Sabina Nowak. Podstawy statystyki i ekonometrii Część I

Wielkość: px
Rozpocząć pokaz od strony:

Download "Sabina Nowak. Podstawy statystyki i ekonometrii Część I"

Transkrypt

1 Saba owa Podstawy statysty eoometr Część I Podyplomowe Studa Wycea eruchomośc Wydzał Zarządzaa Uwersytetu Gdańsego 7 weta 19 rou

2 1. Elemety teor badaa zborów statystyczych Statystycze metody badaa prawdłowośc charateryzujących badae zjawsa występują w forme opsu statystyczego oraz w forme wosowaa statystyczego. Ops statystyczy jest opsem lczbowym może być realzoway w postac daych lczbowych zestawoych w szereg tablce (tzw. ops tabelaryczy), w postac wyresów ujawających prawdłowośc (tzw. ops grafczy) oraz w postac charaterysty lczbowych, zwaych parametram, odoszących sę do różych prawdłowośc (tzw. ops parametryczy). Wosowae statystycze odos sę do metod mających a celu uogólee wyów badaa częśc zborowośc zwaej próbą a całą zborowość (populację), z tórej próba została wylosowaa. Uogólae to jest obarczoe pewym błędem, stąd też metody wosowaa statystyczego są oparte a rachuu prawdopodobeństwa. Wosowae statystycze wchodz w zares statysty matematyczej. Przedmot badaa statystyczego Realzacja oreśloego celu ażdorazowo wymaga zdefowaa przedmotu badaa. Przedmotem badaa statystyczego jest zborowość statystycza, tóra może sładać sę z osób, rzeczy lub zdarzeń. Zborowość statystycza mus być precyzyje oreśloa pod względem rzeczowym, przestrzeym czasowym. Zares badaa statystyczego Zares badaa jest podporządoway celow, jaemu badae ma służyć. Cel badaa przesądza bowem e tylo o tym, ja zbór jedoste (osób, rzeczy, zdarzeń) zajdze sę w badaej zborowośc statystyczej, ale taże, za pomocą jach cech będzemy te jedost opsywać. Cechy zmee są to te właścwośc, tórym poszczególe jedost statystycze różą sę mędzy sobą, przyjmując odmee waraty cechy. Istotym ryterum podzału cech zmeych jest sposób ch pomaru. Według tego ryterum wyodrębamy cechy jaoścowe (opsowe) cechy loścowe (lczbowe). Waraty cech jaoścowych wyrażamy opsowo (p. wyształcee podstawowe, średe, wyższe), atomast waraty cech loścowych wyrażamy za pomocą lczb pochodzących z pomaru (p. waga w logramach, czas w godzach) lub zlczaa (p. lczba osób w rodze). Prezetacja rozładu cechy Rozład cechy w zborowośc geeralej to aczej strutura tej zborowośc ze względu a daą cechę. Podstawowe lasy rozładów empryczych: 1) rozłady symetrycze asymetrycze, ) rozłady jedomodale welomodale, 3) rozłady spłaszczoe wysmułe.

3 Typy rozładów empryczych A B C D E F G H I J K L Zaobserwowae u poszczególych jedoste wartośc cechy mogą być przedstawoe w postac szeregu szczegółowego, bądź też po dooau grupowaa w postac szeregu rozdzelczego. Aalzując rozład cechy merzalej, ależy brać pod uwagę astępujące jego własośc: tedecję cetralą (przecęty pozom); dyspersję (zróżcowae); asymetrę (sośość); ocetrację (urtoza). Do ocey tych własośc służą charaterysty lczbowe zwae parametram rozładu. Rozróża sę parametry lasycze oblczae a podstawe wszystch obserwacj, oraz parametry pozycyje wyzaczae a podstawe ch mejsca w szeregu lub częstotlwośc występowaa. 3

4 Przyład 1 W wylosowaych do próby 167 agecjach eruchomośc a teree woj. pomorsego zbadao lczbę zawartych trasacj powyżej woty tys. zł w wetu 18 r. Lczba trasacj w badaym mesącu Lczba agecj eruchomośc Razem 167 Scharateryzować rozład lczby zaweraych trasacj powyżej tys. zł w mesącu. Przyład Pewa eruchomość została wyceoa przez 1 espertów. Każdy z ch zazaczył szacuowy przedzał wartośc eruchomośc. Wartość eruchomośc (w tys. zł.) Lczba wyceających espertów 3, 46,5 46,5 6, 4 6, 84, 3 84, 9, 1 1 Przyład 3 Zebrao formacje a temat powerzch slepów w daym meśce. Przedzał Powerzcha w m Lczba slepów , , , , , ,9 7 Razem 81 4

5 MIARY POZIOMU WARTOŚCI (PRZECIĘTE) Mary średe mary lasycze mary pozycyje - średa arytmetycza - domata - średa harmocza - medaa - średa geometrycza - watyle Średa arytmetycza () jest lorazem sumy wartośc zmeej lczby obserwacj (lczebośc). średa arytmetycza zwyła Przyład 1 Lczba zaweraych trasacj w mesącu ( ) 1 Przyład 1 średa arytmetycza ważoa Lczba agecj ( ) 1 cum Razem X 596 3,57 trasacj 167 Wartość eruchomośc (w tys. zł) Lczba wyceających espertów 3, 46,5 76,5 88, 46,5 6, 4 13, 144, 6, 84, 3 16, 487,7 84, 9, 1 87, 77,1 1 59,5 83,8 1 59,5 1 59,5 tys. zł 5

6 Przyład 3 Przedzał Powerzcha w m Lczba slepów Środ przedzałów Iloczyy , , , , , , Razem , 95m 81 Własośc średej arytmetyczej: 1) suma wartośc zmeej X jest rówa średej arytmetyczej pomożoej przez lczebość zborowośc: 1 ) suma odchyleń poszczególych wartośc zmeej X od średej arytmetyczej jest rówa zero: 1 ( ) 3) suma wadratów odchyleń poszczególych wartośc zmeej X od średej arytmetyczej jest ajmejsza: 1 ( ) m Średej arytmetyczej e moża lub e ależy oblczać w przypadu, gdy: szereg ma otwarte przedzały lasowe, w zborowośc występują wartośc sraje, rozład badaej cechy jest sraje asymetryczy lub welomodaly. Średe pozycyje Domata jest to wartość ajlczej reprezetowaa w daej zborowośc, wartość występująca z ajwęszą częstotlwoścą. Dla oreślea, jaa wartość cechy występuje z ajwęszą częstotlwoścą, ezbęde jest pogrupowae materału statystyczego, a w przypadu ewelej lczby obserwacj ch uporządowae. Przyład 1: Domata (moda) = 3 6

7 W szeregu rozdzelczym przedzałowym domatę ustala sę drogą terpolacj (szacuu) w gracach przedzału supającego ajwęszą lczbę obserwacj. Wyzaczając domatę, w perwszej olejośc odajdujemy przedzał ajlczejszy (ma), a astępe oblczamy jej wartość posługując sę wzorem terpolacyjym: D ( ) ( 1 1 c ) gdze: dola graca przedzału ajlczejszego; lczebość przedzału ajlczejszego; 1 lczebość przedzału poprzedzającego przedzał ajlczejszy; +1 lczebość przedzału astępego po przedzale ajlczejszym; c rozpętość przedzału ajlczejszego. Przyład 4. Rozład powerzch slepów 1 Powerzcha w m Lczba slepów , , ,9 3 przedzał domaty 9 19, , ,9 7 Stwerdzamy, że ajlczej jest reprezetoway przedzał 7 89,9 m. Dola graca tego przedzału = 7, lczebość przedzału ajlczejszego = 3, lczebośc sąsedch przedzałów 1 = 19, +1 = 14. Rozpętośc przedzałów są jedaowe wyoszą c =. Podstawając do wzoru otrzymamy: D 1 c ( 1) ( 1) = m (319) (314) 76,. Medaa jest to wartość środowa cechy dzeląca zborowość a dwe rówe lczebe częśc. Wyzaczając medaę w szeregu szczegółowym, porządujemy obserwacje według rosących wartośc cechy wsazujemy obserwację środową, tóra jest medaą. Gdy szereg zawera parzystą lczbę obserwacj, medaę lczymy jao średą z dwóch środowych. Przyład 5 Dzesęć osób zapytao o czas, ja pośwęcają a dojazd do pracy. Otrzymao astępujące dae w m: 35, 5,, 15, 3, 1, 6,, 45, 6. Szereg ależy uporządować rosąco, a astępe zaleźć jego środe: 5, 1, 15,,, 3, 35, 45, 6, 6 3 Me 5 m. Ozacza to, że połowa badaych osób pośwęca a dojazd do pracy e węcej ż 5 mut, a druga połowa e mej ż 5 mut. 7

