TEMATY PRAC KONTROLNYCH
|
|
- Bronisława Paluch
- 9 lat temu
- Przeglądów:
Transkrypt
1 LICEUM OGÓLNOKSZTAŁCĄCE DLA DOROSŁYCH PASCAL W ZAWIERCIU SEMESTR II 2014/2015 PRZEDMIOT J. Polski TEMATY PRAC KONTROLNYCH 1. Porównanie dwóch kreacji Maryi na podstawie Bogurodzicy i Posłuchajcie, bracia miła. 2. Obrazy arkadyjskie w literaturze polskiego renesansu. 3. Wzorce osobowe średniowiecza. 4. Koncepcja Boga i człowieka w twórczości Jana Kochanowskiego i Mikołaja Sępa-Szarzyńskiego. 5. Fraszki i pieśni Jana Kochanowskiego jako manifest humanistyczny. 6. Kryzys światopoglądowy w Trenach Jana Kochanowskiego 7. Wiliam Szekspir- twórca nowożytnego dramatu. 8. Tradycja antyczna w literaturze polskiego renesansu 9. Walka o nowego człowieka dla nowych oświeconych czasów jako przewodnia myśl polskiego oświecenia 10. Franciszek Karpiński- poeta polskiej Arkadii. 11. Barokowa czy renesansowa wizja świata. Która z nich jest Ci bliższa? 12. Co oznaczało hasło: Człowiek miarą wszechrzeczy? Czy jest ono-według Ciebiesłuszne? Uzasadnij swoją opinię, odwołując się do poglądów renesansowych myślicieli. Describe a person you will never forget. (napisz jak się poznaliście, opisz wygląd tej osoby i jej osobowość, J. Angielski uzasadnij dlaczego nigdy jej nie zapomnisz) 2. Write a description of one of your relatives. (opisz wygląd i osobowość tej osoby, napisz czy ta osoba wpłynęła
2 na ciebie pozytywnie lub negatywnie i dlaczego) 3. Write a story entitled: "The most exciting experience of my life".(napisz jakiego wydarzenia dotyczy opowieść, opisz kiedy to się stało i w jakich okolicznościach, zamieść dużo opisów miejsc i wydarzeń, napisz jakie były skutki tego wydarzenia i jak ono na ciebie wpłynęło) 4. Write a story entitled: "A Disastrous Evening". (napisz jakiego wydarzenia dotyczy Twoja opowieść - może być zmyślone lub prawdziwe, opisz okoliczności zdarzenia, zamieść opisy miejsc i zdarzeń, napisz jak ta historia się skończyła i jak wpłynęła na uczestników zdarzeń) 5. You have been for a holiday abroad for a week. Write a letter to your parents describing your holiday so far. (napisz jak upłynęła twoja podróż, napisz co robiłeś/aś do tej pory na wakacjach, napisz czy jesteś zadowolony/a z pobytu) 6. You feel that you and your partner cannot agree on anything. Write a letter to a friend asking for advice. (uzasadnij w jakiej sprawie piszesz w pierwszym paragrafie, opisz dokładnie sytuację i to czego dotyczy problem/y w paragrafie drugim, poproś o pilną poradę i jak najszybszą odpowiedź na twój list) 7. Write a review of a book that you have read recently or your favourite book.(w pierwszym paragrafie napisz co to za książka i opisz
3 tło opowieści - miejsce zdarzeń, typ książki, główni bohaterowie, w paragrafie drugim opisz główne wątki fabularne, w trzecim skomentuj swoje wrażenia podczas czytania, a w ostatnim napisz dlaczego polecasz/lub nie polecasz czytania tej pozycji) 8. Write a rewiev of a film that you have seen recently or your favourite film.(w pierwszym paragrafie napisz tytuł filmu i opisz tło - miejsce akcji, rodzaj filmu, główni bohaterowie, w paragrafie drugim opisz główne wątki fabularne, w trzeciem skomentuj swoje wrażenia podczas oglądania, w ostatnim napisz dlaczego polecasz lub nie polecasz oglądania tego filmu) 9. Write an essey on the subject: The advantages and disadvantages of watching tv.(w pierwszym paragrafie przedstaw problem bez podawania swojej opinii, w drugim przedstaw dobre strony oglądania telewizji - argumanty za, w paragrafie trzecim przedstaw złe strony oglądania telewizji - argumenty przeciw, w finałowym paragrafie przedstaw swoją opinię na ten temat lub bezstronne podsumowanie problemu) Historia 10. Write an essey on the subject: The advantages and disadvantages of keeping pets at home.(w pierwszym paragrafie przedstaw problem bez podawania swojej opinii, w drugim przedstaw dobre strony posiadania zwierząt w domu - argumanty za, w paragrafie trzecim przedstaw złe strony posiadania zwierząt w domu - argumenty przeciw, w finałowym paragrafie przedstaw swoją opinię na ten temat lub bezstronne podsumowanie problemu) 1. Opisz w jaki sposób obaj okupanci prowadzili walkę z polskością. 2. Ocen politykę prowadzona przez rząd gen. Sikorskiego. 3. Oceń działalność polskiego rządu emigracyjnego. 4. Wymień przyczyny napięć politycznych miedzy Wschodem i Zachodem po 1945 roku. Przedstaw szerzej jedną z przyczyn. 5. Wskaz zmiany polityczne i społeczne jakie nastąpiły w okresie stalinizmu. 6. Omów formy kultu jednostki na przykładzie Józefa Stalina i Bolesława Bieruta.
4 7. Scharakteryzuj zmiany jakie nastąpiły w Polsce w okresie odwilży. 8. Opisz drogę komunistów do przejęcia władzy w Polsce. 9. Oceń role Stanów Zjednoczonych w procesie odbudowy i jednoczenia Europy. 10. Określ sytuację w Polsce po przejęciu władzy przez Władysława Gomułkę. 11. Scharakteryzuj kolejne etapy integracji europejskiej po 1945 roku. 12. Przedstaw proces upadku roli ZSRR na arenie międzynarodowej w latach 80 XX wieku. 13. Scharakteryzuj wydarzenia z 1980 roku w Polsce. 14. Scharakteryzuj przyczyny upadku PRL. 15. Dokonaj oceny zmian w Polsce po 1989 roku. 16. Ocen skutki porozumień okrągłego Stołu. 17. Określ rolę ONZ w konfliktach przełomu XX i XXI wieku. Wiedza o społeczeństwie 1. Opisz sytuacje edukacji w Polsce. Wybierz ścieżkę edukacyjna najkorzystniejsza na obecnym rynku pracy. 2. Scharakteryzuj prace w Polsce i za granica. 3. Wyjaśnij zależności miedzy ustrojem demokratycznym a prawami i obowiązkami człowieka. 4. Porównaj odpowiedzialność nieletniego wobec prawa z odpowiedzialnością osoby pełnoletniej prawnie. 5. Scharakteryzuj organy ścigania i wskaż ich znaczenie dla bezpieczeństwa obywateli. 6. Przedstaw podobieństwa i różnice miedzy sadami polubownymi a sadami powszechnymi. 7. Wyjaśnij na czym polega społeczeństwo obywatelskie. Czy społeczeństwo polskie jest takim społeczeństwem? Uzasadnij odpowiedź. 8. Przedstaw i scharakteryzuj przykłady łamania praw człowieka na świecie. Jakie organizacje międzynarodowe zajmują się ochrona praw człowieka?
