elektrotechniki, Automatyki, Informatyki i Elektroniki Przetwarzanie Sygnałów Studia Podyplomowe, Automatyka i Robotyka Podstawy MATLABA MATLAB jest zintegrowanym środowiskiem
Wprowadzenie do Scilab: macierze
Wprowadzenie do Scilab: macierze Narzędzia Informatyki Magdalena Deckert Izabela Szczęch Barbara Wołyńska Bartłomiej Prędki Politechnika Poznańska Instytut Informatyki Agenda Definiowanie macierzy Funkcje
Modelowanie Systemów Dynamicznych Studia zaoczne, Automatyka i Robotyka, rok II. Podstawy MATLABA
Akademia Górniczo-Hutnicza Wydział Elektrotechniki, Automatyki, Informatyki i Elektroniki Modelowanie Systemów Dynamicznych Studia zaoczne, Automatyka i Robotyka, rok II Podstawy MATLABA MATLAB jest zintegrowanym
Podstawy programowania Laboratorium. Ćwiczenie 2 Programowanie strukturalne podstawowe rodzaje instrukcji
Podstawy programowania Laboratorium Ćwiczenie 2 Programowanie strukturalne podstawowe rodzaje instrukcji Instrukcja warunkowa if Format instrukcji warunkowej Przykład 1. if (warunek) instrukcja albo zestaw
Programowanie w języku Python. Grażyna Koba
Programowanie w języku Python Grażyna Koba Kilka definicji Program komputerowy to ciąg instrukcji języka programowania, realizujący dany algorytm. Język programowania to zbiór określonych instrukcji i
Ćwiczenie 4. Matlab - funkcje, wielomiany, obliczenia symboliczne
Ćwiczenie 4. Matlab - funkcje, wielomiany, obliczenia symboliczne Obliczenia z wykorzystaniem tzw. funkcji anonimowej Składnia funkcji anonimowej: nazwa_funkcji=@(lista_argumentów)(wyrażenie) gdzie: -
FUNKCJA KWADRATOWA. Wykresem funkcji kwadratowej jest parabola o wierzchołku w punkcie W = (p, q), gdzie
Funkcja kwadratowa jest to funkcja postaci y = ax 2 + bx + c, wyrażenie ax 2 + bx + c nazywamy trójmianem kwadratowym, gdzie x, a, oraz a, b, c - współczynniki liczbowe trójmianu kwadratowego. ó ó Wykresem
. Funkcja ta maleje dla ( ) Zadanie 1 str. 180 b) i c) Zadanie 2 str. 180 a) i b)
Lekcja 1 -. Lekcja organizacyjna kontrakt diagnoza i jej omówienie Podręcznik: W. Babiański, L. Chańko, D. Ponczek Matematyka. Zakres podstawowy. Wyd. Nowa Era. Zakres materiału: Funkcje kwadratowe Wielomiany
Wprowadzenie do środowiska MATLAB z zastosowaniami w modelowaniu i analizie danych
Wprowadzenie do środowiska MATLAB z zastosowaniami w modelowaniu i analizie danych Daniel Wójcik Instytut Biologii Doświadczalnej PAN Szkoła Wyższa Psychologii Społecznej d.wojcik@nencki.gov.pl tel. 022
Wprowadzenie do pakietów MATLAB/GNU Octave
Wprowadzenie do pakietów MATLAB/GNU Octave Ireneusz Czajka wersja poprawiona z 2017 Chociaż dla ścisłości należałoby używać zapisu MATLAB/GNU Octave, w niniejszym opracowaniu używana jest nazwa Matlab,
WYDZIAŁ ELEKTROTECHNIKI, AUTOMATYKI I INFORMATYKI INSTYTUT AUTOMATYKI I INFORMATYKI KIERUNEK AUTOMATYKA I ROBOTYKA STUDIA STACJONARNE I STOPNIA
WYDZIAŁ ELEKTROTECHNIKI, AUTOMATYKI I INFORMATYKI INSTYTUT AUTOMATYKI I INFORMATYKI KIERUNEK AUTOMATYKA I ROBOTYKA STUDIA STACJONARNE I STOPNIA PRZEDMIOT : : LABORATORIUM PODSTAW AUTOMATYKI 7. Metoda projektowania
Grafika w Matlabie. Wykresy 2D
Grafika w Matlabie Obiekty graficzne wyświetlane są w specjalnym oknie, które otwiera się poleceniem figure. Jednocześnie może być otwartych wiele okien, a każde z nich ma przypisany numer. Jedno z otwartych
Podstawowe operacje graficzne.