8 W odeseu do Przyładu 1: Medaa = 3 Przyładu 4 c.d. Powerzcha w m Lczba slepów Lczebośc sumulowae j () = s 3 49, , , , , , Razem 81 poz. Me =,5( + 1) =,58 = 41 Operając sę a szeregu sumulowaym stwerdzamy, że 41. slep ależy do przedzału 7 89,9m. Dola graca = 7, lczebość przedzału = 3, rozpętość c =, a lczebośc sumulowae dwóch poprzedch przedzałów s Me s 1 c ,3 A zatem połowa slepów ma powerzchę 81,3 m mejszą a druga połowa 81,3 m węszą. Przeprowadzając otrolę logczą stwerdzamy, że oblczoa wartość Me meśc sę we wsazaym przedzale: 7 < Me < 89,9. 81 s Me Kwartylem perwszym azywamy tę wartość zmeej w rozładze empryczym, pożej tórej zajduje sę 5% jedoste zborowośc. 8

9 Kwartylem trzecm azywamy tę wartość zmeej w rozładze empryczym, pożej tórej zajduje sę 75% jedoste zborowośc. W odeseu do Przyładu 1: Kwartyl perwszy = Kwartyl trzec = 5 Mary rozproszea Mary rozproszea (zmeośc, dyspersj) są to tae charaterysty opsowe rozładów cechy merzalej, tóre służą do uogólającego pomaru zróżcowaa wartośc zmeej w obrębe badaej populacj. Obszar zmeośc (rozstęp) jest różcą pomędzy ajwęszą ajmejszą wartoścą zmeej: R ma Odchylee ćwartowe jest połową obszaru zmeośc 5% środowych jedoste zborowośc: Q Q Q 3 1 Waracja jest średą arytmetyczą odchyleń od średej podesoych do wadratu: S ( ) 1 m ( ) Odchylee stadardowe jest średą wadratową odchyleń od średej arytmetyczej: S ( ) 1 ( ) Odchylee stadardowe formuje o le przecęte odchylają sę poszczególe wartośc zmeej od średej arytmetyczej. Przyładu 4 c.d. Powerzcha w m Lczba slepów Środ przedz. Oblczea pomoccze 1 ( ) 3 49, , , , , , Razem

10 1 Średa arytmetycza: 68 83,95 84m. 81 ( ) 1 Waracja: s 814,m lub (oblczea oparte a mometach zwyłych) s 1 Odchylee stadardowe: s s 814,1 8,53 m. W odeseu do Przyładu : m (83,95) 814, ,8 s s 8,38 15,1 1 Ocey espertów dotyczące wartośc eruchomośc odchylają sę przecęte od średej ocey o 15,1 tys. zł. Współczy zmeośc - względa mara rozproszea Przyład 6: Staż pracy pracowów w dwóch różych populacjach: Populacja I średa arytmetycza = 4 lata odchylee stadardowe = 3 lata Populacja II średa arytmetycza = lata odchylee stadardowe = 6 lat Współczy zmeośc (V): V s 1 1 Q V 1 ME Współczy zmeośc pozwala oceć atężee zróżcowaa badaej cechy w zborowośc. Jego wartość blsa zeru śwadczy, że badaa zborowość jest jedoroda, a m bardzej zróżcowaa jest zborowość, tym węszy jest współczy zmeośc. W odeseu do Przyładu 4: s 8,53 Współczy zmeośc: V ( s) %. 84 Powerzcha poszczególych slepów róż sę od średej arytmetyczej średo o 8,53 m. Współczy zmeośc poazuje, że zróżcowae jest umarowae. 1

11 Mary asymetr (sośośc) rozładu cechy W szeregu symetryczym lczebośc są rówomere rozłożoe po obu stroach średej arytmetyczej. W środu rozładu zajdują sę róweż domata medaa. Relacja mędzy średm jest astępująca: = Me = D. W rozładze o asymetr dodatej obserwacje supają sę przy wartoścach cechy ższych od średej arytmetyczej, a zatem różca D >. Relacja średch w tym wypadu jest: D < Me <. Z ole w rozładze o asymetr ujemej relatywe lcze są jedost posadające wartośc cechy wyższe od średej arytmetyczej, a zatem różca D <. Relacja średch jest astępująca: < Me < D. D Me Me D Klasyczą marą asymetr jest momet trzec względy. Stosujemy go w aalze szeregów rozdzelczych putowych przedzałowych, gdy możlwe jest oblczee średej arytmetyczej. W perwszej olejośc lczymy momet trzec cetraly: 1 3 ( ) 3 Mara ta poazuje am erue asymetr astępująco: 3 = szereg symetryczy; 3 > szereg o asymetr dodatej, w tórym odchylea dodate przeważają ad ujemym; 3 < szereg o asymetr ujemej, gdze odchylea ujeme przeważają ad dodatm. Słę erue asymetr oceamy, oblczając momet trzec względy, będący lorazem mometu trzecego cetralego odchylea stadardowego podesoego do trzecej potęg: s Mara ta może przyjmować wartośc z przedzału < 3 <, poza przypadam srajej asymetr. 11

Miary położenia wskazują miejsce wartości najlepiej reprezentującej wszystkie wielkości danej zmiennej. Mówią o przeciętnym poziomie analizowanej

Miary położenia wskazują miejsce wartości najlepiej reprezentującej wszystkie wielkości danej zmiennej. Mówią o przeciętnym poziomie analizowanej Podstawy Mary położea wskazują mejsce wartośc ajlepej reprezetującej wszystke welkośc daej zmeej. Mówą o przecętym pozome aalzowaej cechy. Średa arytmetycza suma wartośc zmeej wszystkch jedostek badaej

Bardziej szczegółowo

Statystyczne charakterystyki liczbowe szeregu

Statystyczne charakterystyki liczbowe szeregu Statystycze charakterystyk lczbowe szeregu Aalzę badaej zmeej moża uzyskać posługując sę parametram opsowym aczej azywaym statystyczym charakterystykam lczbowym szeregu. Sytetycza charakterystyka zborowośc

Bardziej szczegółowo

Statystyka Opisowa Wzory

Statystyka Opisowa Wzory tatystyka Opsowa Wzory zereg rozdzelczy: x - wartośc cechy - lczebośc wartośc cechy - lczebość całej zborowośc Wskaźk atężea przy rysowau wykresu szeregu rozdzelczego przedzałowego o erówych przedzałach:

Bardziej szczegółowo

CHARAKTERYSTYKI LICZBOWE STRUKTURY ZBIOROWOŚCI (Parametry statystyczne) MIARY POŁOśENIA

CHARAKTERYSTYKI LICZBOWE STRUKTURY ZBIOROWOŚCI (Parametry statystyczne) MIARY POŁOśENIA D. Mszczyńsa, M.Mszczyńs, Materały do wyładu ze Statysty, 009/0 [] CHARAKTERYSTYKI LICZBOWE STRUKTURY ZBIOROWOŚCI (Parametry statystycze) PARAMETRY STATYSTYCZNE - lczby słuŝące do sytetyczego opsu strutury

Bardziej szczegółowo

STATYSTYKA OPISOWA WYKŁAD 3,4

STATYSTYKA OPISOWA WYKŁAD 3,4 STATYSTYKA OPISOWA WYKŁAD 3,4 5 Szereg rozdzelczy przedzałowy (dae pogrupowae) (stosujemy w przypadku dużej lczby epowtarzających sę daych) Przedzał (w ; w + ) Środek x& Lczebość Lczebość skumulowaa s

Bardziej szczegółowo

Matematyczne metody opracowywania wyników

Matematyczne metody opracowywania wyników Matematycze metody opracowywaa wyów Statystya rachue epewośc Paweł Ża Wydzał Odlewctwa AGH Katedra Iżyer Procesów Odlewczych Kraów, gruda 00 Opracowae rzywej stygęca 3 4 5 6 7 Formuły a przyblżae pochodej

Bardziej szczegółowo

Średnia arytmetyczna Klasyczne Średnia harmoniczna Średnia geometryczna Miary położenia inne

Średnia arytmetyczna Klasyczne Średnia harmoniczna Średnia geometryczna Miary położenia inne Mary położea Średa arytmetycza Klasycze Średa harmocza Średa geometrycza Mary położea e Modala Kwartyl perwszy Pozycyje Medaa (kwartyl drug) Kwatyle Kwartyl trzec Decyle Średa arytmetycza = + +... + 2

Bardziej szczegółowo

N ( µ, σ ). Wyznacz estymatory parametrów µ i. Y które są niezależnymi zmiennymi losowymi.