5 Geografia Chemia 1. Znaczenie warstwy ozonowej w atmosferze. 2. Unia Europejska. 3. Kwaśne deszcze i mechanizm ich powstawania. 4. Turystyczne regiony Europy. 5. Współczesne problemy życia w wielkich miastach. 6. Ryż jako zboże będące podstawą wyżywienia. 7. Klęski żywiołowe w Polsce. 1. Opisz na czym polega powstawanie dziury ozonowej i jakie zagrożenia stanowi dla środowiska. Zaproponuj sposoby zapobiegania jej powiększaniu. 2. Czym jest smog, z czego powstaje i jakie zagrożenia wynikają z jego obecności? 3. Opisz proces rdzewienia żelaza i zaproponuj sposoby zabezpieczania produktów zawierających w swoim składzie żelazo przed rdzewieniem. 4. Wyszukaj informacje na temat składników napojów dnia codziennego (kawa, herbata, mleko, woda gazowana, napoje typu cola) w aspekcie ich działania na organizm ludzki. 5. Wyjaśnij pojęcie kwaśnych deszczy, zanalizuj proces ich powstawania oraz skutki ich działania na przyrodę. Zaproponuj sposoby ograniczające ich powstawanie. 6. Przedstaw wzory sumaryczne oraz właściwości skrobi i celulozy. Opisz występowanie tych związków w przyrodzie oraz ich znaczenie i zastosowanie. 7. Wyjaśnij przyczyny psucia się żywności i zaproponuj sposoby zapobiegania temu procesowi. Przedstaw znaczenie i konsekwencje stosowania dodatków do żywności w tym konserwantów. 8. Podaj przykłady nawozów naturalnych i sztucznych oraz uzasadnij potrzebę ich stosowania. 9. Wyjaśnij na czym polega działanie środków piorących (w tym mydeł) oraz mechanizm usuwania brudu. 10. Wyszukaj informacje na temat działania składników popularnych leków- węgla aktywowanego, aspiryny, środków neutralizujących nadmiar kwasów w żołądku.
6 Informatyka Matematyka 1. System operacyjny, przykłady systemów operacyjnych (np. Windows, Linux, itp.). 2. Historia powstania komputerów. 3. Rodzaje pamięci komputerowych, rodzaje dysków twardych. 4. Internet, jego historia. 5. Komunikacja i wymiana informacji w Internecie. 6. Rodzaje drukarek. 7. Programy biurowe. 8. Licencja, rodzaje licencji, prawo komputerowe. 9. E- nauczanie i inne e- usługi. 10. Grafika wektorowa i rastrowa, różnice i przykłady programów. Zadanie 1 Kąty, i są kątami wewnętrznymi trójkąta. Wyznacz miarę kąta, jeżeli kąt ma miarę dwa razy większą od kąta, a kąt trzy razy mniejszą od kąta. Zadanie 2 Oblicz sumę długości wszystkich przekątnych sześciokąta foremnego o boku długości a. Ile razy większa jest ta suma od obwodu sześciokąta. Zadanie 3 Jaką miarę ma kąt między sąsiednimi przekątnymi wychodzącymi z wierzchołka 10-kąta foremnego? Zadanie 4 Oblicz obwód i pole trapezu równoramiennego o podstawach długości 16 cm i 24 cm oraz wysokości 8 cm. Zadanie 5 Jakie pole i obwód ma trójkąt równoboczny o wysokości 6 3 Zadanie 6
7 Oblicz wysokość budynku, którego cień ma długość x w momencie, gdy promienie słoneczne tworzą z powierzchnią ziemi kąt. Dane: x = 5 m, = 58 Zadanie 7 Bok rombu ma długość 5, a jedna z jego przekątnych jest równa 4. Oblicz wartości funkcji trygonometrycznych kątów ostrych trójkątów, na które dzielą romb jego przekątne. Zadanie 8 Wahadło starego zegara ma długość 50 cm i odchyla się od pionu o 18. Pełne wahnięcie (od lewej do prawej i z powrotem) trwa 2 sekundy. Jaką drogę pokonuje końcówka wahadła w ciągu godziny? Zadanie 9 Wierzchołki trójkąta prostokątnego równoramiennego leżą na okręgu o promieniu 5 cm. Oblicz pole i obwód tego trójkąta. Zadanie 10 Na okrągłej tarczy zegara połączono odcinkami punkty leżące na jej brzegu i oznaczające godziny: czwartą, dziewiątą i dwunastą. Oblicz miary kątów otrzymanego trójkąta. Zadanie 11 W trójkącie prostokątnym jeden z kątów ostrych ma miarę = 30, a krótsza przyprostokątna ma długość a = 4. Oblicz długość przeciwprostokątnej tego trójkąta. Zadanie 12
8 Kąt jest ostry i cos Zadanie Oblicz ile wynosi sin. Oblicz wartość wyrażenia sin sin cos 52 cos Zadanie 14 Znajdź wzór funkcji, której wykresem jest parabola o wierzchołku W = (-1, -1) przechodząca przez punkt P = (3, 3). Zadanie 15 Podaj współrzędne wierzchołka paraboli y = 2x 2 + 5x 5 i zapisz wzór podanej funkcji w postaci kanonicznej. Zadanie 16 Narysuj wykres funkcji y = - (x+1)(x-3). Podaj miejsca zerowe funkcji Zadanie 17 Rozwiąż równanie: 6x 2 5x + 4 = 0 Zadanie 18 Rozwiąż nierówność: x 2 49 < 0 Zadanie 19 Oblicz współrzędne punktów przecięcia wykresów funkcji: y = x 2 + 5x +2 i y = x 6 Zadanie 20 Dla jakich wartości parametru m równanie 6x 2 x + 6m 1 = 0 ma dwa rozwiązania o różnych znakach
LICEUM OGÓLNOKSZTAŁCĄCE DLA DOROSŁYCH PASCAL W ZAWIERCIU SEMESTR I 2014/2015. Imię i nazwisko nauczyciela PRZEDMIOT TEMATY PRAC KONTROLNYCH