Podstawowe operacje graficzne. Cel ćwiczenia Celem ćwiczenia jest zapoznanie się z możliwościami graficznymi środowiska GNU octave, w tym celu: narzędziami graficznymi, sposobami konstruowania wykresów
Elementy metod numerycznych - zajęcia 9
Poniższy dokument zawiera informacje na temat zadań rozwiązanych w trakcie laboratoriów. Elementy metod numerycznych - zajęcia 9 Tematyka - Scilab 1. Labolatoria Zajęcia za 34 punktów. Proszę wysłać krótkie
Skrypt 12. Funkcja kwadratowa:
Projekt Innowacyjny program nauczania matematyki dla liceów ogólnokształcących współfinansowany ze środków Unii Europejskiej w ramach Europejskiego Funduszu Społecznego Skrypt 12 Funkcja kwadratowa: 8.
Wprowadzenie do Scilab: funkcje i wykresy
Wprowadzenie do Scilab: funkcje i wykresy Magdalena Deckert, Izabela Szczęch, Barbara Wołyńska, Bartłomiej Prędki Politechnika Poznańska, Instytut Informatyki Narzędzia Informatyki Narzędzia Informatyki
ZAGADNIENIA PROGRAMOWE I WYMAGANIA EDUKACYJNE DO TESTU PRZYROSTU KOMPETENCJI Z MATEMATYKI DLA UCZNIA KLASY II
ZAGADNIENIA PROGRAMOWE I WYMAGANIA EDUKACYJNE DO TESTU PRZYROSTU KOMPETENCJI Z MATEMATYKI DLA UCZNIA KLASY II POZIOM ROZSZERZONY Równania i nierówności z wartością bezwzględną. rozwiązuje równania i nierówności
FUNKCJA LINIOWA. A) B) C) D) Wskaż, dla którego funkcja liniowa określona wzorem jest stała. A) B) C) D)
FUNKCJA LINIOWA 1. Funkcja jest rosnąca, gdy 2. Wskaż, dla którego funkcja liniowa jest rosnąca Wskaż, dla którego funkcja liniowa określona wzorem jest stała. 3. Funkcja liniowa A) jest malejąca i jej
Pojęcia, wymagania i przykładowe zadania na egzamin poprawkowy dla klas II w roku szkolnym 2016/2017 w Zespole Szkół Ekonomicznych w Zielonej Górze
Pojęcia, wymagania i przykładowe zadania na egzamin poprawkowy dla klas II w roku szkolnym 2016/2017 w Zespole Szkół Ekonomicznych w Zielonej Górze I. Funkcja i jej własności POZIOM PODSTAWOWY Pojęcie
ZADANIE 1. ZADANIE 2 Wyznacz wzór funkcji f (x) = 2x 2 + bx + c w postaci kanonicznej wiedzac, że jej miejsca zerowe sa niami równania x 3 = ZADANIE 3
ZADANIE 1 i największa wartość funkcji f (x) = (x )(x + 1) w przedziale 0; 4. ZADANIE Wyznacz wzór funkcji f (x) = x + bx + c w postaci kanonicznej wiedzac, że jej miejsca zerowe sa rozwiaza- niami równania
Wizualizacja funkcji w programie MATLAB
Instytut Informatyki Uniwersytetu Śląskiego 15 listopada 2008 Funckja plot Funkcja plot3 Wizualizacja funkcji jednej zmiennej Do wizualizacji funkcji jednej zmiennej w programie MATLAB wykorzystywana jest
Wprowadzenie do środowiska MATLAB z zastosowaniami w modelowaniu i analizie danych
Wprowadzenie do środowiska MATLAB z zastosowaniami w modelowaniu i analizie danych Daniel Wójcik Instytut Biologii Doświadczalnej PAN Szkoła Wyższa Psychologii Społecznej d.wojcik@nencki.gov.pl tel. 022
FUNKCJE I RÓWNANIA KWADRATOWE. Lekcja 78. Pojęcie i wykres funkcji kwadratowej str
FUNKCJE I RÓWNANIA KWADRATOWE Lekcja 78. Pojęcie i wykres funkcji kwadratowej str. 178-180. Funkcja kwadratowa to taka, której wykresem jest parabola. Definicja Funkcją kwadratową nazywamy funkcje postaci
Multimetr cyfrowy MAS-345. Instrukcja instalacji i obsługi oprogramowania DMM VIEW Ver 2.0
Multimetr cyfrowy MAS-345 Instrukcja instalacji i obsługi oprogramowania DMM VIEW Ver 2.0 Do urządzenia MAS-345 została dołączona płyta CD zawierająca oprogramowanie DMM VIEW 2.0, dzięki któremu moŝliwa
ARKUSZ KALKULACYJNY MICROSOFT EXCEL cz.2 Formuły i funkcje macierzowe, obliczenia na liczbach zespolonych, wykonywanie i formatowanie wykresów.