N ( µ, σ ). Wyznacz estymatory parametrów µ i. Y które są niezależnymi zmiennymi losowymi. 3 Metody estymacj N ( µ, σ ) Wyzacz estymatory parametrów µ 3 Populacja geerala ma rozład ormaly mometów wyorzystując perwszy momet zwyły drug momet cetraly z prób σ metodą 3 Zmea losowa ma rozład geometryczy

Bardziej szczegółowo

AKADEMIA MORSKA W SZCZECINIE

AKADEMIA MORSKA W SZCZECINIE AKADEMIA MORSKA W SZCZECINIE Istytut Iżyer Ruchu Morskego Zakład Urządzeń Nawgacyjych Istrukcja r 0 Wzory do oblczeń statystyczych w ćwczeach z radoawgacj Szczec 006 Istrukcja r 0: Wzory do oblczeń statystyczych

Bardziej szczegółowo

Podstawowe pojcia. Metody probabilistyczne i statystyka Wykład 7: Statystyka opisowa. Rozkłady prawdopodobiestwa wystpujce w statystyce.

Podstawowe pojcia. Metody probabilistyczne i statystyka Wykład 7: Statystyka opisowa. Rozkłady prawdopodobiestwa wystpujce w statystyce. Metody probablstycze statystyka Wykład 7: Statystyka opsowa. Rozkłady prawdopodobestwa wystpujce w statystyce. Podstawowe pojca Populacja geerala - zbór elemetów majcy przyajmej jed włacwo wspól dla wszystkch

Bardziej szczegółowo

k k M. Przybycień Rachunek Prawdopodobieństwa i Statystyka Wykład 13-2

k k M. Przybycień Rachunek Prawdopodobieństwa i Statystyka Wykład 13-2 Pojęce przedzału ufośc Przyład: Rozważmy pewe rzad proces (tz. ta tórego lczba zajść podlega rozładow Possoa). W cągu pewego czasu zaobserwowao =3 tae zdarzea. Oceć możlwy przedzał lczby zdarzeń tego typu

Bardziej szczegółowo

Miary statystyczne. Katowice 2014

Miary statystyczne. Katowice 2014 Mary statystycze Katowce 04 Podstawowe pojęca Statystyka Populacja próba Cechy zmee Szereg statystycze Wykresy Statystyka Statystyka to auka zajmująca sę loścowym metodam aalzy zjawsk masowych (występujących

Bardziej szczegółowo

Miary średnie. Średnią arytmetyczną nazywamy sumę wartości zmiennej wszystkich jednostek badanej zbiorowości podzieloną przez liczbę tych jednostek.

Miary średnie. Średnią arytmetyczną nazywamy sumę wartości zmiennej wszystkich jednostek badanej zbiorowości podzieloną przez liczbę tych jednostek. Węcej doumetów a troe: www.rawczy.hotl.pl Aalza trutury zmerza do wydobyca a jaw charaterytyczych właścwośc zborowośc porówaa ch z ą zborowoścą. Każde badae, tóre w efece ma dać wzechtroą oceę zjawa doprowadzć

Bardziej szczegółowo

Obliczanie średniej, odchylenia standardowego i mediany oraz kwartyli w szeregu szczegółowym i rozdzielczym?

Obliczanie średniej, odchylenia standardowego i mediany oraz kwartyli w szeregu szczegółowym i rozdzielczym? Oblczae średej, odchylea tadardowego meday oraz kwartyl w zeregu zczegółowym rozdzelczym? Średa medaa ależą do etymatorów tzw. tedecj cetralej, atomat odchylee tadardowe to etymatorów rozprozea (dyperj)

Bardziej szczegółowo

JEDNOWYMIAROWA ZMIENNA LOSOWA

JEDNOWYMIAROWA ZMIENNA LOSOWA JEDNOWYMIAROWA ZMIENNA LOSOWA Nech E będze zborem zdarzeń elemetarych daego dośwadczea. Fucję X(e) przyporządowującą ażdemu zdarzeu elemetaremu e E jedą tylo jedą lczbę X(e)=x azywamy ZMIENNĄ LOSOWĄ. Przyład:

Bardziej szczegółowo

PDF created with FinePrint pdffactory Pro trial version WIII/1

PDF created with FinePrint pdffactory Pro trial version  WIII/1 Statystyka opsowa Statystyka zajmuje sę zasadam metodam uogólaa wyków otrzymaych z próby losowej a całą populację (czyl zborowość, z której została pobraa próba). Take postępowae azywamy woskowaem statystyczym.

Bardziej szczegółowo

Lekcja 1. Pojęcia podstawowe: Zbiorowość generalna i zbiorowość próbna

Lekcja 1. Pojęcia podstawowe: Zbiorowość generalna i zbiorowość próbna TECHNIKUM ZESPÓŁ SZKÓŁ w KRZEPICACH PRACOWNIA EKONOMICZNA TEORIA ZADANIA dla klasy II Techkum Marek Kmeck Zespół Szkół Techkum w Krzepcach Wprowadzee do statystyk Lekcja Statystyka - określa zbór formacj

Bardziej szczegółowo

dev = y y Miary położenia rozkładu Wykład 9 Przykład: Przyrost wagi owiec Odchylenia Mediana próbkowa: Przykłady Statystyki opisowe Σ dev i =?

dev = y y Miary położenia rozkładu Wykład 9 Przykład: Przyrost wagi owiec Odchylenia Mediana próbkowa: Przykłady Statystyki opisowe Σ dev i =? Mary położea rozkładu Wykład 9 Statystyk opsowe Średa z próby, mea(y) : symbol y ozacza lczbę; arytmetyczą średą z obserwacj Symbol Y ozacza pojęce średej z próby Średa jest środkem cężkośc zboru daych

Bardziej szczegółowo

Statystyczna analiza danych przedziały ufności

Statystyczna analiza danych przedziały ufności 07-- Probablstyka statystyka Statystycza aalza daych przedzały ufośc Wykład 7 dr ż. Barbara Swatowska Wstęp Podstawowe cele aalzy zborów daych Uogóloy ops poszczególych cech/zeych statystyka opsowa; aalza

Bardziej szczegółowo

STATYSTYKA EKONOMICZNA I SPOŁECZNA

STATYSTYKA EKONOMICZNA I SPOŁECZNA PROWADZĄCY Dwczea laboratoryje Rok akademck 0/0, semestr let mgr Emla Modraka, Katedra Ekoometr Przestrzeej UŁ emodraka@u.lodz.pl www.em.kep.prv.pl KONSULTACJE Poedzałek: 9.45-.0 Środa: 6.40-7.40 Pokój

Bardziej szczegółowo

Statystyka Matematyczna Anna Janicka

Statystyka Matematyczna Anna Janicka Statystyka Matematycza Aa Jacka wykład II, 9.0.06 STATYSTYKA OPISOWA, cz. II WSTĘP DO STATYSTYKI MATEMATYCZNEJ Pla a dzsaj. Statystyka opsowa, cz. II: mary położea dokończee mary zróżcowaa mary asymetr

Bardziej szczegółowo

INTERPRETACJA DANYCH STATYSTYCZNYCH

INTERPRETACJA DANYCH STATYSTYCZNYCH INTERPRETACJA DANYCH STATYSTYCZNYCH LITERATURA. Statystyka. Elemety teor zadaa.. S. Ostasewcz, Z. Rusak, U. Sedlecka, Wydawctwo UE we Wrocławu, Wrocław 006.. Statystyka w zarządzau 4. A. Aczel, PWN, Warszawa

Bardziej szczegółowo

Elementy statystyki opisowej Izolda Gorgol wyciąg z prezentacji (wykład I)

Elementy statystyki opisowej Izolda Gorgol wyciąg z prezentacji (wykład I) Elemety statystyki opisowej Izolda Gorgol wyciąg z prezetacji (wykład I) Populacja statystycza, badaie statystycze Statystyka matematycza zajmuje się opisywaiem i aalizą zjawisk masowych za pomocą metod

Bardziej szczegółowo

TESTY NORMALNOŚCI. ( Cecha X populacji ma rozkład normalny). Hipoteza alternatywna H1( Cecha X populacji nie ma rozkładu normalnego).