LICEUM OGÓLNOKSZTAŁCĄCE DLA DOROSŁYCH PASCAL W ZAWIERCIU SEMESTR I 04/05 PRZEDMIOT Imię i nazwisko nauczyciela TEMATY PRAC KONTROLNYCH J. Polski Urszula Kwapisz. Człowiek w obliczu życiowych wyborów. Wykorzystaj
Wymagania na egzamin poprawkowy z matematyki w roku szkolnym 2018/2019 klasy 2 a BS i 2 b BS
Wymagania na egzamin poprawkowy z matematyki w roku szkolnym 2018/2019 klasy 2 a BS i 2 b BS Podstawowa wiedza zawiera się w pisemnych sprawdzianach które odbyły się w ciągu całego roku szkolnego. Umiejętność
7. PLANIMETRIA.GEOMETRIA ANALITYCZNA
7. PLANIMETRIA.GEOMETRIA ANALITYCZNA ZADANIA ZAMKNIĘTE 1. Okrąg o równaniu : A) nie przecina osi, B) nie przecina osi, C) przechodzi przez początek układu współrzędnych, D) przechodzi przez punkt. 2. Stosunek
? 14. Dana jest funkcja. Naszkicuj jej wykres. Dla jakich argumentów funkcja przyjmuje wartości dodatnie? 15. Dana jest funkcja f x 2 a x
FUNKCE FUNKCJA LINIOWA Sporządź tabelkę i narysuj wykres funkcji ( ) Dla jakich argumentów wartości funkcji są większe od 5 Podaj warunek równoległości prostych Wyznacz równanie prostej równoległej do
Wymagania na egzamin poprawkowy z matematyki w roku szkolnym 2018/2019 klasa 1 b BS
Wymagania na egzamin poprawkowy z matematyki w roku szkolnym 2018/2019 klasa 1 b BS Podstawowa wiedza zawiera się w pisemnych sprawdzianach które odbyły się w ciągu całego roku szkolnego. Umiejętność rozwiązywania
Zagadnienia z matematyki dla klasy II oraz przykładowe zadania
Zagadnienia z matematyki dla klasy II oraz przykładowe zadania FUNKCJA KWADRATOWA Wykres funkcji f () = a Przesunięcie wykresu funkcji f() = a o wektor Postać kanoniczna i postać ogólna funkcji kwadratowej
Wymagania na egzamin poprawkowy z matematyki w roku szkolnym 2018/2019 klasa 1 TŻiUG
Wymagania na egzamin poprawkowy z matematyki w roku szkolnym 2018/2019 klasa 1 TŻiUG Podstawowa wiedza zawiera się w pisemnych sprawdzianach które odbyły się w ciągu całego roku szkolnego. Umiejętność
Wymagania na egzamin poprawkowy z matematyki w roku szkolnym 2018/2019 klasa 1 TLog
Wymagania na egzamin poprawkowy z matematyki w roku szkolnym 2018/2019 klasa 1 TLog Podstawowa wiedza zawiera się w pisemnych sprawdzianach które odbyły się w ciągu całego roku szkolnego. Umiejętność rozwiązywania
BAZA ZADAŃ KLASA 2 TECHNIKUM FUNKCJA KWADRATOWA
BAZA ZADAŃ KLASA 2 TECHNIKUM FUNKCJA KWADRATOWA 1. Podaj zbiór wartości i monotoniczność funkcji: b) c) j) k) l) wskazówka: - oblicz wierzchołek (bez miejsc zerowych!) i naszkicuj wykres (zwróć uwagę na
I. Funkcja kwadratowa
Pojęcia, wymagania i przykładowe zadania na egzamin poprawkowy w roku szkolnym 2018/2019 w CKZiU nr 3 Ekonomik w Zielonej Górze KLASA III fl POZIOM PODSTAWOWY I. Funkcja kwadratowa narysować wykres funkcji
na postać kanoniczną, podaj współrzędne wierzchołka paraboli i określ czy jej ramiona są skierowane w górę czy w dół.
Zadania na poprawkę dla sa f x x 1x na postać kanoniczną, podaj współrzędne wierzchołka paraboli i określ czy jej ramiona są skierowane w górę czy w dół. 1. Zamień postać ogólną funkcji kwadratowej 5.
Przygotowanie do poprawki klasa 1li
Zadanie Rozwiąż równanie x 6 5 x 4 Przygotowanie do poprawki klasa li Zadanie Rozwiąż nierówność x 4 x 5 Zadanie Oblicz: a) 9 b) 6 5 c) 64 4 d) 6 0 e) 8 f) 7 5 6 Zadanie 4 Zapisz podane liczby bez znaku
Ostatnia aktualizacja: 30 stycznia 2015 r.
Ostatnia aktualizacja: 30 stycznia 2015 r. Spis treści 1. Funkcja liniowa 5 2. Funkcja kwadratowa 7 3. Trygonometria 11 4. Ciagi liczbowe 13 5. Wielomiany 15 6. Funkcja wykładnicza 17 7. Funkcja wymierna
2 cos α 4. 2 h) g) tgx. i) ctgx
ZESTAW I - FUNKCJE TRYGONOMETRYCZNE - powtórzenie. Znajdź wartości pozostałych funkcji trygonometrycznych, jeśli: sin α b). Oblicz wartość wyrażenia: tg ctg 77 = b) sin 0 (cos ) = c) sin = d) [( sin 0
Zagadnienia z matematyki dla klasy II oraz przykładowe zadania
Zagadnienia z matematyki dla klasy II oraz przykładowe zadania FUNKCJA KWADRATOWA Wykres funkcji f (x) = ax Przesunięcie wykresu funkcji f(x) = ax o wektor Postać kanoniczna i postać ogólna funkcji kwadratowej
I. Funkcja kwadratowa
Pojęcia, wymagania i przykładowe zadania na egzamin poprawkowy dla klas III w roku szkolnym 2017/2018 w Zespole Szkół Ekonomicznych w Zielonej Górze Dla każdej klasy 3 obowiązuje taka ilość poniższego
LUBELSKA PRÓBA PRZED MATURĄ MATEMATYKA - poziom podstawowy
1 MATEMATYKA - poziom podstawowy LUTY 2015 Instrukcja dla zdającego Czas pracy: 170 minut 1. Sprawdź, czy arkusz zawiera 16 stron. 2. Rozwiązania zadań i odpowiedzi zamieść w miejscu na to przeznaczonym.