Wydział Elektryczny Katedra Elektrotechniki Teoretycznej i Metrologii Instrukcja do pracowni z przedmiotu Podstawy Informatyki Kod przedmiotu: ENS1C 100 003 oraz ENZ1C 100 003 Ćwiczenie pt. ARKUSZ KALKULACYJNY
Maxima i Visual Basic w Excelu
25 marca 2014 Jak komunikować się z komputerem? Trzy podstawowe elementy programu: 1 wprowadzenie danych (wejście), 2 wykonanie operacji przewidzianych programem (najczęściej obliczeń), 3 zwrócenie wyniku
Maple i wykresy. 1.1 Najpierw należy się zalogować. Jak to zrobić zostało opisane w moim poprzednim tutorialu.
Maple i wykresy 1 Program Maple 1.1 Najpierw należy się zalogować. Jak to zrobić zostało opisane w moim poprzednim tutorialu. 1.2 Uruchomienie programu Maple Uruchamiamy go, wpisując w konsoli maple, potwierdzając
3) Naszkicuj wykres funkcji y=-xdo kwadratu+2x+1 i napisz równanie osi symetrii jej wykresu.
Zadanie: 1) Dana jest funkcja y=-+7.nie wykonując wykresu podaj a) miejsce zerowe b)czy funkcja jest rosnąca czy malejąca(uzasadnij) c)jaka jest rzędna punktu przecięcia wykresu z osią y. ) Wykres funkcji
Funkcja kwadratowa. f(x) = ax 2 + bx + c,
Funkcja kwadratowa. Funkcją kwadratową nazywamy funkcję f : R R określoną wzorem gdzie a, b, c R, a 0. f(x) = ax 2 + bx + c, Szczególnym przypadkiem funkcji kwadratowej jest funkcja f(x) = ax 2, a R \
Ćwiczenie 1. Matlab podstawy (1) Matlab firmy MathWorks to uniwersalny pakiet do obliczeń naukowych i inżynierskich, analiz układów statycznych
1. Matlab podstawy (1) Matlab firmy MathWorks to uniwersalny pakiet do obliczeń naukowych i inżynierskich, analiz układów statycznych i dynamicznych, symulacji procesów, przekształceń i obliczeń symbolicznych
METODY KOMPUTEROWE W OBLICZENIACH INŻYNIERSKICH
METODY KOMPUTEROWE W OBLICZENIACH INŻYNIERSKICH ĆWICZENIE NR 1 WPROWADZENIE DO PROGRAMU KOMPUTEROWEGO MATLAB Dr inż. Sergiusz Sienkowski ĆWICZENIE NR 1 Wprowadzenie do programu komputerowego Matlab 1.1.