TESTY NORMALNOŚCI. ( Cecha X populacji ma rozkład normalny). Hipoteza alternatywna H1( Cecha X populacji nie ma rozkładu normalnego). TESTY NORMALNOŚCI Test zgodośc Hpoteza zerowa H 0 ( Cecha X populacj ma rozkład ormaly). Hpoteza alteratywa H1( Cecha X populacj e ma rozkładu ormalego). Weryfkacja powyższych hpotez za pomocą tzw. testu

Bardziej szczegółowo

Statystyczna analiza miesięcznych zmian współczynnika szkodowości kredytów hipotecznych

Statystyczna analiza miesięcznych zmian współczynnika szkodowości kredytów hipotecznych dr Ewa Wycka Wyższa Szkoła Bakowa w Gdańsku Wtold Komorowsk, Rafał Gatowsk TZ SKOK S.A. Statystycza aalza mesęczych zma współczyka szkodowośc kredytów hpoteczych Wskaźk szkodowośc jest marą obcążea kwoty/lczby

Bardziej szczegółowo

PODSTAWY PROBABILISTYKI Z PRZYKŁADAMI ZASTOSOWAŃ W INFORMATYCE

PODSTAWY PROBABILISTYKI Z PRZYKŁADAMI ZASTOSOWAŃ W INFORMATYCE Marek Cecura, Jausz Zacharsk PODSTAWY PROBABILISTYKI Z PRZYKŁADAMI ZASTOSOWAŃ W INFORMATYCE CZĘŚĆ II STATYSTYKA OPISOWA Na prawach rękopsu Warszawa, wrzeseń 0 Data ostatej aktualzacj: czwartek, 0 paźdzerka

Bardziej szczegółowo

STATYSTYKA MATEMATYCZNA WYKŁAD 1. Wiadomości wstępne

STATYSTYKA MATEMATYCZNA WYKŁAD 1. Wiadomości wstępne TATYTYKA MATEMATYCZNA WYKŁAD Wadomośc wstępe tatystyka to dyscypla aukowa, której zadaem jest wykrywae, aalza ops prawdłowośc występujących w procesach masowych. Populacja to zborowość podlegająca badau

Bardziej szczegółowo

Planowanie eksperymentu pomiarowego I

Planowanie eksperymentu pomiarowego I POLITECHNIKA ŚLĄSKA W GLIWICACH WYDZIAŁ INŻYNIERII ŚRODOWISKA ENERGETYKI INSTYTUT MASZYN URZĄDZEŃ ENERGETYCZNYCH Plaowae eksperymetu pomarowego I Laboratorum merctwa (M 0) Opracował: dr ż. Grzegorz Wcak

Bardziej szczegółowo

SPOŁECZNA AKDAEMIA NAUK W ŁODZI

SPOŁECZNA AKDAEMIA NAUK W ŁODZI SPOŁECZNA AKDAEMIA NAUK W ŁODZI KIERUNEK STUDIÓW: ZARZĄDZANIE PRZEDMIOT: METODY ILOŚCIOWE W ZARZĄDZANIU (MATERIAŁ POMOCNICZY PRZEDMIOT PODSTAWOWY ) Łódź Sps treśc Moduł Wprowadzee do metod loścowych w

Bardziej szczegółowo

mgr Anna Matysiak PODSTAWOWE POJĘCIA STATYSTYCZNE

mgr Anna Matysiak PODSTAWOWE POJĘCIA STATYSTYCZNE mgr Aa Matysak PODSTAWOWE POJĘCIA STATYSTYCZNE POPULACJA (ZBIOROWOŚĆ GENERALNA) zbór logcze powązaych jeostek, obektów, wyków wszystkch pomarów, p meszkańcy Polsk, stuec SGH, gospoarstwa omowe w Polsce

Bardziej szczegółowo

Statystyka opisowa. Stawia się pytania: pytanie co? poprzedza pytanie jak?. Najpierw potrzebna jest miara, potem można badać zmiany tej miary.

Statystyka opisowa. Stawia się pytania: pytanie co? poprzedza pytanie jak?. Najpierw potrzebna jest miara, potem można badać zmiany tej miary. Statystyka opsowa Roma Syak Statystyka opsowa Stawa sę pytaa: pytae co? poprzedza pytae jak?. Najperw potrzeba jest mara, potem moża badać zmay tej mary. Potrzebe są mary zborcze, charakteryzujące zborowośc

Bardziej szczegółowo

Podstawy analizy niepewności pomiarowych (I Pracownia Fizyki)

Podstawy analizy niepewności pomiarowych (I Pracownia Fizyki) Podstawy aalzy epewośc pomarowych (I Pracowa Fzyk) Potr Cygak Zakład Fzyk Naostruktur Naotecholog Istytut Fzyk UJ Pok. 47 Tel. 0-663-5838 e-mal: potr.cygak@uj.edu.pl Potr Cygak 008 Co to jest błąd pomarowy?

Bardziej szczegółowo

STATYSTYKA OPISOWA. Państwowa Wyższa Szkoła Zawodowa w Koninie. Materiały pomocnicze do ćwiczeń. Materiały dydaktyczne 17 ARTUR ZIMNY

STATYSTYKA OPISOWA. Państwowa Wyższa Szkoła Zawodowa w Koninie. Materiały pomocnicze do ćwiczeń. Materiały dydaktyczne 17 ARTUR ZIMNY Państwowa Wższa Szkoła Zawodowa w Koe Materał ddaktcze 17 ARTUR ZIMNY STATYSTYKA OPISOWA Materał pomoccze do ćwczeń wdae druge zmeoe Ko 010 Ttuł Statstka opsowa Materał pomoccze do ćwczeń wdae druge zmeoe

Bardziej szczegółowo

ZJAZD 1. STATYSTYKA OPISOWA wstępna analiza danych

ZJAZD 1. STATYSTYKA OPISOWA wstępna analiza danych ZJAZD Przedmotem statystyk jest zberae, prezetacja oraz aalza daych opsujących zjawska losowe. Badau statystyczemu podlega próbka losowa pobraa z populacj, aczej populacj geeralej. Na podstawe uzyskaych

Bardziej szczegółowo

ZMIENNA LOSOWA JEDNOWYMIAROWA POJĘCIE ZMIENNEJ LOSOWEJ

ZMIENNA LOSOWA JEDNOWYMIAROWA POJĘCIE ZMIENNEJ LOSOWEJ ZMIENNA LOSOWA JEDNOWYMIAROWA POJĘCIE ZMIENNEJ LOSOWEJ Podstawowe pojęca rachuu prawdopodobeństwa: zdarzee losowe, zdarzee elemetare, prawdopodobeństwo, zbór zdarzeń elemetarych. Def. Nech E będze zborem

Bardziej szczegółowo

L.Kowalski PODSTAWOWE TESTY STATYSTYCZNE WERYFIKACJA HIPOTEZ PARAMETRYCZNYCH

L.Kowalski PODSTAWOWE TESTY STATYSTYCZNE WERYFIKACJA HIPOTEZ PARAMETRYCZNYCH L.Kowalsk PODSTAWOWE TESTY STATYSTYCZNE TESTY STATYSTYCZNE poteza statystycza to dowole przypuszczee dotyczące rozkładu cechy X. potezy statystycze: -parametrycze dotyczą ezaego parametru, -parametrycze

Bardziej szczegółowo

Statystyczny opis danych - parametry

Statystyczny opis danych - parametry Statystyczy opis daych - parametry Ozaczeia żółty owe pojęcie czerwoy, podkreśleie uwaga * materiał adobowiązkowy Aa Rajfura, Matematyka i statystyka matematycza a kieruku Rolictwo SGGW Zagadieia. Idea

Bardziej szczegółowo

POPULACJA I PRÓBA. Próba reprezentatywna. Dr Adam Michczyński - METODY ANALIZY DANYCH POMIAROWYCH 5 1

POPULACJA I PRÓBA. Próba reprezentatywna. Dr Adam Michczyński - METODY ANALIZY DANYCH POMIAROWYCH 5 1 POPULACJA I PRÓBA POPULACJĄ w statystyce matematyczej azywamy zbór wszystkch elemetów (zdarzeń elemetarych charakteryzujących sę badaą cechą opsywaą zmeą losową. Zbadae całej populacj (przeprowadzee tzw.