LICEUM OGÓLNOKSZTAŁCĄCE DLA DOROSŁYCH PASCAL W ZAWIERCIU SEMESTR I 2014/2015. Imię i nazwisko nauczyciela PRZEDMIOT TEMATY PRAC KONTROLNYCH
LICEUM OGÓLNOKSZTAŁCĄCE DLA DOROSŁYCH PASCAL W ZAWIERCIU SEMESTR I 04/05 PRZEDMIOT Imię i nazwisko nauczyciela TEMATY PRAC KONTROLNYCH J. Polski Urszula Kwapisz. Człowiek w obliczu życiowych wyborów. Wykorzystaj
EGZAMIN MATURALNY Z MATEMATYKI
ARKUSZ ZAWIERA INFORMACJE PRAWNIE CHRONIONE DO MOMENTU ROZPOCZĘCIA EGZAMINU! Miejsce na naklejkę MMA-P_P-08 EGZAMIN MATURALNY Z MATEMATYKI POZIOM PODSTAWOWY MAJ ROK 008 Czas pracy 0 minut Instrukcja dla
Wymagania na egzamin poprawkowy z matematyki w roku szkolnym 2017/2018 klasa pierwsza Branżowa Szkoła
Wymagania na egzamin poprawkowy z matematyki w roku szkolnym 2017/2018 klasa pierwsza Branżowa Szkoła Podstawowa wiedza zawiera się w pisemnych sprawdzianach które odbyły się w ciągu całego roku szkolnego.
TEMATY PRAC KONTROLNYCH
LICEUM OGÓLNOKSZTAŁCĄCE DLA DOROSŁYCH PASCAL W ZAWIERCIU SEMESTR I 04/05 PRZEDMIOT TEMATY PRAC KONTROLNYCH J. Polski. Człowiek w obliczu życiowych wyborów. Wykorzystaj wnioski z interpretacji Iliady oraz
ZAGADNIENIA NA EGZAMIN POPRAWKOWY Z MATEMATYKI
ZAGADNIENIA NA EGZAMIN POPRAWKOWY Z MATEMATYKI KLASA I Lb TECHNIKUM \ rok. LICZBY I DZIAŁANIA Liczby naturalne, całkowite, wymierne i niewymierne Działania na liczbach Przedziały liczbowe,działania na
Instrukcja dla zdającego Czas pracy: 170 minut
MATEMATYKA klasa pierwsza (pp) CZERWIEC 015 Instrukcja dla zdającego Czas pracy: 170 minut 1. Sprawdź, czy arkusz zawiera 14 stron (zadania 1-). Ewentualny brak zgłoś przewodniczącemu zespołu nadzorującego
Planimetria poziom podstawowy (opracowanie: Mirosława Gałdyś na bazie
Planimetria poziom podstawowy (opracowanie: Mirosława Gałdyś na bazie http://www.zadania.info/) 1. W trójkącie prostokątnym wysokość poprowadzona na przeciwprostokątną ma długość 10 cm, a promień okręgu
KURS MATURA PODSTAWOWA Część 2
KURS MATURA PODSTAWOWA Część 2 LEKCJA 7 Planimetria ZADANIE DOMOWE www.etrapez.pl Strona 1 Część 1: TEST Zaznacz poprawną odpowiedź (tylko jedna jest prawdziwa). Pytanie 1 Kąt na poniższym rysunku ma miarę:
ODLEGŁOŚĆ NA PŁASZCZYŹNIE - SPRAWDZIAN
ODLEGŁOŚĆ NA PŁASZCZYŹNIE - SPRAWDZIAN Gr. 1 Zad. 1. Dane są punkty: P = (-, 1), R = (5, -1), S = (, 3). a) Oblicz odległość między punktami R i S. b) Wyznacz współrzędne środka odcinka PR. c) Napisz równanie
PRÓBNA MATURA ZADANIA PRZYKŁADOWE
ZESPÓŁ SZKÓŁ HOTELARSKO TURYSTYCZNO GASTRONOMICZNYCH NR UL. KRASNOŁĘCKA 3, WARSZAWA Z A D AN I A Z A M K N I Ę T E ) Liczba, której 5% jest równe 6, to : A. 0,3 C. 30. D. 0 5% 6 II sposób: x nieznana liczba
MARATON MATEMATYCZNY-MARZEC 2015 KLASA I. Zadanie 1. Zadanie 2
MARATON MATEMATYCZNY-MARZEC 2015 KLASA I Obwód poniższej figury wynosi: Zredukuj wyrażenia Zadanie 2 Uprość wyrażenia, a następnie oblicz ich wartości dla: a = -1, b = 2 Wyłącz wspólny czynnik przed nawias.
TEMATY PRAC KONTROLNYCH W ROKU 2012/2013 LISTA TEMATÓW (ZADAŃ)
TEMATY PRAC KONTROLNYCH W ROKU 2012/2013 SEMESTR: II MTU ZAJĘCIA EDUKACYJNE: FIZYKA I ASTRONOMIA NAUCZYCIEL: SZYMON GUMNY Zad. 1. (K,P) LISTA TEMATÓW (ZADAŃ) Zad. 2. (R,D) Zad. 3. (K,P) Zad. 4. (P,R) Zad.
PRÓBNA MATURA ZADANIA PRZYKŁADOWE
ZESPÓŁ SZKÓŁ HOTELARSKO TURYSTYCZNO GASTRONOMICZNYCH NR UL. KRASNOŁĘCKA, WARSZAWA Z A D AN I A Z A M K N I Ę T E ) Liczba, której 5% jest równe 6, to : A. 0, C. 0. D. 0 5% 6 II sposób: x nieznana liczba
PRÓBNY ARKUSZ MATURALNY Z MATEMATYKI
WPISUJE ZDAJĄCY Stowarzyszenie Nauczycieli Matematyki www.snm.edu.pl KOD PESEL Miejsce na naklejkę z kodem (podczas egzaminu w maju) PRÓBNY ARKUSZ MATURALNY Z MATEMATYKI POZIOM PODSTAWOWY 1. Sprawdź czy
2 5 C). Bok rombu ma długość: 8 6
Zadanie 1 W trójkącie prostokątnym o przeciwprostokątnej 6 i przyprostokątnej sinus większego z kątów ostrych ma wartość: C) Zadanie Krótsza przekątna rombu o długości tworzy z bokiem rombu kąt 60 0. Bok
ZADANIA ZAMKNIETE W zadaniach 1-25 wybierz i zaznacz na karcie odpowiedzi poprawna
Arkusz A03 2 Egzamin maturalny z matematyki Poziom podstawowy ZADANIA ZAMKNIETE W zadaniach 1-25 wybierz i zaznacz na karcie odpowiedzi poprawna odpowiedź Zadanie 1. (0-1) Dany jest ciąg arytmetyczny (a
PRÓBNY EGZAMIN MATURALNY Z MATEMATYKI
MARZEC ROK 08 PRÓBNY EGZAMIN MATURALNY Z MATEMATYKI POZIOM PODSTAWOWY Czas pracy 70 minut Instrukcja dla zdającego. Sprawdź, czy arkusz egzaminacyjny zawiera 4 stron (zadania 34). Ewentualny brak zgłoś
Przykłady zadań do standardów.