Drugi sposób definiowania funkcji polega na wykorzystaniu polecenia:
ĆWICZENIE 6. Scilab: Obliczenia symboliczne i numeryczne Uwaga: Podczas operacji kopiowania i wklejania potrzeba skasować wklejone pojedyńcze cudzysłowy i wpisać je ręcznie dla każdego ich wystąpienia
ROZKŁAD MATERIAŁU NAUCZANIA KLASA 1, ZAKRES PODSTAWOWY
ROZKŁAD MATERIAŁU NAUCZANIA KLASA 1, ZAKRES PODSTAWOWY Numer lekcji 1 2 Nazwa działu Lekcja organizacyjna. Zapoznanie z programem nauczania i kryteriami wymagań Zbiór liczb rzeczywistych i jego 3 Zbiór
Spis treści Szybki start... 4 Podstawowe informacje opis okien... 6 Tworzenie, zapisywanie oraz otwieranie pliku... 23
Spis treści Szybki start... 4 Podstawowe informacje opis okien... 6 Plik... 7 Okna... 8 Aktywny scenariusz... 9 Oblicz scenariusz... 10 Lista zmiennych... 11 Wartości zmiennych... 12 Lista scenariuszy/lista
LABORATORIUM 3 ALGORYTMY OBLICZENIOWE W ELEKTRONICE I TELEKOMUNIKACJI. Wprowadzenie do środowiska Matlab
LABORATORIUM 3 ALGORYTMY OBLICZENIOWE W ELEKTRONICE I TELEKOMUNIKACJI Wprowadzenie do środowiska Matlab 1. Podstawowe informacje Przedstawione poniżej informacje maja wprowadzić i zapoznać ze środowiskiem
Sieci Komputerowe 2 / Ćwiczenia 1
Tematyka Sieci Komputerowe 2 / Ćwiczenia 1 Opracował: Konrad Kawecki Na ćwiczeniach przeanalizujemy opóźnienia transmisji w sieciach komputerowych. Na podstawie otrzymanych wyników
AKADEMIA GÓRNICZO-HUTNICZA im. Stanisława Staszica w Krakowie
AKADEMIA GÓRNICZO-HUTNICZA im. Stanisława Staszica w Krakowie Wydział Inżynierii Mechanicznej i Robotyki Katedra Systemów Energetycznych i Urządzeń Ochrony Środowiska Metody Numeryczne Laboratorium 1 Wprowadzenie
AKADEMIA MORSKA W SZCZECINIE WI-ET / IIT / ZTT. Instrukcja do zajęc laboratoryjnych nr 1 AUTOMATYZACJA I ROBOTYZACJA PROCESÓW PRODUKCYJNYCH
AKADEMIA MORSKA W SZCZECINIE WI-ET / IIT / ZTT Instrukcja do zajęc laboratoryjnych nr 1 AUTOMATYZACJA I ROBOTYZACJA PROCESÓW PRODUKCYJNYCH II rok Kierunek Logistyka Temat: Zajęcia wprowadzające. BHP stanowisk
FUNKCJA KWADRATOWA. 1. Definicje i przydatne wzory. lub trójmianem kwadratowym nazywamy funkcję postaci: f(x) = ax 2 + bx + c
FUNKCJA KWADRATOWA 1. Definicje i przydatne wzory DEFINICJA 1. Funkcja kwadratowa lub trójmianem kwadratowym nazywamy funkcję postaci: f(x) = ax + bx + c taką, że a, b, c R oraz a 0. Powyższe wyrażenie
Obliczenie kratownicy przy pomocy programu ROBOT
Geometria i obciąŝenie Obliczenie kratownicy przy pomocy programu ROBOT Przekroje 1. Wybór typu konstrukcji 2. Definicja domyślnego materiału Z menu górnego wybieramy NARZĘDZIA -> PREFERENCJE ZADANIA 1
Technologie informacyjne lab. 3
Technologie informacyjne lab. 3 Cel ćwiczenia: Poznanie podstaw środowiska MATLAB/Octave: obliczenia macierzowe, rozwiązywanie równań i układów równań, wykresy funkcji 1 i 2 zmiennych. Aktualnie Uczelnia
Elementy okna MatLab-a
MatLab część IV 1 Elementy okna MatLab-a 2 Elementy okna MatLab-a 3 Wykresy i przydatne polecenia Wywołanie funkcji graficznej powoduje automatyczne otwarcie okna graficznego Kolejne instrukcje graficzne
METODY KOMPUTEROWE W OBLICZENIACH INŻYNIERSKICH
METODY KOMPUTEROWE W OBLICZENIACH INŻYNIERSKICH ĆWICZENIE NR 1 WPROWADZENIE DO PROGRAMU KOMPUTEROWEGO MATLAB Dr inż. Sergiusz Sienkowski ĆWICZENIE NR 1 Wprowadzenie do programu komputerowego Matlab 1.1.