Bardziej szczegółowo

Podstawowe zadanie statystyki. Statystyczna interpretacja wyników eksperymentu. Zalety statystyki II. Zalety statystyki

Podstawowe zadanie statystyki. Statystyczna interpretacja wyników eksperymentu. Zalety statystyki II. Zalety statystyki tatystycza terpretacja wyków eksperymetu Małgorzata Jakubowska Katedra Chem Aaltyczej Wydzał IŜyer Materałowej Ceramk AGH Podstawowe zadae statystyk tatystyka to uwersale łatwo dostępe arzędze, które pomaga

Bardziej szczegółowo

O testowaniu jednorodności współczynników zmienności

O testowaniu jednorodności współczynników zmienności NR 6/7/ BIULETYN INSTYTUTU HODOWLI I AKLIMATYZACJI ROŚLIN 003 STANISŁAW CZAJKA ZYGMUNT KACZMAREK Katedra Metod Matematyczych Statystyczych Akadem Rolczej, Pozań Istytut Geetyk Rośl PAN, Pozań O testowau

Bardziej szczegółowo

Miary położenia (tendencji centralnej) to tzw. miary przeciętne charakteryzujące średni lub typowy poziom wartości cechy.

Miary położenia (tendencji centralnej) to tzw. miary przeciętne charakteryzujące średni lub typowy poziom wartości cechy. MIARY POŁOŻENIA I ROZPROSZENIA WYNIKÓW SERII POMIAROWYCH Miary położeia (tedecji cetralej) to tzw. miary przecięte charakteryzujące średi lub typowy poziom wartości cechy. Średia arytmetycza: X i 1 X i,

Bardziej szczegółowo

Materiały do wykładu 7 ze Statystyki

Materiały do wykładu 7 ze Statystyki Materał do wkładu 7 ze Statstk Aalza ZALEŻNOŚCI pomędz CECHAMI (Aalza KORELACJI REGRESJI) korelacj wkres rozrzutu (korelogram) rodzaje zależośc (brak, elowa, lowa) pomar sł zależośc lowej (współczk korelacj

Bardziej szczegółowo

Pojęcie statystyki. Definicja. Wektorową funkcję mierzalną T: X T(X)=(T 1 (X),...,T k (X)) R k wymiarową statystyką. próby X nazywamy k

Pojęcie statystyki. Definicja. Wektorową funkcję mierzalną T: X T(X)=(T 1 (X),...,T k (X)) R k wymiarową statystyką. próby X nazywamy k Statystya Wyład Adam Ćmel A4 5 cmel@agh.edu.pl Pojęce statysty Pojęce statysty w statystyce matematyczej jest odpowedem pojęca zmeej losowej w rachuu prawdopodobeństwa. Nech X(X,...,X ) będze próbą z pewej

Bardziej szczegółowo

Statystyka. Analiza zależności. Rodzaje zależności między zmiennymi występujące w praktyce: Funkcyjna

Statystyka. Analiza zależności. Rodzaje zależności między zmiennymi występujące w praktyce: Funkcyjna Aalza zależośc Rodzaje zależośc mędzy zmeym występujące w praktyce: Fukcyja wraz ze zmaą wartośc jedej zmeej astępuje ścśle określoa zmaa wartośc drugej zmeej (p. w fzyce: spadek swobody gt s ) tochastycza

Bardziej szczegółowo

ma rozkład normalny z nieznaną wartością oczekiwaną m

ma rozkład normalny z nieznaną wartością oczekiwaną m Zadae Każda ze zmeych losowych,, 9 ma rozkład ormaly z ezaą wartoścą oczekwaą m waracją, a każda ze zmeych losowych Y, Y,, Y9 rozkład ormaly z ezaą wartoścą oczekwaą m waracją 4 Założoo, że wszystke zmee

Bardziej szczegółowo

KURS STATYSTYKA. Lekcja 1 Statystyka opisowa ZADANIE DOMOWE. www.etrapez.pl Strona 1

KURS STATYSTYKA. Lekcja 1 Statystyka opisowa ZADANIE DOMOWE. www.etrapez.pl Strona 1 KURS STATYSTYKA Lekcja 1 Statystyka opsowa ZADANIE DOMOWE www.etrapez.pl Strona 1 Część 1: TEST Zaznacz poprawną odpowedź (tylko jedna jest prawdzwa). Pytane 1 W statystyce opsowej mamy pełne nformacje

Bardziej szczegółowo

[, ] [, ] [, ] ~ [23, 2;163,3] 19,023 2,7

[, ] [, ] [, ] ~ [23, 2;163,3] 19,023 2,7 6. Przez 0 losowo wybrayh d merzoo zas dojazdu do pray paa A uzyskują próbkę x,..., x 0. Wyk przedstawały sę astępująo: jest to próbka losowa z rozkładu 0 0 x 300, 944. x Zakładamy, że N ( µ, z ezaym parametram

Bardziej szczegółowo

Tablica Galtona. Mechaniczny model rozkładu normalnego (M10)

Tablica Galtona. Mechaniczny model rozkładu normalnego (M10) Tablca Galtoa. Mechaczy model rozkładu ormalego (M) I. Zestaw przyrządów: Tablca Galtoa, komplet kulek sztuk. II. Wykoae pomarów.. Wykoać 8 pomarów, wrzucając kulk pojedyczo.. Uporządkować wyk pomarów,

Bardziej szczegółowo

Wyrażanie niepewności pomiaru

Wyrażanie niepewności pomiaru Wyrażae epewośc pomaru Adrzej Kubaczyk Wydzał Fzyk, Poltechka Warszawska Warszawa, 05 Iformacje wstępe Każdy pomar welkośc fzyczej dokoyway jest ze skończoą dokładoścą, co ozacza, że wyk tego pomaru dokoyway

Bardziej szczegółowo

Średnia harmoniczna (cechy o charakterze ilorazu np. Prędkość, gęstość zaludnienia)

Średnia harmoniczna (cechy o charakterze ilorazu np. Prędkość, gęstość zaludnienia) Mary przecęte Średa arytmetycza Dla szeregu rozdzelczego cechy skokowej x k x k Średa harmocza (cechy o charakterze lorazu p. Prędkość, gęstość zaludea) x H k x Średa geometrycza x x x... G x średa arytmetycza

Bardziej szczegółowo

Plan: Wykład 3. Zmienne losowe i ich rozkłady. Wstęp do probabilistyki i statystyki. Pojęcie zmiennej losowej

Plan: Wykład 3. Zmienne losowe i ich rozkłady. Wstęp do probabilistyki i statystyki. Pojęcie zmiennej losowej --8 Wstęp do probablsty statysty Wyład. Zmee losowe ch rozłady dr hab.ż. Katarzya Zarzewsa, prof.agh, Katedra Eletro, WIET AGH Wstęp do probablsty statysty. wyład Pla: Pojęce zmeej losowej Iloścowy ops

Bardziej szczegółowo

MATERIAŁY POMOCNICZE DLA STUDENTÓW DO NAUKI STATYSTYKI

MATERIAŁY POMOCNICZE DLA STUDENTÓW DO NAUKI STATYSTYKI STATYSTYKA MATERIAŁY POMOCNICZE DLA STUDENTÓW DO NAUKI STATYSTYKI Mara Borowsa STATYSTYKA MATERIAŁY POMOCNICZE DLA STUDENTÓW DO NAUKI STATYSTYKI "Ale t, Pae wszsto pod marą lczbą, wagą urządzłeś" (Ks.