Przykłady zadań do standardów 1 Wykorzystanie i tworzenie informacji 1 Oblicz wartośd wyrażenia: log 5 log8 log Odp: 1 1 3 5 8 Wyrażenie 5 1 0,5 : 3 zapisz w postaci p, gdzie p jest liczbą całkowitą Odp:
ZADANIA OTWARTE KRÓTKIEJ ODPOWIEDZI
Zadanie 51. ( pkt) Rozwiąż równanie 3 x = 1. 1 x Zadanie 5. ( pkt) x+ 3y = 5 Rozwiąż układ równań. x y = 3 Zadanie 53. ( pkt) Rozwiąż nierówność x + 6x 7 0. ZNI OTWRTE KRÓTKIEJ OPOWIEZI Zadanie 54. ( pkt)
Klasa III technikum Egzamin poprawkowy z matematyki sierpień I. CIĄGI LICZBOWE 1. Pojęcie ciągu liczbowego. b) a n =
/9 Narysuj wykres ciągu (a n ) o wyrazie ogólnym: I. CIĄGI LICZBOWE. Pojęcie ciągu liczbowego. a) a n =5n dla n
KLASA I. JĘZYK POLSKI załącznik nr 7. BIOLOGIA załącznik nr 1. MATEMATYKA załącznik nr 4 CHEMIA. Źródła i skutki zanieczyszczenia powietrza.
KLASA I JĘZYK POLSKI załącznik nr 7 BIOLOGIA załącznik nr 1 MATEMATYKA załącznik nr 4 CHEMIA Źródła i skutki zanieczyszczenia powietrza. KLASA II JĘZYK POLSKI załącznik nr 8 BIOLOGIA załącznik nr 2 MATEMATYKA
Wielokąty i Okręgi- zagadnienia
Wielokąty i Okręgi- zagadnienia 1. Okrąg opisany na trójkącie. na każdym trójkącie można opisać okrąg, środkiem okręgu opisanego na trójkącie jest punkt przecięcia symetralnych boków tego trójkąta, jeżeli
Matematyka podstawowa VII Planimetria Teoria
Matematyka podstawowa VII Planimetria Teoria 1. Rodzaje kątów: a) Kąty wierzchołkowe; tworzą je dwie przecinające się proste, mają takie same miary. b) Kąty przyległe; mają wspólne jedno ramię, ich suma
Zadania przygotowawcze do konkursu o tytuł NAJLEPSZEGO MATEMATYKA KLAS PIERWSZYCH I DRUGICH POWIATU BOCHEŃSKIEGO rok szk. 2017/2018.
Zadania przygotowawcze do konkursu o tytuł NAJLEPSZEGO MATEMATYKA KLAS PIERWSZYCH I DRUGICH POWIATU BOCHEŃSKIEGO rok szk. 017/018 19 grudnia 017 1 1 Klasy pierwsze - poziom podstawowy 1. Dane są zbiory
Planimetria Uczeń: a) stosuje zależności między kątem środkowym i kątem wpisanym, b) korzysta z własności stycznej do okręgu i własności okręgów
Planimetria Uczeń: a) stosuje zależności między kątem środkowym i kątem wpisanym, b) korzysta z własności stycznej do okręgu i własności okręgów stycznych, c) rozpoznaje trójkąty podobne i wykorzystuje
MATERIAŁ ĆWICZENIOWY Z MATEMATYKI
Miejsce na naklejkę z kodem szkoły POZNAŃ MATERIAŁ ĆWICZENIOWY Z MATEMATYKI POZIOM ROZSZERZONY Czas pracy 180 minut Instrukcja dla zdającego 1. Sprawdź, czy arkusz zawiera 18 stron (zadania 1 11). Ewentualny
LUBELSKA PRÓBA PRZED MATUR pola do tego przeznaczone. Błędne
1 MATEMATYKA - poziom podstawowy klasa 2 CZERWIEC 2015 Instrukcja dla zdaj cego Czas pracy: 170 minut 1. Sprawdź, czy arkusz zawiera 17 stron. 2. Rozwiązania zadań i odpowiedzi zamieść w miejscu na to
LUBELSKA PRÓBA PRZED MATURĄ 2019
1 MATEMATYKA - poziom podstawowy klasa 1 MAJ 2019 Instrukcja dla zdającego Czas pracy: 170 minut 1. Sprawdź, czy arkusz zawiera 16 stron. 2. Rozwiązania zadań i odpowiedzi zamieść w miejscu na to przeznaczonym.
PRÓBNY EGZAMIN MATURALNY
PRÓBNY EGZAMIN MATURALNY Z MATEMATYKI ZESTAW NR 80866 WYGENEROWANY AUTOMATYCZNIE W SERWISIE WWW.ZADANIA.INFO POZIOM PODSTAWOWY CZAS PRACY: 170 MINUT 1 Zadania zamknięte ZADANIE 1 (1 PKT) Przekrój osiowy
LUBELSKA PRÓBA PRZED MATUR MATEMATYKA - poziom podstawowy
1 MATEMATYKA - poziom podstawowy LUTY 2015 Instrukcja dla zdaj cego Czas pracy: 170 minut 1. Sprawdź, czy arkusz zawiera 16 stron. 2. Rozwiązania zadań i odpowiedzi zamie ć w miejscu na to przeznaczonym.
Blok III: Funkcje elementarne. e) y = 1 3 x. f) y = x. g) y = 2x. h) y = 3x. c) y = 3x + 2. d) y = x 3. c) y = x. d) y = x.
Blok III: Funkcje elementarne III. Narysuj wykres funkcji: a) y = x y = x y = x y = x III. Narysuj wykres funkcji: a) y = x + y = 4 x III. Znajdź miejsca zerowe funkcji: a) y = 6 x y = x e) y = x f) y
POWTÓRZENIE WIADOMOŚCI Z TRYGONOMETRII
Zad.1 Rozwiąż trójkąt prostokątny: a) a 4, 0 b) b 8, c 1 POWTÓRZENIE WIADOMOŚCI Z TRYGONOMETRII Zad. Oblicz wartość wyrażenia cos 0 cos 45 cos0 cos 45. Zad.4 Wyznacz długości przyprostokątnych trójkąta