SSK - Techniki Internetowe
SSK - Techniki Internetowe Ćwiczenie 2. Obsługa formularzy. Operatory, instrukcje warunkowe oraz instrukcje pętli w PHP. Obsługa formularzy Skryptu PHP moŝna uŝyć do obsługi formularza HTML. Aby tego dokonać,
Kondensator, pojemność elektryczna
COACH 03 Kondensator, pojemność elektryczna Program: Coach 6 Projekt: na ZMN060F CMA Coach Projects\PTSN Coach 6\ Elektronika/Kondensator.cma Przykład: Kondensator 1.cmr Cel ćwiczenia: I. Wprowadzenie
Operatory arytmetyczne
Operatory arytmetyczne Działanie Znak Dodawanie + Odejmowanie - Mnożenie macierzowe * Mnożenie tablicowe.* Dzielenie macierzowe / Dzielenie tablicowe./ Potęgowanie macierzowe ^ Potęgowanie tablicowe.^
Funkcja kwadratowa. f(x) = ax 2 + bx + c = a
Funkcja kwadratowa. Funkcją kwadratową nazywamy funkcję f : R R określoną wzorem gdzie a, b, c R, a 0. f(x) = ax + bx + c, Szczególnym przypadkiem funkcji kwadratowej jest funkcja f(x) = ax, a R \ {0}.
Badanie funkcji. Zad. 1: 2 3 Funkcja f jest określona wzorem f( x) = +
Badanie funkcji Zad : Funkcja f jest określona wzorem f( ) = + a) RozwiąŜ równanie f() = 5 b) Znajdź przedziały monotoniczności funkcji f c) Oblicz największą i najmniejszą wartość funkcji f w przedziale
Matura z matematyki?- MATURALNIE, Ŝe ZDAM! Zadania treningowe klasa I III ETAP
Matura z matematyki?- MATURALNIE, Ŝe ZDAM! Zadania treningowe klasa I III ETAP I Zadania zamknięte (pkt) Zadanie Liczba - jest miejscem zerowym funkcji liniowej = x + B. f ( x) = x C. f ( x) = x + D. f
Równania nieliniowe. LABORKA Piotr Ciskowski
Równania nieliniowe LABORKA Piotr Ciskowski przykład 1. funkcja fplot fplot ( f, granice ) fplot ( f, granice, n, linia, tol ) [ x, y ] = fplot ( )» fplot ( sin(x*x)/x, [ 0 4*pi ] )» fplot ( sin(x*x)/x,
Obliczanie wartości średniej i odchylenia standardowego średniej w programie Origin
Obliczanie wartości średniej i odchylenia standardowego średniej w programie Origin Po uruchomieniu programu pojawia się arkusz kalkulacyjny Data1, do którego (w dowolnej kolumnie) wpisujemy wyniki pomiarów
AKADEMIA GÓRNICZO HUTNICZA Wydział Elektrotechniki, Automatyki, Informatyki i Elektroniki Katedra Elektroniki
AKADEMIA GÓRNICZO HUTNICZA Wydział Elektrotechniki, Automatyki, Informatyki i Elektroniki Katedra Elektroniki Laboratorium Techniki Sensorowej Ćwiczenie nr 2 Badanie własności dynamicznych termopary OPIS
BIBLIOGRAFIA W WORD 2007
BIBLIOGRAFIA W WORD 2007 Ćwiczenie 1 Tworzenie spisu literatury (bibliografii) Word pozwala utworzyć jedną listę główną ze źródłami (cytowanymi książkami czy artykułami), która będzie nam służyć w różnych
Wprowadzenie do programu Mathcad 15 cz. 1
Wpisywanie tekstu Wprowadzenie do programu Mathcad 15 cz. 1 Domyślnie, Mathcad traktuje wpisywany tekst jako wyrażenia matematyczne. Do trybu tekstowego można przejść na dwa sposoby: Zaczynając wpisywanie
Elementy projektowania inzynierskiego Przypomnienie systemu Mathcad
Elementy projektowania inzynierskiego Definicja zmiennych skalarnych a : [S] - SPACE a [T] - TAB - CTRL b - SHIFT h h. : / Wyświetlenie wartości zmiennych a a = b h. h. = Przykładowe wyrażenia
Dział I FUNKCJE I ICH WŁASNOŚCI
MATEMATYKA ZAKRES PODSTAWOWY Rok szkolny 01/013 Klasa: II Nauczyciel: Mirosław Kołomyjski Dział I FUNKCJE I ICH WŁASNOŚCI Lp. Zagadnienie Osiągnięcia ucznia. 1. Podstawowe własności funkcji.. Podaje określenie
2. Układy równań liniowych
2. Układy równań liniowych Grzegorz Kosiorowski Uniwersytet Ekonomiczny w Krakowie zima 2017/2018 rzegorz Kosiorowski (Uniwersytet Ekonomiczny w Krakowie) 2. Układy równań liniowych zima 2017/2018 1 /