Bardziej szczegółowo

Analiza spektralna stóp zwrotu z inwestycji w akcje

Analiza spektralna stóp zwrotu z inwestycji w akcje Nasz rye aptałowy, 003 r3, str. 38-43 Joaa Góra, Magdalea Osńsa Katedra Eoometr Statysty Uwersytet Mołaja Kopera w Toruu Aalza spetrala stóp zwrotu z westycj w acje. Wstęp Agregacja w eoom eoometr bywa

Bardziej szczegółowo

Wykład ze statystyki. Maciej Wolny

Wykład ze statystyki. Maciej Wolny Wykład ze statystyk Macej Woly T: Zajęca orgazacyje Ageda. Program wykładu. Cel zajęć 3. Nabyte umejętośc 4. Lteratura 5. Waruk zalczea Program wykładu T: Zajęca orgazacyje [h] T: Przedmot zadaa statystyk

Bardziej szczegółowo

Zmienna losowa X ma taki rozkład, jeśli przyjmuje wartości k=0,1,2,...,n z prawdopodobieństwami określonymi wzorem:

Zmienna losowa X ma taki rozkład, jeśli przyjmuje wartości k=0,1,2,...,n z prawdopodobieństwami określonymi wzorem: . Jaka jest różca mędzy cechą skokową cągłą? podać przykłady każdej z ch. Cecha loścowa : skokowa przyjmująca pewe wartośc lczbowe e przyjmująca wartośc pośredch cecha ta też jest azywaa dyskretą, przykład:

Bardziej szczegółowo

Prawdopodobieństwo i statystyka r.

Prawdopodobieństwo i statystyka r. Zadae. W ure zajduje sę 5 kul, z których 5 jest bałych czarych. Losujemy bez zwracaa kolejo po jedej kul. Kończymy losowae w momece, kedy wycągęte zostaą wszystke czare kule. Oblcz wartość oczekwaą lczby

Bardziej szczegółowo

OBLICZANIE NIEPEWNOŚCI METODĄ TYPU B

OBLICZANIE NIEPEWNOŚCI METODĄ TYPU B OBLICZANIE NIEPEWNOŚCI METODĄ TYPU B W przypadku gdy e występuje statystyczy rozrzut wyków (wszystke pomary dają te sam wyk epewość pomaru wyzaczamy w y sposób. Główą przyczyą epewośc pomaru jest epewość

Bardziej szczegółowo

Materiały wspomagające wykład ze statystyki. Maciej Wolny

Materiały wspomagające wykład ze statystyki. Maciej Wolny Materały wspomagające wykład ze statystyk Macej Woly T: Zajęca orgazacyje Ageda. Program wykładu. Cel zajęć 3. Nabyte umejętośc 4. Lteratura 5. Waruk zalczea Program wykładu T: Zajęca orgazacyje [h] T:

Bardziej szczegółowo

METODY OPISU STRUKTURY ZBIOROWOŚCI

METODY OPISU STRUKTURY ZBIOROWOŚCI METODY OPISU STRUKTURY ZBIOROWOŚCI Wkaźk atężea WSKAŹIK STRUKTURY I ATĘŻEIA Iloraz lczby jedotek jedej zborowośc ( ) do lczby jedotek drugej zborowośc (m ). Wyraża ę wzorem: W m Gdze: W wkaźk atężee; lczebośd

Bardziej szczegółowo

Statystyka Opisowa 2014 część 3. Katarzyna Lubnauer

Statystyka Opisowa 2014 część 3. Katarzyna Lubnauer Statystyka Opsowa 014 część 3 Katarzya Lubauer Lteratura: 1. Statystyka w Zarządzau Admr D. Aczel. Statystyka Opsowa od Podstaw Ewa Waslewska 3. Statystyka, Lucja Kowalsk. 4. Statystyka opsowa, Meczysław

Bardziej szczegółowo

Pomiary bezpośrednie i pośrednie obarczone błędem przypadkowym

Pomiary bezpośrednie i pośrednie obarczone błędem przypadkowym Pomary bezpośrede pośrede obarczoe błędem przypadkowym I. Szacowae wartośc przyblŝoej graczego błędu przypadkowego a przykładze bezpośredego pomaru apęca elem ćwczea jest oszacowae wartośc przyblŝoej graczego

Bardziej szczegółowo

Estymacja to wnioskowanie statystyczne koncentrujące się wokół oszacowania wartości parametrów rozkładu populacji.

Estymacja to wnioskowanie statystyczne koncentrujące się wokół oszacowania wartości parametrów rozkładu populacji. Botatytyka, 018/019 dla Fzyk Medyczej, tuda magterke etymacja etymacja średej puktowa przedzał ufośc średej rozkładu ormalego etymacja puktowa przedzałowa waracj rozkładu ormalego etymacja parametrów rozkładu

Bardziej szczegółowo

INSTRUKCJA LABORATORIUM Metrologia techniczna i systemy pomiarowe.

INSTRUKCJA LABORATORIUM Metrologia techniczna i systemy pomiarowe. INSTRUKCJA LABORATORIUM Metrologa techcza sstem pomarowe. MTSP pomar MTSP 00 Autor: dr ż. Potr Wcślok Stroa / 5 Cel Celem ćwczea jest wkorzstae w praktce pojęć: mezurad, estmata, błąd pomaru, wk pomaru,

Bardziej szczegółowo

Podstawy opracowania wyników pomiarowych, analiza błędów

Podstawy opracowania wyników pomiarowych, analiza błędów Podstawy opracowaa wyków pomarowych, aalza błędów I Pracowa Fzycza IF UJ Grzegorz Zuzel Lteratura I Pracowa fzycza Pod redakcją Adrzeja Magery Istytut Fzyk UJ Kraków 2006 Wstęp do aalzy błędu pomarowego

Bardziej szczegółowo

METODY ANALIZY DANYCH DOŚWIADCZALNYCH

METODY ANALIZY DANYCH DOŚWIADCZALNYCH POLITECHNIKA Ł ÓDZKA TOMASZ W. WOJTATOWICZ METODY ANALIZY DANYCH DOŚWIADCZALNYCH Wybrae zagadea ŁÓDŹ 998 Przedsłowe Specyfką teor pomarów jest jej wtóry charakter w stosuku do metod badawczych stosowaych

Bardziej szczegółowo

STATYSTYKA OPISOWA. Statystyka. Losowanie (pomiar)

STATYSTYKA OPISOWA. Statystyka. Losowanie (pomiar) STATYSTYKA OPISOWA Statytyka Statytyka opowa Statytyka matematycza Loowae (pomar) Popuacja geeraa (rezutaty potecjaych pomarów) Próbka (rezutaty pomarów) Statytyka opowa zajmuje ę wtępym opracowaem wyków

Bardziej szczegółowo

. Wtedy E V U jest równa

. Wtedy E V U jest równa Prawdopodobeństwo statystyka 7.0.0r. Zadae Dwuwymarowa zmea losowa Y ma rozkład cągły o gęstośc gdy ( ) 0 y f ( y) 0 w przecwym przypadku. Nech U Y V Y. Wtedy E V U jest rówa 8 7 5 7 8 8 5 Prawdopodobeństwo

Bardziej szczegółowo

Matematyka ubezpieczeń majątkowych r. t warunkowo niezależne i mają (brzegowe) rozkłady Poissona:

Matematyka ubezpieczeń majątkowych r. t warunkowo niezależne i mają (brzegowe) rozkłady Poissona: Zadae. W kolejych okresach czasu t =, ubezpeczoy, charakteryzujący sę parametrem ryzyka Λ, geeruje N t szkód. Dla daego Λ = λ zmee N, N są warukowo ezależe mają (brzegowe) rozkłady Possoa: k λ Pr( N t

Bardziej szczegółowo

Statystyka Matematyczna Anna Janicka

Statystyka Matematyczna Anna Janicka Statystyka Matematycza Aa Jacka wykład II, 3.05.016 PORÓWNANIE WIĘCEJ NIŻ DWÓCH POPULACJI TESTY NIEPARAMETRYCZNE Pla a dzsaj 1. Porówywae węcej ż dwóch populacj test jedoczykowej aalzy waracj (ANOVA).

Bardziej szczegółowo

Prawdopodobieństwo i statystyka r.