11. Znajdż równanie prostej prostopadłej do prostej k i przechodzącej przez punkt A = (2;2).
1. Narysuj poniższe figury: a), b), c) 2. Punkty A = (0;1) oraz B = (-1;0) należą do okręgu którego środek należy do prostej o równaniu x-2 = 0. Podaj równanie okręgu. 3. Znaleźć równanie okręgu przechodzącego
ZDAJ MATMĘ NA MAKSA POZIOM PODSTAWOWY 2018/ : (2 5 ) 5 (0, 5)
Lista nr 1 LICZBY RZECZYWISTE Zad.1 Udowodnij równość: 5 3 10 27 = 10 3 5 9. Zad.2 Wartość wyrażenia (3 1 3 27 2 3 9 1 ) 3 4 zapisz w postaci pierwiastka z liczby wymiernej. Zad.3 Oblicz wartość wyrażenia:
Geometria. Zadanie 1. Liczba przekątnych pięciokąta foremnego jest równa A. 4 B. 5 C. 6 D. 7
Geometria Zadanie 1. Liczba przekątnych pięciokąta foremnego jest równa A. 4 B. 5 C. 6 D. 7 W tym przypadku możemy wykonać szkic pięciokąta i policzyć przekątne: Zadanie. Promień okręgu opisanego na kwadracie
LUBELSKA PRÓBA PRZED MATURĄ 2019
1 MATEMATYKA - poziom podstawowy klasa 1 MAJ 2019 Instrukcja dla zdającego Czas pracy: 170 minut 1. Sprawdź, czy arkusz zawiera 16 stron. 2. Rozwiązania zadań i odpowiedzi zamieść w miejscu na to przeznaczonym.
LUBELSKA PRÓBA PRZED MATUR 2016
1 MATEMATYKA - poziom podstawowy klasa 1 MAJ 2016 Instrukcja dla zdajcego Czas pracy: 170 minut 1. Sprawdź, czy arkusz zawiera 17 stron. 2. Rozwiązania zadań i odpowiedzi zamieść w miejscu na to przeznaczonym.
LUBELSKA PRÓBA PRZED MATURĄ 2015
1 MATEMATYKA - poziom podstawowy klasa 2 CZERWIEC 2015 Instrukcja dla zdającego Czas pracy: 170 minut 1. Sprawdź, czy arkusz zawiera 17 stron. 2. Rozwiązania zadań i odpowiedzi zamieść w miejscu na to
ARKUSZ PRÓBNEJ MATURY Z OPERONEM MATEMATYKA
Miejsce na identyfikację szkoły ARKUSZ PRÓBNEJ MATURY Z OPERONEM MATEMATYKA POZIOM PODSTAWOWY LISTOPAD 011 Instrukcja dla zdającego Czas pracy: 170 minut 1. Sprawdź, czy arkusz egzaminacyjny zawiera 15
ZADANIA ZAMKNIETE W zadaniach 1-25 wybierz i zaznacz na karcie odpowiedzi poprawna
Arkusz A05 2 Egzamin maturalny z matematyki Poziom podstawowy ZADANIA ZAMKNIETE W zadaniach 1-25 wybierz i zaznacz na karcie odpowiedzi poprawna odpowiedź Zadanie 1. (0-1) Ułamek 5+2 5 2 ma wartość: A.
MATURA probna listopad 2010
MATURA probna listopad 00 ZADANIA ZAMKNIĘTE W zadaniach od. do 5. wybierz i zaznacz poprawną odpowiedź. Zadanie. ( pkt) - 4 $ 4 Liczba 0 jest równa 4-0, 5 A. B. C. D. 4 Zadanie. ( pkt) Liczba log 6 - log
LUBELSKA PRÓBA PRZED MATURĄ klasa 2b
MATEMATYKA materiał ćwiczeniowy CZERWIEC 0 Instrukcja dla zdającego. Sprawdź, czy arkusz zawiera 4 stron.. Rozwiązania zadań i odpowiedzi zamieść w miejscu na to przeznaczonym.. W zadaniach od do są podane
Klasa 3. Trójkąty. 1. Trójkąt prostokątny ma przyprostokątne p i q oraz przeciwprostokątną r. Z twierdzenia Pitagorasa wynika równość:
Klasa 3. Trójkąty. 1. Trójkąt prostokątny ma przyprostokątne p i q oraz przeciwprostokątną r. Z twierdzenia Pitagorasa wynika równość: A. r 2 + q 2 = p 2 B. p 2 + r 2 = q 2 C. p 2 + q 2 = r 2 D. p + q
ARKUSZ PRÓBNEJ MATURY Z OPERONEM MATEMATYKA
Miejsce na identyfikację szkoły ARKUSZ PRÓBNEJ MATURY Z OPERONEM MATEMATYKA POZIOM PODSTAWOWY LISTOPAD 016 Instrukcja dla zdającego Czas pracy: 170 minut 1. Sprawdź, czy arkusz egzaminacyjny zawiera 19
ARKUSZ PRÓBNEJ MATURY Z OPERONEM MATEMATYKA
Miejsce na identyfikację szkoły ARKUSZ PRÓBNEJ MATURY Z OPERONEM MATEMATYKA POZIOM PODSTAWOWY LISTOPAD 2018 Instrukcja dla zdającego Czas pracy: 170 minut 1. Sprawdź, czy arkusz egzaminacyjny zawiera 16
SPIS TREŚCI. Do Nauczyciela Regulamin konkursu Zadania
SPIS TREŚCI Do Nauczyciela... 6 Regulamin konkursu... 7 Zadania Liczby i działania... 9 Procenty... 14 Figury geometryczne... 19 Kąty w kole... 24 Wyrażenia algebraiczne... 29 Równania i nierówności...
KORESPONDENCYJNY KURS PRZYGOTOWAWCZY Z MATEMATYKI
KORESPONDENCYJNY KURS PRZYGOTOWAWCZY Z MATEMATYKI PRACA KONTROLNA nr 1 październik 1999 r 1. Stop składa się z 40% srebra próby 0,6, 30% srebra próby 0,7 oraz 1 kg srebra próby 0,8. Jaka jest waga i jaka
9. PLANIMETRIA zadania
Zad.9.1. Czy boki trójkąta mogą mieć długości: a),6, 10 b) 5,8, 10 9. PLANIMETRIA zadania Zad.9.. Dwa kąty trójkąta mają miary: 5, 40. Jaki to trójkąt: ostrokątny, prostokątny, czy rozwartokątny? Zad.9..
ARKUSZ X
www.galileusz.com.pl ARKUSZ X W każdym z zadań 1.-24. wybierz i zaznacz jedną poprawną odpowiedź. Zadanie 1. (0-1 pkt) Liczba 3 2 jest równa A) 5 2 B) 6 2 C) 6 2 D) 2 Zadanie 2. (0-1 pkt) Kurtka zimowa
1. Proporcjonalnością prostą jest zależność opisana wzorem: x 5
Matematyka Liceum Klasa II Zakres podstawowy Pytania egzaminacyjne 07. Proporcjonalnością prostą jest zależność opisana wzorem: 5 A. y = B. y = 5 C. y = D. y =.. Dana jest funkcja liniowa f() = + 4. Które
PODSTAWY > Figury płaskie (1) KĄTY. Kąt składa się z ramion i wierzchołka. Jego wielkość jest mierzona w stopniach:
PODSTAWY > Figury płaskie (1) KĄTY Kąt składa się z ramion i wierzchołka. Jego wielkość jest mierzona w stopniach: Kąt możemy opisać wpisując w łuk jego miarę (gdy jest znana). Gdy nie znamy miary kąta,
Imię i nazwisko. Zadanie 1 Oto wyniki kartkówki przeprowadzonej w trzech klasach drugich gimnazjum.