Prawdopodobieństwo i statystyka r. Prawdopodobeństwo statystyka 0.06.0 r. Zadae. Ura zawera kul o umerach: 0,,,,. Z ury cągemy kulę, zapsujemy umer kulę wrzucamy z powrotem do ury. Czyość tę powtarzamy, aż kula z każdym umerem zostae wycągęta

Bardziej szczegółowo

ANALIZA KORELACJI DEFINICJA ZALEŻNOŚCI KORELACYJNEJ, RODZAJE ZALEŻNOŚCI KORELACYJNYCH KLASYFIKACJA METOD ANALIZY ZALEŻNOŚCI STATYSTYCZNYCH

ANALIZA KORELACJI DEFINICJA ZALEŻNOŚCI KORELACYJNEJ, RODZAJE ZALEŻNOŚCI KORELACYJNYCH KLASYFIKACJA METOD ANALIZY ZALEŻNOŚCI STATYSTYCZNYCH AALIZA KORELACJI DEFIICJA ZALEŻOŚCI KORELACYJEJ, Zależośd korelacyja (statystycza) występuje wtedy, gdy określoym wartoścom jedej zmeej są przyporządkowae pewe średe wartośc drugej zmeej e moża wyzaczyd

Bardziej szczegółowo

Statystyka powtórzenie (I semestr) Rafał M. Frąk

Statystyka powtórzenie (I semestr) Rafał M. Frąk Statystyka powtórzeie (I semestr) Rafał M. Frąk TEORIA Statystyka Statystyka zajmuje się badaiem procesu zbieraia oraz iterpretacji daych liczbowych lub jakościowych. Przedmiotem statystyki są metody badaia

Bardziej szczegółowo

Monika Jeziorska - Pąpka Uniwersytet Mikołaja Kopernika w Toruniu

Monika Jeziorska - Pąpka Uniwersytet Mikołaja Kopernika w Toruniu DYNAMICZNE MODELE EKONOMERYCZNE X Ogólopolske Semarum Naukowe, 4 6 wrześa 2007 w oruu Katedra Ekoometr Statystyk, Uwersytet Mkołaja Koperka w oruu Moka Jezorska - Pąpka Uwersytet Mkołaja Koperka w oruu

Bardziej szczegółowo

n k n k ( ) k ) P r s r s m n m n r s r s x y x y M. Przybycień Rachunek prawdopodobieństwa i statystyka

n k n k ( ) k ) P r s r s m n m n r s r s x y x y M. Przybycień Rachunek prawdopodobieństwa i statystyka Wyższe momety zmieej losowej Deiicja: Mometem m rzędu azywamy wartość oczeiwaą ucji h() dla dysretej zm. losowej oraz ucji h() dla ciągłej zm. losowej: m E P m E ( ) d Deiicja: Mometem cetralym µ rzędu

Bardziej szczegółowo

ĆWICZENIE 5 TESTY STATYSTYCZNE

ĆWICZENIE 5 TESTY STATYSTYCZNE ĆWICZENIE 5 TESTY STATYSTYCZNE Cel Przedstawee wybraych testów statystyczych zasad wyboru właścwego testu przeprowadzea go oraz terpretac wyów. Wprowadzee teoretycze Testem statystyczym azywamy metodę

Bardziej szczegółowo

Parametry zmiennej losowej

Parametry zmiennej losowej Eonometra Ćwczena Powtórzene wadomośc ze statysty SS EK Defncja Zmenną losową X nazywamy funcję odwzorowującą przestrzeń zdarzeń elementarnych w zbór lczb rzeczywstych, taą że przecwobraz dowolnego zboru

Bardziej szczegółowo

TARCIE CIĘGIEN O POWIERZCHNIĘ WALCOWĄ WZÓR EULERA

TARCIE CIĘGIEN O POWIERZCHNIĘ WALCOWĄ WZÓR EULERA Ćwczee 8 TARCIE CIĘGIEN O POWIERZCHNIĘ WALCOWĄ WZÓR EULERA 8.. Cel ćwczea Celem ćwczea jest wyzaczee statyczego współczyka tarca pomędzy walcową powerzchą cała a opasującą je lą. Poadto a drodze eksperymetalej

Bardziej szczegółowo

Jego zależy od wysokości i częstotliwości wypłat kuponów odsetkowych, ceny wykupu, oczekiwanej stopy zwrotu oraz zapłaconej ceny za obligację.

Jego zależy od wysokości i częstotliwości wypłat kuponów odsetkowych, ceny wykupu, oczekiwanej stopy zwrotu oraz zapłaconej ceny za obligację. Wrażlwość oblgacj Jedym z czyków ryzyka westowaa w oblgacje jest zmeość rykowych stóp procetowych. Iżyera fasowa dyspouje metodam pozwalającym zabezpeczyć portfel przed egatywym skutkam zma stóp procetowych.

Bardziej szczegółowo

Wyższe momenty zmiennej losowej

Wyższe momenty zmiennej losowej Wyższe momety zmieej losowej Deiicja: Mometem m rzędu azywamy wartość oczeiwaą ucji h( dla dysretej zm. losowej oraz ucji h( dla ciągłej zm. losowej: m E P m E ( d Deiicja: Mometem cetralym µ rzędu dla

Bardziej szczegółowo

ZAJĘCIA 2. Metody opisu struktury i natężenia, metody opisu tendencji centralnej, klasyczne metody opisu dyspersji. i n

ZAJĘCIA 2. Metody opisu struktury i natężenia, metody opisu tendencji centralnej, klasyczne metody opisu dyspersji. i n ZAJĘCIA Metody opu truktury atężea, metody opu tedecj cetralej, klaycze metody opu dyperj. WSKAŹIK STRUKTURY I ATĘŻEIA METODY OPISU STRUKTURY I ATĘŻEIA Wkaźk atężea Iloraz lczby jedotek jedej zborowośc

Bardziej szczegółowo

L.Kowalski zadania ze statystyki opisowej-zestaw 5. ZADANIA Zestaw 5

L.Kowalski zadania ze statystyki opisowej-zestaw 5. ZADANIA Zestaw 5 L.Kowalsk zadaa ze statystyk opsowej-zestaw 5 Zadae 5. X cea (zł, Y popyt (tys. szt.. Mając dae ZADANIA Zestaw 5 x,5,5 3 3,5 4 4,5 5 y 44 43 43 37 36 34 35 35 Oblcz współczyk korelacj Pearsoa. Oblcz współczyk

Bardziej szczegółowo

PŁASKA GEOMETRIA MAS. Środek ciężkości figury płaskiej

PŁASKA GEOMETRIA MAS. Środek ciężkości figury płaskiej PŁAKA GEOMETRIA MA Środek cężkośc fgury płaskej Mometam statyczym M x M y fgury płaskej względem os x lub y (rys. 7.1) azywamy gracę algebraczej sumy loczyów elemetarych pól d przez ch odległośc od os,

Bardziej szczegółowo

Identyfikacja i ocena ryzyka wykonania planu produkcji w przedsiębiorstwie górniczym

Identyfikacja i ocena ryzyka wykonania planu produkcji w przedsiębiorstwie górniczym Prof. dr hab. ż. HENRYK PRZYBYŁA, dr hab. ż. STANISŁAW KOWALIK Poltecha Śląsa, Glwce Idetyfacja ocea ryzya wyoaa plau producj w przedsęborstwe górczym Artyuł opował prof. dr hab. ż. Adrzej Karbow. Wprowadzee

Bardziej szczegółowo

Indukcja matematyczna

Indukcja matematyczna Iducja matematycza Twerdzee. zasada ducj matematyczej Nech T ozacza pewą tezę o lczbe aturalej. Jeżel dla pewej lczby aturalej 0 teza T 0 jest prawdzwa dla ażdej lczby aturalej 0 z prawdzwośc tezy T wya

Bardziej szczegółowo

( ) ( ) ( ) ( ) ( ) ( )

( ) ( ) ( ) ( ) ( ) ( ) ,,, ~ B, β ( β β ( ( Γ( β Γ + f ( Γ ( + ( + β + ( + β Γ + β Γ + Γ + β Γ + + β E Γ Γ β Γ Γ + + β Γ + Γ β + β β β Γ + β Γ + Γ + β Γ + + β E ( Γ Γ β Γ Γ + + β Γ + Γ β β + β Metoda mometów polega a przyrówau

Bardziej szczegółowo

PERMUTACJE Permutacją zbioru n-elementowego X nazywamy dowolną wzajemnie jednoznaczną funkcję f : X X X

PERMUTACJE Permutacją zbioru n-elementowego X nazywamy dowolną wzajemnie jednoznaczną funkcję f : X X X PERMUTACJE Permutacą zboru -elemetowego X azywamy dowolą wzaeme edozaczą fucę f : X X f : X X Przyład permutac X = { a, b, c, d } f (a) = d, f (b) = a, f (c) = c, f (d) = b a b c d Zaps permutac w postac

Bardziej szczegółowo

Średnia harmoniczna Za pomocą średniej harmonicznej obliczamy np. średnią prędkość jazdy samochodem.