Imię i nazwisko. Zadanie 1 Oto wyniki kartkówki przeprowadzonej w trzech klasach drugich gimnazjum. Oceń prawdziwość każdego zdania. Zaznacz P, jeśli zdanie jest prawdziwe, lub F, jeśli jest fałszywe.
LUBELSKA PRÓBA PRZED MATUR 2018
1 MATEMATYKA - poziom podstawowy klasa 1 MAJ 2018 Instrukcja dla zdaj cego Czas pracy: 170 minut 1. Sprawdź, czy arkusz zawiera 16 stron. 2. Rozwiązania zadań i odpowiedzi zamieść w miejscu na to przeznaczonym.
PRÓBNY EGZAMIN MATURALNY
PRÓBNY EGZAMIN MATURALNY Z MATEMATYKI ZESTAW NR 78353 WYGENEROWANY AUTOMATYCZNIE W SERWISIE WWW.ZADANIA.INFO POZIOM PODSTAWOWY CZAS PRACY: 170 MINUT 1 Zadania zamknięte ZADANIE 1 (1 PKT) Liczba 5 4 jest
Arkusz zawiera informacje prawnie chronione do momentu rozpoczęcia egzaminu. (dla klas trzecich liceum i klas czwartych technikum)
Arkusz zawiera informacje prawnie chronione do momentu rozpoczęcia egzaminu. WPISUJE UCZEŃ KOD PESEL PRZEDMATURALNA DIAGNOZA KSZTAŁTUJĄCA Z MATEMATYKI POZIOM PODSTAWOWY MARZEC 018 (dla klas trzecich liceum
LUBELSKA PRÓBA PRZED MATURĄ POZIOM PODSTAWOWY Klasa 2 Klasa 2
Klasa POZIOM PODSTAWOWY Czas pracy 70 minut Instrukcja dla piszącego. Sprawdź, czy arkusz zawiera 8 stron.. Rozwiązania zadań i odpowiedzi zamieść w miejscu na to przeznaczonym. 3. W zadaniach od. do 5.
Wielokąty na płaszczyźnie obliczenia z zastosowaniem trygonometrii
Wielokąty na płaszczyźnie obliczenia z zastosowaniem trygonometrii Obliczenia geometryczne z zastosowaniem własności funkcji trygonometrycznych w wielokątach wypukłych Wielokąt - figura płaską będąca sumą
EGZAMIN MATURALNY Z MATEMATYKI CZERWIEC 2012 POZIOM PODSTAWOWY. Czas pracy: 170 minut. Liczba punktów do uzyskania: 50 WPISUJE ZDAJĄCY
Centralna Komisja Egzaminacyjna Arkusz zawiera informacje prawnie chronione do momentu rozpoczęcia egzaminu. Układ graficzny CKE 010 KOD WPISUJE ZDAJĄCY PESEL Miejsce na naklejkę z kodem dysleksja EGZAMIN
Projekt Era inżyniera pewna lokata na przyszłość jest współfinansowany przez Unię Europejską w ramach Europejskiego Funduszu Społecznego
Materiały dydaktyczne na zajęcia wyrównawcze z matematyki dla studentów pierwszego roku kierunku zamawianego Biotechnologia w ramach projektu Era inżyniera pewna lokata na przyszłość Projekt Era inżyniera
Skrypt 30. Przygotowanie do egzaminu Okrąg wpisany i opisany na wielokącie
Projekt Innowacyjny program nauczania matematyki dla gimnazjów współfinansowany ze środków Unii Europejskiej w ramach Europejskiego Funduszu Społecznego Skrypt 30 Przygotowanie do egzaminu Okrąg wpisany
Stowarzyszenie Nauczycieli Matematyki
WPISUJE ZDAJĄCY KOD PESEL Miejsce na naklejkę z kodem (podczas egzaminu w maju) PRÓBNY ARKUSZ MATURALNY Z MATEMATYKI POZIOM PODSTAWOWY 1. Sprawdź czy arkusz zawiera 13 stron (zadania 1-32). STYCZEŃ 2015
ZADANIA OTWARTE KRÓTKIEJ ODPOWIEDZI
Zadanie 51. ( pkt) Rozwiąż równanie 3 x = 1. 1 x Zadanie 5. ( pkt) x+ 3y = 5 Rozwiąż układ równań. x y = 3 Zadanie 53. ( pkt) Rozwiąż nierówność x + 6x 7 0. ZADANIA OTWARTE KRÓTKIEJ ODPOWIEDZI Zadanie
Zadanie PP-GP-1 Punkty A, B, C, D i E leżą na okręgu (zob. rysunek). Wiadomo, że DBE = 10
Zadanie PP-GP-1 Punkty A, B, C, D i E leżą na okręgu (zob. rysunek). Wiadomo, że DBE = 10, ACE = 60, ADB = 40 i BEC = 20. Oblicz miarę kąta CAD. B C A D E Typ szkoły: LO LP T Czy jesteś w klasie z rozszerzonym
LUBELSKA PRÓBA PRZED MATURĄ POZIOM PODSTAWOWY Klasa 1 Klasa 1
Klasa 1 POZIOM PODSTAWOWY Czas pracy 170 minut Instrukcja dla piszącego 1. Sprawdź, czy arkusz zawiera 18 stron. 2. Rozwiązania zadań i odpowiedzi zamieść w miejscu na to przeznaczonym. 3. W zadaniach
EGZAMIN MATURALNY Z MATEMATYKI POZIOM PODSTAWOWY CZERWIEC 2013. Czas pracy: 170 minut. Liczba punktów do uzyskania: 50 WPISUJE ZDAJĄCY
Centralna Komisja Egzaminacyjna Arkusz zawiera informacje prawnie chronione do momentu rozpoczęcia egzaminu. Układ graficzny CKE 00 KOD WPISUJE ZDAJĄCY PESEL Miejsce na naklejkę z kodem dysleksja EGZAMIN
MATURA PRÓBNA PODSTAWOWA GEOMETRIA Z TRYGONOMETRIA
www.zadania.info NJWIEKSZY INTERNETOWY ZIÓR ZŃ Z MTEMTYKI MTUR PRÓN POSTWOW GEOMETRI Z TRYGONOMETRI ZNIE 1 (1 PKT) W trójkacie prostokatnym naprzeciw kata ostrego α leży przyprostokatna długości 3 cm.