Średnia harmoniczna Za pomocą średniej harmonicznej obliczamy np. średnią prędkość jazdy samochodem. Statystyka Statystyka jest auką, która zajmuje sę zberaem daych ch aalzą. Praca statystyka polega główe a zebrau dużej lośc daych opsujących jakeś zjawsko ch aalze terpretacj. Ne będzemy zajmować sę oczywśce

Bardziej szczegółowo

Elementy arytmetyki komputerowej

Elementy arytmetyki komputerowej Elemety arytmetyk komputerowej cz. I Elemety systemów lczbowych /materał pomocczy do wykładu Iformatyka sem II/ Sps treśc. Wprowadzee.... Wstępe uwag o systemach lczbowych... 3. Przegląd wybraych systemów

Bardziej szczegółowo

Przestrzenno-czasowe zróżnicowanie stopnia wykorzystania technologii informacyjno- -telekomunikacyjnych w przedsiębiorstwach

Przestrzenno-czasowe zróżnicowanie stopnia wykorzystania technologii informacyjno- -telekomunikacyjnych w przedsiębiorstwach dr ż. Jolata Wojar Zakład Metod Iloścowych, Wydzał Ekoom Uwersytet Rzeszowsk Przestrzeo-czasowe zróżcowae stopa wykorzystaa techolog formacyjo- -telekomukacyjych w przedsęborstwach WPROWADZENIE W czasach,

Bardziej szczegółowo

Matematyczny opis ryzyka

Matematyczny opis ryzyka Aalza ryzyka kosztowego robót remotowo-budowlaych w warukach epełe formac Mgr ż Mchał Bętkowsk dr ż Adrze Powuk Wydzał Budowctwa Poltechka Śląska w Glwcach MchalBetkowsk@polslpl AdrzePowuk@polslpl Streszczee

Bardziej szczegółowo

Przewodnik do ćwiczeń ze statystyki

Przewodnik do ćwiczeń ze statystyki Przewodk do ćwczeń ze tatytyk Podtawowe defcje Próbka loowa, tatytycza Próbką loową jet ograczoy zbór oberwacj dokoay a pewej hpotetyczej lub realej zborowośc zwaej populacją. Waże jet, że oberwacje ą

Bardziej szczegółowo

Zadanie 1. Rzucamy symetryczną monetą tak długo, aż w dwóch kolejnych rzutach pojawią się,,reszki. Oblicz wartość oczekiwaną liczby wykonanych rzutów.

Zadanie 1. Rzucamy symetryczną monetą tak długo, aż w dwóch kolejnych rzutach pojawią się,,reszki. Oblicz wartość oczekiwaną liczby wykonanych rzutów. Pradopodobeństo statystya 6..3r. Zadae. Rzucamy symetryczą moetą ta długo aż dóch olejych rzutach pojaą sę resz. Oblcz artość oczeaą lczby yoaych rzutó. (A) 7 (B) 8 (C) 9 (D) (E) 6 Wsazóa: jeśl rzuce umer

Bardziej szczegółowo

FINANSE II. Model jednowskaźnikowy Sharpe a.

FINANSE II. Model jednowskaźnikowy Sharpe a. ODELE RYNKU KAPITAŁOWEGO odel jedowskaźkowy Sharpe a. odel ryku kaptałowego - CAP (Captal Asset Prcg odel odel wycey aktywów kaptałowych). odel APT (Arbtrage Prcg Theory Teora artrażu ceowego). odel jedowskaźkowy

Bardziej szczegółowo

Statystyka powtórzenie (II semestr) Rafał M. Frąk

Statystyka powtórzenie (II semestr) Rafał M. Frąk Statstka powtórzee (II semestr) Rafał M. Frąk TEORIA, OZNACZENIA, WZORY Rodzaje mar statstczch mar położea - wzaczają przecęta wartość cech statstczej mar zróżcowaa (lub zmeośc, rozproszea, dspersj) -

Bardziej szczegółowo

Miary rozproszenia. Miary położenia. Wariancja. Średnia. Dla danych indywidualnych: Dla danych indywidualnych: s 2 = 1 n. (x i x) 2. x i.

Miary rozproszenia. Miary położenia. Wariancja. Średnia. Dla danych indywidualnych: Dla danych indywidualnych: s 2 = 1 n. (x i x) 2. x i. Miary położeia Średia Dla daych idywidualych: x = 1 x = 1 x i i ẋ i gdzie ẋ i środek i tego przedziału i - liczość i-tego przedziału Domiata moda Liczba ajczęściej występująca jeśli taka istieje - dla

Bardziej szczegółowo

( X, Y ) będzie dwuwymiarową zmienną losową o funkcji gęstości

( X, Y ) będzie dwuwymiarową zmienną losową o funkcji gęstości Zadae. Nech Nech (, Y będze dwuwymarową zmeą losową o fukcj gęstośc 4 x + xy gdy x ( 0, y ( 0, f ( x, y = 0 w przecwym przypadku. S = + Y V Y E V S =. =. Wyzacz ( (A 0 (B (C (D (E 8 8 7 7 Zadae. Załóżmy,

Bardziej szczegółowo

Typ może być dowolny. //realizacja funkcji zamiana //przestawiajacej dwa elementy //dowolnego typu void zamiana(int &A, int &B) { int t=a; A=B; B=t; }

Typ może być dowolny. //realizacja funkcji zamiana //przestawiajacej dwa elementy //dowolnego typu void zamiana(int &A, int &B) { int t=a; A=B; B=t; } Idea: Wyzaczamy ameszy elemet w cągu tablcy zameamy go mescam z elemetem perwszym, astępe z pozostałego cągu wyberamy elemet ameszy ustawamy go a druge mesce tablcy zmeamy, td. Realzaca w C++ vod seleca

Bardziej szczegółowo

Miary położenia. Miary rozproszenia. Średnia. Wariancja. Dla danych indywidualnych: Dla danych indywidualnych: s 2 = 1 n. (x i x) 2. x i.

Miary położenia. Miary rozproszenia. Średnia. Wariancja. Dla danych indywidualnych: Dla danych indywidualnych: s 2 = 1 n. (x i x) 2. x i. Miary położeia Średia Dla daych idywidualych: x = 1 x = 1 x i i ẋ i gdzie ẋ i środek i tego przedziału i - liczość i-tego przedziału Domiata moda Liczba ajczęściej występująca jeśli taka istieje - dla

Bardziej szczegółowo

Metoda Monte-Carlo i inne zagadnienia 1

Metoda Monte-Carlo i inne zagadnienia 1 Metoda Mote-Carlo e zagadea Metoda Mote-Carlo Są przypadk kedy zamast wykoać jakś eksperymet chcelbyśmy symulować jego wyk używając komputera geeratora lczb (pseudolosowych. Wększość bblotek programów

Bardziej szczegółowo

Zadanie 1. ), gdzie 1. Zmienna losowa X ma rozkład logarytmiczno-normalny LN (, . EX (A) 0,91 (B) 0,86 (C) 1,82 (D) 1,95 (E) 0,84

Zadanie 1. ), gdzie 1. Zmienna losowa X ma rozkład logarytmiczno-normalny LN (, . EX (A) 0,91 (B) 0,86 (C) 1,82 (D) 1,95 (E) 0,84 Zadae. Zmea losowa X ma rozkład logarytmczo-ormaly LN (, ), gdze E ( X e X e) 4. Wyzacz. EX (A) 0,9 (B) 0,86 (C),8 (D),95 (E) 0,84 Zadae. Nech X, X,, X0, Y, Y,, Y0 będą ezależym zmeym losowym. Zmee X,

Bardziej szczegółowo