EGZAMIN MATURALNY Z MATEMATYKI
Miejsce na naklejkę z kodem szkoły dysleksja MMA-R1_1P-07 EGZAMIN MATURALNY Z MATEMATYKI POZIOM ROZSZERZONY Czas pracy 180 minut Instrukcja dla zdającego 1 Sprawdź, czy arkusz egzaminacyjny zawiera 15
EGZAMIN MATURALNY Z MATEMATYKI POZIOM PODSTAWOWY CZERWIEC Czas pracy: 170 minut. Liczba punktów do uzyskania: 50 WPISUJE ZDAJĄCY
Centralna Komisja Egzaminacyjna Arkusz zawiera informacje prawnie chronione do momentu rozpoczęcia egzaminu. Układ graficzny CKE 00 KOD WPISUJE ZDAJĄCY PESEL Miejsce na naklejkę z kodem dysleksja EGZAMIN
EGZAMIN MATURALNY Z MATEMATYKI POZIOM PODSTAWOWY CZERWIEC Czas pracy: 170 minut. Liczba punktów do uzyskania: 50 WPISUJE ZDAJĄCY
Centralna Komisja Egzaminacyjna Arkusz zawiera informacje prawnie chronione do momentu rozpoczęcia egzaminu. Układ graficzny CKE 00 KOD WPISUJE ZDAJĄCY PESEL Miejsce na naklejkę z kodem dysleksja EGZAMIN
KONKURS MATEMATYCZNY DLA UCZNIÓW GIMNAZJUM Etap Wojewódzki
pieczątka WKK Kod ucznia - - Dzień Miesiąc Rok DATA URODZENIA UCZNIA KONKURS MATEMATYCZNY DLA UCZNIÓW GIMNAZJUM Etap Wojewódzki Drogi Uczniu Witaj na III etapie konkursu matematycznego. Przeczytaj uważnie
Klucz odpowiedzi do zadań zamkniętych i przykładowe rozwiązania zadań otwartych
Centralna Komisja Egzaminacyjna Materiał współfinansowany ze środków Unii Europejskiej w ramach Europejskiego Funduszu Społecznego Próbny egzamin maturalny z matematyki listopad 009 Klucz odpowiedzi do
LUBELSKA PRÓBA PRZED MATURĄ MATEMATYKA - poziom podstawowy klasa 1
1 MATEMATYKA - poziom podstawowy klasa 1 MAJ 2016 Instrukcja dla zdającego Czas pracy: 170 minut 1. Sprawdź, czy arkusz zawiera 17 stron. 2. Rozwiązania zadań i odpowiedzi zamieść w miejscu na to przeznaczonym.
Sprawdzian całoroczny kl. II Gr. A x
. Oblicz: a) (,5) 8 c) ( ) : ( ). Oblicz: Sprawdzian całoroczny kl. II Gr. A [ ] d) 6 a) ( : ) 5 6 6 8 50. Usuń niewymierność z mianownika: a). Oblicz obwód koła o polu,π dm. 5. Podane wyrażenia przedstaw
Skrypt 32. Przygotowanie do egzaminu Trójkąty prostokątne. Opracowanie: GIM7. 1. Twierdzenie Pitagorasa i twierdzenie do niego odwrotne.
Projekt Innowacyjny program nauczania matematyki dla gimnazjów współfinansowany ze środków Unii Europejskiej w ramach Europejskiego Funduszu Społecznego Skrypt 32 Przygotowanie do egzaminu Trójkąty prostokątne
POZIOM PODSTAWOWY - GR 1 Czas pracy 170 minut
POZIOM PODSTAWOWY - GR 1 Czas pracy 170 minut Klasa Instrukcja dla piszącego 1. Sprawdź, czy arkusz zawiera 16 stron.. Rozwiązania zadań i odpowiedzi zamieść w miejscu na to przeznaczonym.. W zadaniach
ZAGADNIENIA NA EGZAMIN POPRAWKOWY Z MATEMATYKI W KLASIE III TECHNIKUM.
ZAGADNIENIA NA EGZAMIN POPRAWKOWY Z MATEMATYKI W KLASIE III TECHNIKUM. I. Trygonometria. 1. Definicje funkcji trygonometrycznych kąta ostrego w trójkącie prostokątnym. 2. Rozwiązywanie trójkątów prostokątnych
PRÓBNY EGZAMIN MATURALNY
PRÓBNY EGZAMIN MATURALNY Z MATEMATYKI ZESTAW PRZYGOTOWANY PRZEZ SERWIS WWW.ZADANIA.INFO POZIOM PODSTAWOWY 17 MARCA 2012 CZAS PRACY: 170 MINUT 1 Zadania zamknięte ZADANIE 1 (1 PKT.) Który z zaznaczonych
Konkurs dla gimnazjalistów Etap szkolny 12 grudnia 2013 roku
Konkurs dla gimnazjalistów Etap szkolny 1 grudnia 01 roku Instrukcja dla ucznia 1. W zadaniach o numerach od 1. do 1. są podane cztery warianty odpowiedzi: A, B, C, D. Dokładnie jedna z nich jest poprawna.
Projekt Innowacyjny program nauczania matematyki dla liceów ogólnokształcących
Projekt Innowacyjny program nauczania matematyki dla liceów ogólnokształcących współfinansowany ze środków Unii Europejskiej w ramach Europejskiego Funduszu Społecznego Skrypt dla ucznia Planimetria: 5.
ARKUSZ PRÓBNEJ MATURY Z OPERONEM MATEMATYKA
Miejsce na identyfikację szkoły ARKUSZ PRÓBNEJ MATURY Z OPERONEM MATEMATYKA POZIOM PODSTAWOWY MARZEC 017 Instrukcja dla zdającego Czas pracy: 170 minut 1. Sprawdź, czy arkusz egzaminacyjny zawiera 19 stron
ZBIÓR ZADAŃ Z MATEMATYKI DLA KLASY II GIMNAZJUM W ZAKRESIE WYMAGAŃ KONIECZNYCH I PODSTAWOWYCH
ZBIÓR ZADAŃ Z MATEMATYKI DLA KLASY II GIMNAZJUM W ZAKRESIE WYMAGAŃ KONIECZNYCH I PODSTAWOWYCH Opracowała: nauczyciel matematyki mgr Małgorzata Drejka Legionowo 007 SPIS TREŚCI ALGEBRA potęgi i pierwiastki
3 Religie Rola Rzymu Ośrodki kulturowe po upadku Rzymu 4 Schemat społeczeństwa Pojęcia
Klasa I ZS Temat Lp. Zakres treści Lekcja organizacyjna 1 Program nauczania System oceniania Źródła wiedzy o przeszłości i teraźniejszości 2 Epoki historyczne Źródła historyczne Dziedzictwo antyku Kształtowanie